搜档网
当前位置:搜档网 › 聚羧酸减水剂的研究现状及发展趋势

聚羧酸减水剂的研究现状及发展趋势

聚羧酸减水剂的研究现状及发展趋势
聚羧酸减水剂的研究现状及发展趋势

聚羧酸减水剂的研究现状及发展趋势

摘要:聚羧酸减水剂的研发和推广是混凝土材料科学中的一个研究热点,推动着混凝土材料向高强、高性能化不断发展。论文主要针对国内、外对聚羧酸系高效减水剂的应用情况,分析聚羧酸减水剂的作用机理,通过总结当前研究与应用中存在的主要问题,对将来的发展趋势进行了展望。

关键词:聚羧酸;减水剂;现状;发展趋势

减水剂是一种重要的混凝土外加剂,是水泥混凝土必不可少的组成部分[1]。近年来,高性能混凝土在我国工程建设中发挥了重要作用[2,3],如聚羧酸系减水剂。其保坍性能优异、与水泥适应性良好,但因其价格昂贵,应用范围受到一定的限制[4]。从某种意义上说,目前各国在混凝土技术上的差距最重要的特征就是外加剂,尤其是高性能减水剂的发展水平。而新型多功能聚羧酸系高性能减水剂的开发则是目前研究的热点[5,6],发展迅猛[7],其应用越来越广泛[8,9],成为公认的配制高性能混凝土不可或缺的一种重要材料。

1、聚羧酸减水剂的分类

为了更好的满足市场需求,应该更系统地开发聚羧酸系列产品。根据不同的分类方式,聚羧酸减水剂有不同的分类。

1.1根据化学结构分类

聚羧酸减水剂化学上可以分为两类,以主链为甲基丙烯酸,侧链为羧酸基团MPEG(Methoxy polyethylene glycol),聚酯型结构。另外一种为主链为聚丙烯酸,侧链为Vinyl alcohol polyethylene glycol,聚醚型结构。

1.2根据使用情况分类

聚羧酸减水剂根据使用情况可被分为标准型、缓凝型、早强型、保坍型、减缩型、降粘型[10]。目前,各类产品还未发展完善,有待进一步提高。

2、聚羧酸减水剂的研究情况

2.1 国内研究情况

国内对聚羧酸减水剂的研究大多数偏向于分子结构设计、化学合成,而对减水剂作用下水泥水化的机理研究甚少[12~14]。只有少量用作坍落度损失控制剂与萘系减水剂复合使用,而且可供合成聚羧酸类减水剂的原料也极为有限。国内原材料单甲氧基聚乙二醇MPEG供应不足,MPEG国内没有商业化,必须依靠进口[15]。也有研究人员用聚乙二醇(PEG)代替MPEG,但是由于在制备过程中双官能度的PEG容易产生交联,使得产品性能较差,质量不稳定。可以说从减水剂原料到生产工艺降低成本提高性能等许多方面都仅仅是处于刚起步阶段[16]。

2.2 国外研究情况

在国外,聚羧酸类减水剂的研究已有相当长的历史其应用技术已经成熟[17],20世纪80年代起,国内外就开始积极研发非萘系减水剂。目前,日本、德国等国家生产的聚羧酸系减水剂质量稳定,用量已占到其国内减水剂总量的60%以上[18]。

3、聚羧酸减水剂的特点

3.1 对水泥水化行为的影响

聚羧酸共聚物参与水泥的水化过程对水泥净浆的液相电导率、PH值和水化程度产生了一定的影响[19]。此外,减水剂对水泥颗粒具有分散作用,提高水泥颗粒与水的接触程度,因而能促进水泥与水的反应[20]。另一方面,在水泥水化的碱性介质中,减水剂分子链中的活性基团(如-COO-、-SO3-)会与水化生成不稳定络合物,从而减少水化产物CH晶体生成,表现为减缓浆体结构的发展、降低水化放热、减少化学收缩[21]。

3.2 在水泥-水界面的吸附现象

研究表明:当聚羧酸系减水剂依靠静电引力吸附在水泥颗粒表面时,其聚氧乙烯支链以及形成的表面胶团结构,通过氢键的缔合作用,吸引大量的水分子在其周围形成溶剂化水膜,产生了很大的空间位阻作用,使得水泥颗粒分散,减少聚集。对于聚羧酸减水剂吸附量的增加,其在水泥颗粒表面产生的空间位阻作用以及水泥颗粒之间的静电斥力作用都得到了增强,从而使水泥的净浆流动度得到提高[22]。

3.3 对温度的依赖性

对聚合时的温度来说,聚合温度对单体的活性和引发剂的分解速率影响很大[23]。

对减水剂使用情况来说,温度对其性能影响不大。实验表明:在任何温度条件下接枝共聚物在水泥表面的吸附,随时间延长均出现逐渐增加的现象[24]。

3.4 工程中的适应范围

砂石骨料作为混凝土的主要组成材料,其体积占混凝土的70%~80%,其矿物特性(不同矿物组成、颗粒形状及细度等)会直接影响混凝土的许多性能[25]。不同的混凝土原料对减水剂的要求不同。

就聚羧酸减水剂而言,聚羧酸盐的掺加量直接影响着减水效果。实验表明:PC掺量由0.80%增加到1.40%时,减水率由18.0%提高到了32.2%[26]。由此可见,掺加适量的聚羧酸类减水剂,可显著改善新拌混凝土的工作性能和硬化后混凝土的综合性能[27],满足现代混凝土的发展和应用[28]。

4、聚羧酸减水剂的主要作用机理

具有梳型结构的聚羧酸系减水剂其结构当聚羧酸系减水剂掺入新拌混凝土后,减水剂所带的极性阴离子活性基团,通过离子键、共价键、氢键及范德华力等相互作用紧紧地吸附在强极性的水泥颗粒表面,从而使水泥颗粒带电根据同性电荷相斥,阻止了相邻水泥颗粒的相互接近增大了水泥与水的接触面积使水泥充分水化。并且在水泥颗粒扩散的过程中释放出凝聚体所包含的游离水改善了和易性,减少了拌水量同时,结构中具有亲水性的聚醚侧链伸展于水溶液中,从而在所吸附的水泥颗粒表面形成有一定厚度的亲水性立体吸附层[11]。

5、目前应用中出现的问题

目前,国内外对聚羧酸类减水剂的研究集中在减水剂的开发与合成上[29,30],在其应用方面的研究尚少,特别是与应用有关的理论研究相对滞后,因此此类减水剂在应用出现的问题也逐渐显现[31-33]。

实验表明,对于C25混凝土,在满足施工性能的前提下,由于胶凝材料相对偏少,聚羧酸类减水剂减水优势难以体现[34,35]。在制备工艺上,聚羧酸减水剂对制备条件的要求较一般减水剂高些[36-39],导致成本增加[40,41],所以在实际应用中,一般不会首选

该减水剂。

6、发展前景

6.1 优化工艺过程

对现有的聚羧酸减水剂的性能进行改进,优化工艺过程。可以通过研究反应溶剂、反应物浓度、反应温度、反应时间等因素的影响。寻找能最大限度地降低交联反应,以适合工业化生产的条件,从而降低生产成本和施工成本。

6.2 开发系列化产品

聚羧酸系减水剂要想获得更加广泛的应用就必须加快品种的系列化发展进程,开发出一系列具有性能特点的聚羧酸系聚合物产品。最好开发用于土木工程中预拌混凝土专用的聚羧酸系减水剂。该类产品不需要很高的减水率,并能保证混凝土的工作性好、坍落度损失小、保水性好、不容易出现泌水离析等现象,且对混凝土原材料(尤其是含泥量)变化不敏感。开发具有特定功能的聚羧酸系减水剂也是今后的发展方向,例如低引气性的聚羧酸系减水剂母液、具有减缩功能的聚羧酸系减水剂等。

6.3研究分子结构设计

聚羧酸高性能减水剂具有“梳状”的结构特点,梳型侧链连着阴离子、非离子,是一种混合型表面活性剂。若改变单体的种类、比例和反应条件,可生产各种不同特性和性能的聚羧酸系高效减水剂。利用聚合物分子设计,可以控制聚羧酸系高效减水剂中梳型聚合物主链链长与官能团、支链链长等,消除其结构对混凝土的减水、引气、保坍、缓凝等作用的影响。

6.4 重视复合型减水剂

目前国内市场上减水剂的品种较多,但有些品种受其结构制约对混凝土的保坍性不佳,如萘系减水剂等。聚羧酸系减水剂虽保坍性能优异、与水泥适应性良好,但因其价格昂贵,应用范围受到一定的限制。研究复合型高效减水剂,可充分发挥不同类型减水剂的优点,优化混凝土的各项性能,提高其的应用潜力,增加工程应用中减水剂的选择性。这对我国混凝土材料的发展和建设工程技术的进步具有重要的现实和经济意义。

参考文献

1、梅锦岗,聚羧酸系高效减水剂的研究现状与展望[J],商品混凝土,2010(3):27-29.

2、冯乃谦,高性能混凝土技术[M],北京:原子能出版社,2000.

3、郭延辉,聚羧酸系高性能减水剂及其工程应用发展综述[M],北京:中国铁道出版社,2007.

4、杨凤玲,聚羧酸混凝土减水剂的研究现状与发展趋势[J],材料导报,2010(11):436-439.

5、侯贵华,聚羧酸减水剂的研究现状与发展趋势[J],材料导报,2010(12):36-39.

6、顾丽瑛,国内聚羧酸系高性能减水剂的合成及研究状况[J],胶体与聚合物,2007(2):47-49.

7、王玲,我国混凝土减水剂的现状及未来[J],混凝土与水泥制品,2008(10):1-7.

8、嵇银行,聚羧酸减水剂的现状与发展趋势[J],材料导报,2010(11):6-9.

9、李崇智,聚羧酸系减水剂结构模型与高性能化分子设计[J],建筑材料学报,2004(2):194-201.

10、李崇智,聚羧酸系减水剂在高性能混凝土中的应用研究[J],新型建筑材料2008(6):57-62. 11、姜玉,聚羧酸系高效减水剂的研究和应用[J],化工进展,2007(12):37-41.

12、王栋民,混凝土化学外加剂的最新发展与动态

[J],建筑技术开发,2001(4):2-4.

13、熊大玉,混凝土外加剂[M],北京:化学工业出版社,2002.

14、马保国,硅酸盐水泥水化历程与初始结构形成的研究[J],武汉理工大学学报,2004(7):17-19.

15、Li Chong . Effects of polyethyleneoxid chains on the performance of polycarboxylate–taoe

water–reducer [J],2005(8):2-5.

16、山田一夫,高性能AE减水剂国际开发状况[J],ゴンヶリート工学,1998(4):20-23.

17、姜国庆,日本高性能AE减水剂的研究进程及应用现状[J],化学建材,2000(2):42-44.

18、王玲,聚羧酸系减水剂的发展历程及研发方向[J],科技导航,2012(11):54-57.

19、翁荔丹,聚羧酸减水剂对水泥水化过程的影响[J],福建师范大学学报(自然科学版),2007(1):54-58.

20、潘莉莎,减水剂对水泥水化行为的影响[J],硅酸盐学报,2007(10):1369-1375.

21、马保国,不同减水剂对水泥水化的作用机理的研究[J],混凝土与水泥制品,2007(10):6-8. 22、赵苏,减水剂在水泥一水界面的吸附现象[J],沈阳建筑大学学报(自然科学版),2010(7):724-728.

23、王槐三,高分子化学教程[M],北京:科学出版社,2002.

24、吴华明,聚羧酸减水剂的温度依赖性[J],混凝土与水泥制品,2011(10):9-12.

25、龙鳘,人工砂配制混凝土应用探讨[J],建筑技术,2007(11):861-863.

26、孙振平,如何安全高效地应用聚羧酸系减水剂[J],混凝土,2007(6):35-38.

27、孙振平,烯丙基聚乙二醇系聚羧酸类减水剂的研究[J],建筑材料学报,2009(8):407-412. 28、DHIR R K,HEWLWTT P C。NEWLANDS M D.Admixtures enhancing concrete

performance[A].Proceedings of the International Conference on Admixtures-Enhancing Concrete Per- formance[C].Dundeel University of Dundee,2005:429.

29、张恂,国内聚羧酸系高性能减水剂的合成及研究状况[J],2007(2),4-6.

30、刘兴重,混凝土减水剂BFR的合成研究[J],武汉冶金科技大学学报,1997 (3):4-6.

31、尹训周,聚羧酸系减水剂与萘系减水剂对比实验研究[J],广东建材,2005(3):21-22.

32、潘莉莎,减水剂对混凝土耐久性影响的研究进展[J],混凝土,2007(1):53-56.

33、吴芳,聚羧酸系与萘系减水剂对比实验研究[J],广东建材,2005(3):59-61.

34、廖国胜,聚羧酸减水剂在混凝土中的应用研究[J],武汉科技大学学报(自然科学版),2008(4):214-217.

35、潘莉莎,减水剂对混凝土耐久性影响的研究进展[J],混凝土,2007(1):48-51.

36、王小兵,用于水泥沥青砂浆的聚羧酸减水剂的制备[J],新型建筑材料,2011(11):48-52. 37、乔敏,高性能改性密胺减水剂的研究与开发[J],新型建筑材料,2011(12):5-9.

38、李春洪,不同减水剂对半水磷石膏适应性的研究[J],非金属矿,2011(12):43-46.

39、阎瑞晶. 聚羧酸类高效减水剂分子单体研究进展[J],混凝土,2011(2):29-32.

40、张明. 新型聚羧酸系高性能减水剂的合成研究[J],材料导报,2010(3):4-7.

41、张智强. 一种聚羧酸系高效减水剂的实验研究[J],混凝土与水泥制品,2009(1):6-10.

聚羧酸高性能减水剂标准型说明书

聚羧酸高性能减水剂标 准型说明书 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

森普牌S P Y J-1型聚羧酸系高性能减水剂(标准型) 产品说明书 森普牌SPYJ-1型聚羧酸系高性能减水剂(标准型)是目前国内外最新的引领产品。它与常用的聚羧酸系高性能减水剂相比,具有减水率高、掺量低、与水泥适应好、坍落度损失小和无污染等特点。同时具有改善新拌混凝土各种性能指标和提高工作性等多种作用。本产品为无色透明液体,无毒、无腐蚀性、不易燃、对钢筋无锈蚀作用、对人体健康无害。 本产品目前参照执行GB/T8076-2008《混凝土外加剂》、GB/T8077-2012《混凝土外加剂匀质性试验方法》、TB/T3275-2011《铁路混凝土》、GB18582-2008《室内装饰装修材料内墙涂料中有害物质限量》标准。 一、技术性能 1.增强效果:与基准混凝土同坍落度和等水泥用量的前提下,减水率≥25%,混凝土各龄期强度均有显着提高,1天抗压强度比≥170%,3天抗压强度比≥160%,7天抗压强度比≥150%,28天抗压强度比≥140%。 2.泵送性能:具有显着的可泵性。与基准混凝土相比,在同水灰比的前提下,净增坍落度≥100mm,1小时坍落度经时变化量(用于配制泵送混凝土时)≤80mm。 3.工作性能:具有改善新拌混凝土的和易性、保水性和泌水性等操作性能。 4.表面光洁:掺用本产品的混凝土,具有粘聚性强、含气量少和泌水率小等特点,能有效改善高架、高速公路、桥梁等各类清水混凝土表面光洁美观。 5.特效功能:在配制高强混凝土时,其弹性模量、抗渗性、抗收缩、抗徐变和耐久性等高性能指标均可满足指标要求 二、匀质指标 根据产品的性能指标和用户的要求,符合国家、行业及企业标准。 三、应用范围 本产品适用于各类泵送混凝土、大体积混凝土、高层建筑、高架、高速公路、桥梁、水工混凝土及地下、水下灌注混凝土等。特别适应于重点工程和有特殊要求的混凝土。 四、使用方法 1.本产品掺量范围1.0~1.2%(以胶凝材料量计),可根据与水泥的适应性、气温的变化和混凝土坍落度等要求,在推荐范围内调整确定最佳掺量。 2.按计量,直接掺入混凝土搅拌机中使用。 3.在计算混凝土用水量时,应扣除液剂中的水量。 4.在使用本产品时,应按混凝土试配事先检验与水泥的适应性。 五、注意事项 1.在水泥变更品种或新进水泥时,应做与水泥兼容性检验。 2.对于要求缓凝的混凝土,应按混凝土试配事先检验凝结时间。 3.必须按试验配合比正确掺量,浇筑混凝土时,应严格按施工规范操作。 4.在与其他外加剂合用时,宜先检验其兼容性。 5.在冬季施工期间,为了提高混凝土早期强度,应适当调整混凝土的水泥用量。 6.与常规混凝土工程一样,必须按施工规范加强养护。 7.使用本产品,应提前1~3天通知厂方。 六、包装贮存

聚羧酸系高效减水剂的发展与现状

聚羧酸系高效减水剂的发展与现状 发表时间:2018-04-04T16:46:09.260Z 来源:《基层建设》2017年第34期作者:侯严花[导读] 摘要:高效减水剂是高性能混凝土不可缺少的一种组分油于其超分散作用特别是达到非常低的水胶比后使混凝土能够保持高的流动性。 连云港泰广混凝土有限公司江苏连云港 222000 摘要:高效减水剂是高性能混凝土不可缺少的一种组分油于其超分散作用特别是达到非常低的水胶比后使混凝土能够保持高的流动性。目前,我国传统的高性能减水剂包括改性木钙、蔡系、三聚氰氨等,这些都难以满足高性能混凝土对减水剂性能的要求而聚竣酸系高效减水剂的性能更优越河根据实际情况配制各种不同强度等级的混凝土。所以推广应用聚竣酸系高效减水剂是混凝土向高性能化方向发展 的必然要求。 关键词:聚羧酸系;高效减水剂;发展目前市场上常用的几种减水剂为:木质素磺酸钠盐减水剂、萘系高效减水剂、脂肪族高效减水剂、氨基高高效减水剂、聚羧酸高效减水剂等。在众多减水剂中,具有疏形分子结构的聚羧酸系高效减水剂因其减水率高(最高减水率可达35%以上)、坍落度保持性能良好、掺量低、不引起明显缓凝等优异性能,成为国内外研究和开发的重点。 一、聚羧酸减水剂特点 (1)保坍性好,90min内坍落度基本不损失; (2)在相同流动性情况下,对水泥凝结时间影响小,可很好的解决减水、引气、缓解、泌水等问题; (3)与水泥及其它种类的混凝土外加剂相容性很好,与传统高效减水剂如萘系减水剂复配可产生良好的叠加效应。 (4)合成高分子主链的原料来源较广,单体通常有丙烯酸、甲基丙烯酸、马来酸、(甲基)丙烯酸乙酯、(甲基)丙烯酸羟乙酯、乙酸乙烯酯、烯丙基磺酸钠等。 (5)使用聚羧酸高效减水剂,可用更多的矿渣或煤粉灰取代水泥,降低成本。 (6)分子结构自由度大,外加剂制造技术上可控制的参数多,高性能化的潜力大。 (7)局和途径多样化,如共聚、接枝、嵌段等。合成工艺比较简单,由于不使用甲醛,不会对环境造成污染。 二、聚羧酸类高效减水剂的合成方法 1大分子单体法 该法先酯化后聚合,即首先通过酯化反应制备出有聚合活性的大分子单体(通常为甲氧基聚乙二醇甲基丙烯酸酯),然后将一定配比的单体混合在一起,直接采用溶液聚合的方法聚合得到成品。这种合成工艺看起来很简单,但中间分离纯化过程比较繁琐,成本较高。日本触媒公司采用短、长链甲氧基聚乙二醇甲基丙烯酸酯和甲基丙烯酸3种单体直接共聚合成了1种坍落度保持性良好带有聚醚侧链的混凝土外加剂。 2大分子反应法 该法先聚合后酯化,即首先制备出已知相对分子质量的聚羧酸,然后在催化剂的作用下,采用已知相对分子质量的聚醚于较高的温度下通过酯化反应对聚羧酸进行接枝。但是由于聚羧酸产品种类和规格有限,调整其组成和相对分子质量较困难,同时由于聚羧酸和聚醚的相容性不好,酯化实际操作困难,随着酯化反应的进行,水分不断溢出,会出现相分离现象。如果能选择一种与聚羧酸相容性好的聚醚单醇或二元醇就可以解决相分离问题。利用单体苯乙烯和马来酸酐先聚合,然后对共聚物进行磺化和酯化的方法制得了一种聚羧酸减水剂,该减水剂具有较高的分散性能和优良的保坍性能 3原位聚合与接枝该法集聚合与酯化于一体,即以聚醚作为羧酸类不饱和单体的反应介质,在羧酸类不饱和单体发生聚合的同时发生酯化反应,从而避免了聚羧酸与聚醚相容性不好的问题。把丙烯酸单体、链转移剂、引发剂的混合溶液逐渐滴加到相对分子质量为2000的甲氧基聚乙二醇的水溶液中,在60℃反应45min后升温到120℃,在N2保护下不断除去水分(约50min),然后加入催化剂升温到165℃,反应1h,进一步接枝得到成品。这种方法虽然可以控制聚合物的相对分子质量,合成工艺简单,生产成本低,但一般只能选择含羧基的单体,否则很难接枝,且这种接枝反应是个可逆平衡反应,反应前体系中已有大量的水分存在,其接枝率不高,且难以控制,分子设计比较困难。 三、聚羧酸高效减水剂发展趋势 1高性能化 为满足高性能混凝土发展的需求,聚羧酸减水剂应继续向低粘度、高分散、高保坍等高性能化方向发展。首先在实验室内通过超支化聚合物理论,制备出了一种新型的超支化型混凝土超塑化剂。与传统聚羧酸超塑化剂相比,这一新型的超支化聚合物,可以更好地控制新拌混凝土的流变学性能,也具有更佳的适应性和低粘性。国内外先后提出在聚羧酸盐主链上引入“性离子类”,从而提高外加剂的饱和掺量,实现高分散性。另外,提出将羧酸基团进行改性,调控其吸附速率和在水泥强碱性环境下的水解速率,从而达到高保坍的目的。 2功能化 随着预制混凝土、大体积混凝土、钢筋混凝土的应用及不断涌现的问题,在对聚羧酸构效关系和作用机理的深入认识的基础上,设计和合成具有特殊功能的分子结构,使其具有超早强、减缩抗裂和阻锈等多种功能,有利于进一步推动混凝土的技术进步和可持续发展。采用高分子量聚氧乙烯支链结构合成了新型纳米结构的聚羧酸盐类减水剂,可将水泥水化放热峰提前5h左右,用于预制混凝土构件的生产或用于在冬季低温环境中施工的混凝土工程。日本和中国先后有人提出在聚羧酸主链上接枝不同侧链长度的聚醚,可以起到减缩抗裂功能。设想将具有减缩、阻锈功能烷基聚醚和提供空间位阻效应的聚醚接枝到共聚物主链中,从而实现化学外加剂的多功能化。 3绿色环保化 目前一部分聚羧酸减水剂的制备过程仍然需要使用挥发性有机溶剂作为带水剂接枝聚醚侧链,该酯化过程存在温度高、加工时间长的缺点,而且有机溶剂的使用不可避免会对生产工人和环境造成不利影响,并且还会不利于可持续发展。因此目前聚羧酸系减水剂的制备合成过程及产物正在向无毒、无污染、节能等方向努力,达到绿色环保化。 4优化工艺过程

萘系高效减水剂与聚羧酸系减水剂的性能比较.docx

萘系高效减水剂与聚羧酸系减水剂的性能比较 萘系高效减水剂与聚羧酸系减水剂的性能比较一、混凝土减水剂概述及作用机 理 减水剂是一种重要的混凝土外加剂,能够最大限度地降低混凝土水灰比,提高 混凝土的强度和耐久性。减水剂分为普通减水剂和高效减水剂,减水率大于5%小于 10%的减水剂称为普通减水剂,如松香酸钠、木质素磺酸钠和硬脂酸皂等 ; 减水率大于 10%的减水剂称为高效减水剂,如三聚氰胺系、萘系、氨基磺酸系、改性木质素磺酸系和聚羧酸系等。在众多高效减水剂中,具有梳形分子结构的聚羧酸系高效减水剂因其减水率高、坍落度保持性能良好、掺量低、不引起明显缓凝等优异性能,成为近年来国内外研究和开发的重点。 减水作用是表面活性剂对水泥水化过程所起的一种重要作用。减水剂是在不影 响混凝土工作性的条件下,能使单位用水量减少 ; 或在不改变单位用水量的条件 下,可改善混凝土的工作性 ; 或同时具有以上两种效果,又不显著改变含气量的外 加剂。目前,所使用的混凝土减水剂都是表面活性剂,属于阴离子表面活性剂。 水泥与水搅拌后,产生水化反应,出现一些絮凝状结构,它包裹着很多拌和水,从而降低了新拌混凝土的和易性 ( 又称工作性,主要是指新鲜混凝土在施工中,即 在搅拌、运输、浇灌等过程中能保持均匀、密实而不发生分层离析现象的性 能 ) 。施工中为了保持所需的和易性,就必须相应增加拌和水量,由于水量的增加 会使水泥石结构中形成过多的孔隙,从而严重影响硬化混凝土的物理力学性能,若 能将这些包裹的水分释放出来,混凝土的用水量就可大大减少。在制备混 凝土的过程中,掺入适量减水剂,就能很好地起到这样的作用。混凝土中掺入减水剂后,减水剂的憎水基团定向吸附于水泥颗粒表面,而亲水基团指向水溶 液,构成单分子或多分子层吸附膜。由于表面活性剂的定向吸附,使水泥胶粒表面

当前国内聚羧酸系混凝土减水剂的研发现状分析

当前国内聚羧酸系混凝土减水剂的研发现状分析 混凝土是世界上用量最大的建筑材料, 外加剂又是混凝土必不可少的组分。自上世纪30年代以来,随着科技的发展进步,几经更新换代已发展到聚羧酸系高性能外加剂这一最新科技成果,它不仅用作混凝土高效减水剂,而且可用作防水剂,以及混凝土泵送剂。 高效减水剂又称超塑化剂,它有改善混凝土施工性能、减少水灰比,提高混凝土的强度和耐久性、节约水泥,减少混凝土初始缺陷等作用。上世纪60年代的高效减水剂主要产品有萘磺酸盐甲醛缩合物NSF和三聚氰铵磺酸盐甲醛缩合物MSF,虽然该类产品减水率较高,但混凝土塌落度损失快,耐久性较差而不能达到制备高性能和超高性能混凝土的目的。 一、研发现状: 80年代日本首次研发的新型聚羧酸系高性能减水剂是一种完全不同于NSF、MSF的较为理想的减水剂,即使在低掺量时也能使混凝土具有高流动性,并在低水灰比时具有低粘度和坍落度保持性能,且与不同水泥有更好的相容性,是目前高强高流动性混凝土所不可或缺的材料。随着混凝土向高强、高性能方向发展,高分子化学和材料分子设计理论不断取得新进展,对减水剂提出了更高的要求。当前研究方向已由传统的萘系、三聚氰胺系等减水剂向新型的羧酸聚合物减水剂发展,并已成为混凝土材料中的重要产品。国内近十多年来,新型高效减水剂和超塑化剂的研发主要产品还是萘磺酸盐甲醛缩合物与氨基磺酸盐缩合物等,而对聚羧酸系减水剂的研究无论是从原材料选择、生产工艺或是提高性能方面都起步较晚,虽然国内研究者通过分子途径探索聚羧酸系减水剂产品已取得一定成效,从国内公开发表的相关学术论文和研究文献,以及公开的中国专利文献来看,国内对聚羧酸系减水剂产品的研发大多处于实验研制阶段,真正形成产品的厂家还很少,远不能满足高性能混凝土发展的需要。因此研究聚羧酸系减水剂将更多地从混凝土的强度、施工性、耐久性及价格等多方面综合考虑。随着合成与表征聚合物减水剂及其化学结构与性能关系的研究不断深入,聚羧酸系减水剂将进一步朝着高性能多功能化、生态化、国际标准化方向发展。 二、分子设计与合成方法: 聚羧酸系高性能减水剂分子结构设计是在分子主链或侧链上引入强极性基团羧基、磺酸基、聚氧化乙烯基等,使分子具有梳形结构。如下图

聚羧酸减水剂

聚羧酸高效减水剂及其工程应用 摘要:作为高性能混凝土第五组分的高效减水剂主要经历了三种形式:第一代高效减水剂是20世纪60年代初开发出来的萘基高效减水剂和密胺树脂基高效减水剂又被称为超塑化剂;第二代高效减水剂是氨基磺酸盐;第三代减水剂是聚羧酸高效减水剂。本文以前人对聚羧酸高效减水剂的研究为基础,借鉴他们的研究成果从其分子特点、合成方法、作用机理、对混凝土性能的改善、工程应用与实践应用中存在的问题六个方面对聚羧酸减水剂做了介绍。关键字:聚羧酸减水剂、高效减水剂、高性能混凝土 1.聚羧酸减水剂的分子结构 聚羧酸系高性能减水剂采用不饱和单体共聚合而成,而不是传统减水剂使用的缩聚合成,合成原料非常多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应。 2.合成方法 2.1可聚合单体直接共聚法 单体直接共聚是先制备具有活性的大单体(一般是甲氧基聚乙二醇甲基丙烯酸酯) ,再聚合一定配比的单体(如丙烯酸、甲基丙烯酸、甲基丙烯磺酸钠等),采用溶液共聚的手段得到成品,即先酯化再聚合。该方法合成减水剂分子结构的可设计性好,可根据实际需要进行结构调整,产品质量稳定,目前很多聚羧酸的生产都采用此方法。但缺点是生产甲氧基聚乙二醇甲基丙烯酸酯大单体存在酯化控制难度,大单体酯化率和质量就直接影响了后续的共聚反应程度。同时中间分离纯化过程比较繁琐,生产成本较大。 2.2聚合后功能化法 聚合后功能化法是利用现有的聚合物进行改性,采用已知分子量的聚羧酸在催化剂和较高温度下聚醚通过酯化反应进行接枝。但现成的聚羧酸产品种类和规格有限,调整组成和分子量困难;同时聚羧酸和聚醚适应性不好,酯化实际操作困难,另外,随着酯化的不断进行,水分不断逸出,会出现相分离,如果能找到

聚羧酸减水剂的研究现状及发展趋势

聚羧酸减水剂的研究现状及发展趋势 摘要:聚羧酸减水剂的研发和推广是混凝土材料科学中的一个研究热点,推动着混凝土材料向高强、高性能化不断发展。论文主要针对国内、外对聚羧酸系高效减水剂的应用情况,分析聚羧酸减水剂的作用机理,通过总结当前研究与应用中存在的主要问题,对将来的发展趋势进行了展望。 关键词:聚羧酸;减水剂;现状;发展趋势 减水剂是一种重要的混凝土外加剂,是水泥混凝土必不可少的组成部分[1]。近年来,高性能混凝土在我国工程建设中发挥了重要作用[2,3],如聚羧酸系减水剂。其保坍性能优异、与水泥适应性良好,但因其价格昂贵,应用范围受到一定的限制[4]。从某种意义上说,目前各国在混凝土技术上的差距最重要的特征就是外加剂,尤其是高性能减水剂的发展水平。而新型多功能聚羧酸系高性能减水剂的开发则是目前研究的热点[5,6],发展迅猛[7],其应用越来越广泛[8,9],成为公认的配制高性能混凝土不可或缺的一种重要材料。 1、聚羧酸减水剂的分类 为了更好的满足市场需求,应该更系统地开发聚羧酸系列产品。根据不同的分类方式,聚羧酸减水剂有不同的分类。 1.1根据化学结构分类 聚羧酸减水剂化学上可以分为两类,以主链为甲基丙烯酸,侧链为羧酸基团MPEG(Methoxy polyethylene glycol),聚酯型结构。另外一种为主链为聚丙烯酸,侧链为Vinyl alcohol polyethylene glycol,聚醚型结构。 1.2根据使用情况分类 聚羧酸减水剂根据使用情况可被分为标准型、缓凝型、早强型、保坍型、减缩型、降粘型[10]。目前,各类产品还未发展完善,有待进一步提高。 2、聚羧酸减水剂的研究情况 2.1 国内研究情况 国内对聚羧酸减水剂的研究大多数偏向于分子结构设计、化学合成,而对减水剂作用下水泥水化的机理研究甚少[12~14]。只有少量用作坍落度损失控制剂与萘系减水剂复合使用,而且可供合成聚羧酸类减水剂的原料也极为有限。国内原材料单甲氧基聚乙二醇MPEG供应不足,MPEG国内没有商业化,必须依靠进口[15]。也有研究人员用聚乙二醇(PEG)代替MPEG,但是由于在制备过程中双官能度的PEG容易产生交联,使得产品性能较差,质量不稳定。可以说从减水剂原料到生产工艺降低成本提高性能等许多方面都仅仅是处于刚起步阶段[16]。 2.2 国外研究情况 在国外,聚羧酸类减水剂的研究已有相当长的历史其应用技术已经成熟[17],20世纪80年代起,国内外就开始积极研发非萘系减水剂。目前,日本、德国等国家生产的聚羧酸系减水剂质量稳定,用量已占到其国内减水剂总量的60%以上[18]。 3、聚羧酸减水剂的特点

聚羧酸减水剂使用注意事项

聚羧酸高效减水剂作为我国第三代减水剂的代表,其较之以木钙为代表的第一代减水剂和以萘系为代表的第二代减水剂,有着高减水率、高保坍性、高增强等优点。特别适用于配制高耐久性、大流动度、高保坍、高强度以及清水混凝土工程。但其对混凝土原材料的品质及生产工艺要求较高,对集料的含泥量尤为敏感,因此在实际使用过程中还应有所注意。 1、聚羧酸减水剂依然存在与水泥适应性的问题,对于个别水泥会出现减水率偏低,坍损较大的现象,因此当水泥适应性不好时应当进行混凝土试配调整外加剂掺量,以达到最佳效果。另外水泥的细度和储存时间也会影响聚羧酸减水剂的使用效果。在生产中应杜绝使用热水泥,如果使用热水泥与聚羧酸减水剂拌合后,表现出混凝土的初始坍落度更容易出来,但外加剂的保坍效果会减弱,有可能出现混凝土坍落度的迅速损失。 2、聚羧酸减水剂对原材料的变化较为敏感,当砂、石材料以及掺合料如粉煤灰、矿粉等原材料的质量发生较大变化时,将对掺聚羧酸减水剂的混凝土性能有一定影响,应重新以变化后的原材料进行试配试验以调整掺量达到最佳效果。 3、聚羧酸减水剂对于集料的含泥量特别敏感,含泥量过大会降低聚羧酸减水剂的性能。因此使用聚羧酸减水剂时应严格控制集料的品质。当集料含泥量增加时应提高使用聚羧酸减水剂的掺量。 4、聚羧酸减水剂因减水率较高,其混凝土坍落度对用水量特别敏感。因此在使用过程中必须严格控制混凝土的用水量。一旦超量时,混凝土会出现离析、泌水、板结及含气量过大等不良现象 5、使用聚羧酸减水剂在混凝土的生产过程中宜适量增加搅拌时间(一般比传统外加剂高一倍),这样聚羧酸减水剂的空间位阻能力能更容易的发挥,便于生产中对混凝土坍落度的控制。(搅拌时间不够,很可能出现送到工地现场混凝土的坍落度要比在搅拌站控制的混凝土坍落度偏大)。。 6、随着春季的来临,昼夜温差变化较大,在生产控制上应随时注意混凝土的坍落度变化情况及时的调整外加剂用量(做到低温低掺,高温高掺的原则)。 7、聚羧酸外加剂在试配(生产中)时,当只达到基本掺量,混凝土的初始工作性能得到满足,但混凝土经时损失会较大;因此在试配(生产)时,应适当提高掺量(即达到饱和掺量),才能解决坍落度损失较大的问题。 8、当降低胶凝材料用量后,在生产过程中,应更严格保证水胶比。如出现坍落度损失较大的情况,只能通过增加外加剂掺量和二次添加外加剂的方法,勿通过加水的方法解决,否则易造成强度的明显下降。 9、聚羧酸减水剂为高减水率,高分散性产品,在生产控制中更多的应以混凝土的流动性指标(扩展度)来衡量混凝土的工作性,坍落度只能作为一个参考值。 10、混凝土的强度主要由水胶比在决定,聚羧酸减水剂具有高减水率的特点,很容易降低生产配合比中的用水量,从而达到降低水胶比的目的,来降低混凝土的综合成本。生产中因原材料的波动比试验试配大,为更好的发挥聚羧酸减水剂产品的性能,生产中应随时根据原材料情况、环境温度变化等对混凝土工作性的影响,及时调整外加剂掺量。 11、聚羧酸减水剂不可与萘系减水剂混合使用,使用聚羧酸减水剂时必须将使用过萘系减水剂的搅拌机和搅拌车冲洗干净,否则可能会导致聚羧酸减水剂失去减水效果。 12、聚羧酸减水剂应避免与铁制材料长期接触。由于聚羧酸减水剂产品常呈现酸性,与铁制品长期接触会发生缓慢反应,甚至使其色泽变深、变黑,导致产品性能下降。建议采用聚乙烯塑料桶或不锈钢桶储存,以保证其性能稳定性。

聚羧酸高性能减水剂缓凝型说明书

森普牌SPYJ-3型聚羧酸系高性能减水剂(缓凝型) 产品说明书 森普牌SPYJ-3型聚羧酸系缓凝高性能减水剂是目前国内外最新的引领产品。它与常用的聚羧酸系高性能减水剂缓凝型相比,具有减水率高、掺量低、与水泥适应性好、坍落度损失小和无污染等特点。同时具有改善新拌混凝土各种性能指标和提高工作性等多种作用。本产品为无色透明液体,无毒、无腐蚀性、不易燃、对钢筋无锈蚀、对人体健康无害。 本产品目前参照执行GB/T8076-2008《混凝土外加剂》、GB/T8077-2012《混凝土外加剂匀质性试验方法》、TB/T3275-2011《铁路混凝土》、GB18582-2008《室内装饰装修材料内墙涂料中有害物质限量》标准。 一、技术性能 1.增强效果:与基准混凝土同坍落度和等水泥用量的前提下,减水率≥25%,混凝土各龄期强度均有显着提高,7天抗压强度比≥140%,28天抗压强度比≥130%。 2.泵送性能:具有显着的可泵性。与基准混凝土相比,在同水灰比的前提下,净增坍落度≥100mm,1小时坍落度经时变化量(用于配制泵送混凝土时)≤60mm。 3.缓凝效果:能显着增大混凝土的流动性,改善操作性,可延缓水泥水化放热峰值,避免施工结合层冷缝现象,有效提高其抗裂防水性能。 4.工作性能:具有显着改善新拌混凝土的和易性、保水性和泌水性等操作性能。 5.表面光洁:掺用本产品的混凝土,具有粘聚性强、含气量少和泌水率小等特点,能有效改善高架、高速公路、桥梁等各类清水混凝土表面的光洁和美观 6.张拉抗折:本产品具有先缓凝后早强的功能,在确保掺量的前提下,可满足混凝土的3d (除凝结时间) 张拉和28d抗折强度的要求 7.特效功能:在配制高强混凝土时,其弹性模量、抗渗性、抗收缩、抗徐变和耐久性等高性能指标均可满足要求。 二、匀质指标 根据产品的性能指标和用户的要求,符合国家、行业及企业标准。 三、应用范围 本产品适用于各类泵送混凝土、大体积混凝土、高架、高速公路、桥梁、水工混凝土。特别适用于重点工程和有特殊要求的混凝土。 四、使用方法 1.本产品掺量范围~%(以胶凝材料量计),可根据与水泥的适应性、气温的变化和混凝土坍落度等要求,在推荐范围内调整确定最佳掺量。 2.按计量,直接掺入混凝土搅拌机中使用。 3.在计算混凝土用水量时,应扣除液剂中的水量。 4.在使用本产品时,应按混凝土试配事先检验与水泥的适应性。 五、注意事项 1.在水泥变更品种或新进水泥时,应做与水泥兼容性检验。 2.对于要求缓凝的混凝土,应按混凝土试配事先检验凝结时间。 3.必须按试验配合比正确掺量,浇筑混凝土时,应严格按施工规范操作。 4.在与其他外加剂合用时,宜先检验其兼容性。 5.在冬季施工期间,为了提高混凝土早期强度,应适当调整混凝土的水泥用量。 6.与常规混凝土工程一样,必须按施工规范加强养护。 7.使用本产品,应提前1~3天通知厂方。 六、包装贮存 1.可采用灌车运装;塑料桶1000kg/桶;也可根据用户要求做特殊包装。 2.本产品质保期壹年,在质保期内如有沉淀,经搅匀后使用,不影响效果。

聚羧酸系减水剂的发展历程及现状

聚羧酸系减水剂的发展历程及现状 摘要:聚羧酸高效减水剂作为混凝土的化学外加剂,具有掺量低、减水率高等特点,一直受到国内外研究人员的关注。本文概述了混凝土外加剂的发展历程,主要性能及发展现状,介绍了高性能减水剂的种类与组成,提出了有关高性能减水剂的研究内容及今后研究方向。 关键词:聚羧酸系高性能减水剂发展现状 高性能混凝土指具有高耐久、高强度、高流动性的混凝土。而减水剂又称塑化剂或分散剂,拌和混凝土时加入适量的减水剂,可使水泥颗粒分散均匀,同时将水泥颗粒包裹的水份释放出来,从而能明显减少混凝土用水量,是一种重要的混凝土外加剂。而高性能混凝土中的高性能减水剂,作为一种有机化学材料,能够最大限度地降低混凝土水灰比,提高混凝土的强度和耐久性。所以提出新的合成方法和改进其性能的研究也成为当今国内外的一个热点。 一、发展历程 减水剂在我国,相对于外国而言起步较晚。20世纪30 年代初,国外已生产了以木质素磺酸盐为主成分的减水剂,随后又有新发展。相继出现萘系和三聚氰胺系高效减水剂。70 年代后期,许多人对木质素类减水剂进行了研究,对它进行改进,研究出了改性木质素磺酸盐高效减水剂。1974 年,水电部、交通部联合研制了以扩散剂N N O 为主成分,辅以其它助剂组成的减水剂,接着又有以茶为原料,经磺化缩合而成的蔡磺酸盐甲醛缩合物的NF 高效减水剂。MF 高效减水剂及建一1 型高效减水剂,其后的JN,D H 及T F 型减水剂和以葱油为原料的A F 高效减水剂都相继研发成功。其中改性三聚氰胺、氨基磺酸盐、脂肪族高效减水剂快速发展;而聚羧酸系减水剂则是目前研究的重点。 二、高效减水剂的种类和特点 1.减水剂的类型 (1)单环芳烃型(monocyclic aromatic hydrocarbons type),主要以氨基磺酸盐类高效减水剂为代表,该类聚合物憎水主链由苯基和亚甲基交替连接而成,该类减水剂具有掺量小,减水率高的特点。 (2)多环芳烃型(polynuclear aromatic hydrocarbons type),主要以萘系和蒽系为代表,这类高效减水剂的特点是憎水基的主链为亚甲基连着的双环或单环芳烃,亲水性的官能团则是连在芳烃上的-SO3H 等,对水泥的分散性能较好,减水率较高。 (3)杂环芳烃型(compound aromatic hydrocarbons type),以三聚氰胺系为代表,该类减水剂的特点是其憎水主链为亚甲基连接的含O 或含N 的五元或

JG∕T223-2007聚羧酸系高性能减水剂

JG∕T223-2007聚羧酸系高性能减水剂JG 中华人民共和国建筑工业行业标准 JG/T 223—2007 聚羧酸系高性能减水剂 Polycarboxylates high performance water-reducing admixture 2007—08—01发布 2007—12—01实施 中华人民共和国建设部发布 JG/T 223-2007 前言 本标准为首次制定。 本标准由建设部标准定额研究所提出。 本标准由建设部建筑工程标准技术归口单位中国建筑科学研究院归口。 本标准负责起草单位:中国建筑科学研究院。 本标准参加起草单位:巴斯夫(中国)有限公司、广州富斯乐有限公司、江苏省建筑科学研究院、淘正化工(上海)有限公司、上海建研建材科技有限公司、上海麦斯特建材有限公司、上海申立建材有限公司、上海市建筑科学研究院、深圳市迈地砼外加剂有限公司、同济大学、中冶集团建筑研究总院北京冶建特种材料有限公司、四川柯帅外加剂有限公司、北京市建筑材料质量监督检验站、浙江科威工程材料有限公司。 本标准主要起草人:郭延辉、赵霄龙、郭京育、薛庆、顾涛、朱艳芳、张艳玲、冉千平、王豪源、宣怀平、王绍德、马明元、姚利君、陈伟国、蒋正武、孙振平、梅名虎、帅希文、宋作宝、方兴中。 JG/T 223-2007

聚羧酸系高性能减水剂 1 范围 本标准规定了用于水泥混凝土中的聚羧酸系高性能减水剂的术语和定义、分类与标记、要求、试验方法、检验规则、包装、出厂、贮存等。 本标准适用于在水泥混凝土中掺用的聚羧酸系高性能减水剂。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 8076 混凝土外加剂 GB/T 8077 混凝土外加剂匀质性试验方法 GB 18582 室内装饰装修材料内墙涂料中有害物质限量 GB/T 50080 普通混凝土拌合物性能试验方法标准 GB/T 50081 普通混凝土力学性能试验方法标准 GBJ 82 普通混凝土长期性能和耐久性能试验方法 JC 473 混凝土泵送剂 JC 475—2004 混凝土防冻剂 JGJ 52 普通混凝土用砂、石质量及检验方法标准 JGJ 63 混凝土用水标准 3术语和定义 3(1 聚羧酸系高性能减水剂 polycarboxylates high performance water-reducing admixture

聚羧酸减水剂的优势

推广聚羧酸减水剂的重要意义 (1)节约能源、资源 目前我国正处于高速发展、建设时期,能源资源相对紧缺是制约快速发展的重要问题。一方面聚羧酸减水剂与掺合料具有良好的匹配性,促进了工业副产品的应用,另一方面以其高减水率,可以节约大量的水泥,这就意味着一个工程可以节约成千上万吨的水泥,缓解目前资源和能源紧缺的问题,同时减少熟料烧成带来的环境污染方面有着重要的作用,符合绿色建材的发展方向。 (2)低环境负荷,促进绿色建材发展 甲醛为较高毒性的物质,在我国有毒化学品优先控制名单上甲醛高居第二位。甲醛已经被世界卫生组织确定为致癌和致畸形物质,是公认的变态反应源,也是潜在的强致突变物之一。研究表明,甲醛具有强烈的致癌和促癌作用。甲醛对人体健康的影响主要表现在嗅觉异常、刺激、过敏、肺功能异常、肝功能异常和免疫功能异常等方面。其浓度与危害性见表1-1。 表1 甲醛对人体健康的影响 萘系减水剂为萘磺酸甲醛缩合物,采用工业萘经浓硫酸磺化后,再用一定量

的甲醛与萘磺酸反应生成甲醛缩合物,最后用碱来中和,得到萘的磺化甲醛缩合物的钠盐和硫酸钠的混合物,即萘系减水剂。合成分为四个反应步骤,即磺化反应、水解反应、缩合反应及中和反应。其中缩合反应需要用到大量的甲醛,对环境造成污染。如果生产时合成工艺控制不当,产品很容易带有大量的游离甲醛,在运输和使用过程中对环境造成二次污染。 为了进一步控制室内环境污染,提高民用建筑工程的室内环境质量,目前国家建设部及有关部门提出:加强对混凝土外加剂的甲醛污染控制,提出了在控制混凝土外加剂里面的氨气污染同时,控制混凝土外加剂里面的甲醛污染,从而有效避免毛坯房室内空气中甲醛超标。聚羧酸减水剂合成采用水溶液自由基聚合,整个过程无甲醛及其他有害释放物,无废水废气排放,符合绿色建材的发展方向。 同时,聚羧酸减水剂的使用,有利于缓解CO2温室效应。2008年中国水泥产量13.9亿吨,CO2排放量为62亿吨,超过美国,位居世界第一。聚羧酸减水剂以其高减水率,可降低10~15%的水泥,可减少1~2亿吨CO2排放。 (3)提高混凝土耐久性,促进混凝土高性能化发展 混凝土工程因其工程量大,耐久性不足对未来社会造成非常沉重的负担。美国有调查表明,美国的混凝土基础设施工程总价值约为6万亿美元,每年所需维修费或重建费约为3千亿美元。美国50万座公路桥梁中20万座已有损坏,平均每年有150-200座桥梁部分或完全坍塌,寿命不足20年;美国共建有混凝土水坝3000座,平均寿命30年,其中32%的水坝年久失修。美国对二战前后兴建的混凝土工程,在使用30-50年后进行加固维修所投入的费用,约占建设总投资的40%-50%以上。目前,我国的基础设施建设工程规模宏大,每年高达2万亿元人民币以上,约30-50年后,这些工程也将进入维修期,所需的维修费或重建费将更为巨大。因此,提高混凝土的耐久性对于当前实现可持续发展战略,更好地利用资源、节约能源和保护环境,都具有十分重要的意义。 众所周知,碱是诱发混凝土碱-骨料反应[23]的主要因素之一,是影响混凝土耐久性的重要因素。而由于碱-骨料反应导致大坝损毁的在国内外屡见不鲜,如巴西的Moxoto大坝和法国的Chambon大坝,前者在工程完工3年后便出现了碱-骨料反应,后者在建成后50~60年发生了碱-骨料反应。混凝土中碱主要来源于水泥、粉煤灰、减水剂等原材料。世界上对于碱含量的控制也非常重视,南非

聚羧酸高效外加剂的技术性能指标

聚羧酸高效外加剂的技术性能指标 一、技术性能 PC聚羧酸系高性能减水剂匀质性指标 PC聚羧酸系高性能减水剂混凝土性能指标

二、使用说明 1、PC聚羧酸系高性能减水剂的掺量为胶凝材料总重量的0.1%~1.5%,常用掺量为0.8%~2.5%。使用前应进行混凝土试配试验,以求最佳掺量。 2、PC聚羧酸系高性能减水剂不可与萘系高效减水剂混合使用,使用PC聚羧酸系高性能减水剂时必须将使用过萘系高效减水剂的搅拌机和搅拌车冲洗干净否则可能会失去减水效果。 3、使用PC聚羧酸系高性能减水剂时,可以直接以原液形式掺加,也可以配制成一定浓度的溶液使用,并扣除PC聚羧酸系高性能减水剂自身所带入的水量。 4、由于掺用PC聚羧酸系高性能减水剂混凝土的减水率较大,因此坍落度对用水量的敏感性较高,使用时必须严格控制用水量。 5、PC聚羧酸系高性能减水剂与绝大多数水泥有良好的适应性,但对个别水泥有可能出现减水率偏低,坍落度损失偏大的现象。另外,水泥的细度和储存时间也可能会影响PC聚羧酸系高性能减水剂的使用效果。此时,建议通过适当增大掺量或复配其它缓凝组分等方法予以解决。 6、掺用PC聚羧酸系高性能减水剂后,混凝土含气量有所增加(一般为2%~5%)有利于改善混凝土的和易性和耐久性. 7、由于PC聚羧酸系高性能减水剂掺量小、减水率高,使用PC聚羧酸系高性能减水剂配制C45以上的各类高性能混凝土,可以大幅度降低工程成本,具有显著的技术经济效益;用于配制 C45以下等级混凝土,虽然PC聚羧酸系高性能减水剂的成本偏高,但可以通过增加矿物掺合料用量,降低混凝土的综合成本,同样具有一定的技术经济效益。 三、作用机理 减水作用是表面活性剂对水泥水化过程所起的一种重要作用。减水剂是在不影响混凝土工作性的条件下,能使单位用水量减少;或在不改变单位用水量的条件下,可改善混凝土的工作性;或同时具有以上两种效果,又不显著改变含气量的外加剂。目前,所使用的混凝土减水剂都是表面活性剂,属于阴离子表面活性剂。 水泥与水搅拌后,产生水化反应,出现一些絮凝状结构,它包裹着很多拌和水,从而降低了新拌混凝土的和易性(又称工作性,主要是指新鲜混凝土在施工中,即在搅拌、运输、浇灌等过程中能保持均匀、密实而不发生分层离析现象的性能)。施工中为了保持所需的和易性,就必须相应增加拌和水量,由于水量的增加会使水泥石结构中形成过多的孔隙,从而严重影响硬化混凝土的物理力学性能,若能将这些包裹的水分释放出来,混凝土的用水量就可大大减少。在制备混凝土的过程中,掺入适量减水剂,就能很好地起到这样的作用。 混凝土中掺入减水剂后,减水剂的憎水基团定向吸附于水泥颗粒表面,而亲水基团指向水溶液,构成单分子或多分子层吸附膜。由于表面活性剂的定向吸附,使水泥胶粒表面带有相同符号的电荷,于是在同性相斥的作用下,不但能使水泥-水体系处于相对稳定的悬浮状态,而且,能使水泥在加水初期所形成的絮凝状结构分散解体,从而将絮凝结构内的水释放出来,达到减水的目的。减水剂加入后,不仅可以使新拌混凝土的和易性改善,而且由于混凝土中水灰比有较大幅度的下降,使水泥石内部孔隙体积明显减少,水泥石更为致密,混凝土的抗压强度显著提高。减水剂的加入,还对水泥的水化速度、凝结时间都有影响。这些性质在实用中都是很重要的。 四、包装

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺 一、引言 一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。 与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。 但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。因此,本文在此予以简介之。 二、聚羧酸系高性能减水剂合成工艺简介。 聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。 (一)、聚酯类聚羧酸系高性能减水剂合成工艺。 1、合成工艺简图 冷凝器去离子水 ↓↓

聚乙二醇过硫酸铵↓ →→→→→→酯化→→→→→计量槽→→聚合中和成 甲基丙烯酸→→→→ →→→→→→反应→→→→→计量槽→→反应反应品 ↑↑ ↑↑ 去离子水氢氧化钠 2、反应过程如下: (1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。(经减压蒸馏脱水,酸化反应更为完全)。 (2)、聚合反应:采用过硫酸铵引发、水溶液聚合法。计量酯化产物即聚乙二醇单甲基丙烯酸酯1545kg,丙烯酸77.3kg,分子量调节剂十二烷基硫醇21.3kg,配以130 kg去离子水,泵入滴定罐A备用,是为A料。计量过硫酸铵34.5kg,配以950kg去离子水,泵入滴定罐B备用,是为B料。加去离子水1425kg 入釜,升温至85℃,同时滴定A、B料。A料3小时滴定完,B料3.5小时滴定完,保温1.5小时。(温度控制:90±2℃)。 (3)、中和反应,将反应好的聚合物降温至50℃以下,边搅拌边加入片碱100kg,调节PH值6—7,反应完成,得到含固量为30%的聚酯类聚羧酸系高性能减水剂成品。 (二)、聚醚类聚羧酸系高性能减水剂合成工艺

聚羧酸系高性能减水剂发展现状与技术难题

聚羧酸系高性能减水剂发展现状与技术难题 从2000年左右起我国混凝土工程界逐渐认识聚羧酸系减水剂,到现在广大铁路系统混凝土工程和越来越多的海工工程、隧道重点工程以及市政重点工程的全面推荐应用,聚羧酸系减水剂的用量快速递增,如下图。 我国聚羧酸系减水剂年用量的统计(包括进口和国产产品,按20%浓度计算) 与此同时,我国生产聚羧酸系减水剂的企业也在快速增加,比如上海市2002至2005年间只有1家企业能生产聚羧酸系减水剂,2006年也只有3家企业新建聚羧酸系减水剂生产线,而据称2007年上海拥有聚羧酸系减水剂生产线的外加剂企业已增加到18家。仅2007年一年间,贵州、云南、广西等边远地区因大型铁路交通、隧道和水利工程的兴起,也先后建立起10余条聚羧酸系减水剂生产线。 所以,近二、三年来我国聚羧酸系减水剂在生产线的建设和产量方面取得可喜的成绩。的确,聚羧酸系减水剂作为继萘系、密胺系、脂肪族系和氨基磺酸盐系减水剂之后研制生产成功的新型高效减水剂,以其在掺量较低时(固体掺量0.15%-0.25%)就能产生理想的减水和增强效果、对混凝土凝结时间影响较小、坍落度保持性较好、与水泥和掺合料适应性相对较好、对混凝土干缩性影响较小(指通常不过分增加干缩)、生产过程中不使用甲醛和不排出废

液、SO42-和Cl-含量低等突出特点,从一开始就受到研究者和部分应用者的推崇。目前,我国制定的《聚羧酸系高性能减水剂》JG/T 223-2007标准已于2007年12月1日起开始实施,而我国铁道部科学技术司早在2006年9月印发的《客运专线高性能混凝土用外加剂产品检验细则》,主要就是为强制使用聚羧酸系减水剂实施的一次重要举措。已经修定完成的《混凝土外加剂》GB8076标准中,也对两种类型的聚羧酸系高性能减水剂的性能指标和试验方法做出了明确规定。 然而,我国聚羧酸系减水剂在实际工程应用中却也同时表现出越来越多、越来越复杂的技术问题,亟需通过大量的研究工作指导解决。 1. 应用聚羧酸系减水剂易遇到的问题 由于聚羧酸系减水剂被认为是一种高性能减水剂,人们总是期望其在应用中比传统的萘系高效减水剂更安全、更方便、更高效、适应能力更强,但实际情况却总是事与愿违,工程中总是更多地碰到这样那样的问题,而且有些问题还是使用其它品种减水剂时所从未遇见的,具体如下: 1) 混凝土拌合料异常干涩、无法卸料,更甭提泵送浇注了; 2) 混凝土拌合料分层严重、泌水量惊人; 3) 混凝土引气严重,由于凝结时间长而表面长时间冒泡; 4) 所浇注的混凝土拆模后表面质量欠佳(气泡、露砂等); 5) 细集料含泥量对减水剂作用效果影响明显; 6) 对某些水泥来说,聚羧酸系减水剂表现为异常不适应等。

聚羧酸系减水剂面临的问题与系列化发展趋势

1 前言 聚羧酸系高性能减水剂已经从试验走向实践,并正在从“贵族化”走向“平民化”。最初在三峡工程中使用的国外进口的聚羧酸系减水剂售价高达约1.5万元/吨,现在高速铁路用的聚羧酸系减水剂价格已经降低到4000~5000元/吨。聚羧酸系高性能减水剂的应用正在从重要工程扩展到普通的工程中。据混凝土外加剂协会的统计,我国2007年聚羧酸系减水剂的产量已经超过40万 吨(20%浓度)[1] ,按胶凝材料用量1%计算,使用聚羧酸系减水剂的混凝土约有1亿立方米。在聚羧酸系减水剂用量的快速增长和应用范围的不断扩大的同时,出现了很多新的问题需要研究解决,包括产品性能改进、应用技术研究和产品系列化问题。 2 聚羧酸系减水剂的产品性能和应用技术问题 2.1 聚羧酸系减水剂产品性能与适应性问题 目前聚羧酸减水剂大多用于重点工程或者重点部位的混凝土,这些混凝土往往都是以耐久性为主要指标,要求具有高耐久性、高尺寸稳定性、良好工作性以及较高强度。由于聚羧酸系减水剂的优势是减水率高、保塑性好,因此适用于配制高强混凝土、大流动性混凝土。但是在应用于普通的商品混凝土工程中时,减水率很高的聚羧酸系减水剂往往不能很好地适应商品混凝土生产需要,表现在混凝土工作性对掺量非常敏感 , 表1 减水剂与水泥适应性试验结果 摘要:本文讨论了聚羧酸系减水剂在应用发展过程中遇到的问题。聚羧酸系减水剂不仅与水泥之间存在相容性问题,与混凝土的其他原材料之间也存在相容性问题。聚羧酸系减水剂与水泥之间相容性问题的表现与萘系减水剂有很大区别,既表现出混凝土的流动性随时间损失,有时又会出现过流化现象。聚羧酸系减水剂与其他外加剂之间的相容性也比较敏感,应用时需要试验确定。不同的聚羧酸系聚合物之间复配性能较好,开发不同性能特点的聚羧酸系列产品是解决聚羧酸系减水剂与混凝土原材料适应性问题的有效方法。 关键词:聚羧酸;减水剂;适应性;黏土;系列化;相容性 聚羧酸系减水剂面临的问题与系列化发展趋势 王子明 (北京工业大学,北京市朝阳区平乐园100,wangziming@https://www.sodocs.net/doc/3e14130057.html,)

相关主题