搜档网
当前位置:搜档网 › 空客A320飞行手册---飞行的主要组成部分及功用

空客A320飞行手册---飞行的主要组成部分及功用

空客A320飞行手册---飞行的主要组成部分及功用
空客A320飞行手册---飞行的主要组成部分及功用

飞行的主要组成部分及功用

**到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成

1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。

2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。

3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。

4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支掌飞机。

5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

*飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。

二、飞机的升力和阻力

**飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理

流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。

**连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。

伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。

**飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼

上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。

* 机翼升力的产生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。

**飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。按阻力产生的原因可分为摩擦阻力、压差阻力、诱导阻力和干扰阻力。

1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。

2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。

3.诱导阻力——升力产生的同时还对飞机附加了一种阻力。这种因产生升力而诱导出来的阻力称为诱导阻力,是飞机为产生升力而付出的一种“代价”。其产生的过程较复杂这里就不在详诉。

4.干扰阻力——它是飞机各部分之间因气流相互干扰而产生的一种额外阻力。这种阻力容易产生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。

*以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会产生波阻等其他阻力。

三、影响升力和阻力的因素

**升力和阻力是飞机在空气之间的相对运动中(相对气流)中产生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。

1.迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超过临界迎角,阻力急剧增大。

2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的两倍,升力和阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。

3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结冰都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大。

No.1

一、飞机的平衡、安定性和操作性

(一).飞机的平衡是指作用于飞机的各力之和为零,各力重心所构成的各力矩之和也为零。飞机处于

平衡状态时,飞机速度的大小和方向都保持不变,也不绕重心转动。飞机的平衡包括俯仰平衡、方向平衡和横侧平衡。

①飞机的俯仰平衡是指作用于飞机的各俯仰力矩之和为零。飞机取得平衡后,不绕纵轴转动,迎角保持不变。作用于飞机的俯仰力矩很多,主要有:机翼力矩、水平尾翼力矩及拉力(推力)力矩。

影响俯仰平衡的因素:加减油门,收放襟翼、收放起落架和重心变化等。飞行中,影响飞机俯仰的因素是经常存在的。为了保持飞机的俯仰平衡,飞行员可前后移动驾驶杆偏转升降舵或使用调整片,产生操纵力矩,来保持力矩的平衡。

②飞机的方向平衡是作用于飞机的各偏转力矩之和为零。飞机取得方向平衡后,不绕立轴转动,侧滑角不变或没有侧滑角。

影响飞机方向平衡的因素:飞机一边机翼变形,左右两翼阻力不等;多发动机飞机,左右两边发动机工作状态不同,或者一边发动机停车,从而产生不对称拉力;螺旋桨发动机,油门改变,螺旋桨滑流引起的垂直尾翼力矩随之改变。飞机的方向平衡受破坏时最有效的克服方法就是适当蹬舵或使用方向舵调整片,利用偏转方向舵产生的方向操纵力矩来平衡使机头偏转的力矩,从而保持飞机的方向平衡。

③飞机的横侧平衡是作用于飞机的各滚转力矩之和为零。飞机取得横侧平衡后,不绕纵轴滚转,坡度不变或没有坡度。作用于飞机的滚转力矩,主要有两翼升力对重心形成的力矩:螺旋桨旋转时的反作用力矩。

影响飞机的横侧平衡:飞机一边机翼变形,两翼升力不等;螺旋桨发动机,油门改变,螺旋桨反作用力矩随之改变;重心左右移动(如两翼油箱耗油量不等),两翼升力作用点至重心的力臂改变,形成附加滚转力矩。飞机的横侧平衡受破坏时,飞行员保持平衡最有效的方法就是适当左右压驾驶杆或使用副翼调整片,利用偏转副翼产生的横侧操纵力矩来平衡使飞机滚转的力矩,以保持飞机的横侧平衡。飞机的方向平衡和横侧平衡是相互联系、相互依赖的,方向平衡受到破坏,如不修正就会引起横侧平衡的破坏。

(二).飞机的安定性就是飞行中,当飞机受微小扰动(如阵风、发动机工作不均衡、舵面的偶尔偏转等)而偏离原来的平衡状态,并在扰动消失后,不经飞行员操纵,飞机自动恢复原来平衡状态的特性。飞机的安定性包括:俯仰安定性、方向安定性和横侧安定性。

飞机安定性的的强弱,一般由摆动衰减时间、摆动幅度、摆动次数来衡量。当飞机受到扰动后,恢复原来平衡状态时间越短,摆动幅度越小,摆动次数越少,飞机的安定性就越强。

飞机安定性的强弱,主要取决于飞机的重心位置、飞行速度、飞行高度和迎角的变化。

(三).飞机除应有必要的安定性外,还应有良好的操作性,这样才能保证飞行员有意识的飞行。

飞机的操作性是只指飞机在飞行员操纵升降舵、方向舵和副翼下改变其飞行状态的特性。操纵动作简单、省力,飞机反应快,操作性就好,反之则不。飞机的操纵性同样包括俯仰操纵性、方向操纵性和横侧操纵性。

①飞机的俯仰操纵性是飞行员操纵驾驶杆使升降舵偏转之后,飞机绕横轴转动而改变迎角等飞行状态的特性。在直线飞行中,飞行员向后拉驾驶杆,升降舵向上偏转一个角度,在水平尾翼上产生向下的附升力,对飞机重心形成俯仰操作力矩,迫使机头上仰,迎角增大。驾驶杆前后的每个位置对应着一个迎角或飞行速度。

飞行中,升降舵偏转角越大,气流动力越大,升降舵上的空气动力也越大,从而枢轴力矩也越大,所需杆力(飞行员操纵驾驶杆所施加的力)也越大。在模拟飞行中,如果使用微软的力回馈摇杆这种力可以体验到。

②飞机的方向操纵性,就是在飞行员操纵方向舵后,飞机绕立轴偏转而改变其侧滑角等飞行特性。与

俯仰角相似,在直线飞行中,每一个脚蹬位置,对应着一个侧滑角,蹬右舵,飞机产生左侧滑;蹬左舵,飞机产生右侧滑。

方向舵偏转后,同样产生方向舵枢轴力矩,飞行员需要用力蹬舵才能保持方向舵偏转角不变。方向舵偏转角越大,气动动压越大,蹬舵力越大。

③飞机的横侧操纵性是指在飞行员操纵副翼后,飞机绕纵轴滚转而改变滚转角速度、坡度等飞行状态的特性。比如:飞行员向左压驾驶盘,右副翼下偏,右翼升力增大,左副翼上偏,左翼升力减小,两翼升力之差,形成横侧操纵力矩,使飞机向左加速滚转。在横侧操纵中,驾驶盘左右转动的每一个位置,都对应着一个滚转角速度。驾驶盘左右转动的角度越大,滚转角速度越大。如果飞行员要想保持一定的坡度,就必须在接近预定坡度时将盘回到中立位置,消除横侧操纵力矩,在横侧阻转力矩的阻止下,使滚转角速度消失。有时,飞行员甚至可以向飞机滚转的反方向压一点驾驶盘,迅速制止飞机滚转,使飞机准确地达到预定飞行坡度。

*飞机的操纵性不是一成不变的,它要受到许多因素的制约,影响飞机操纵性的因素有飞机重心位置的前后移动、飞行的速度、飞行高度、迎角等。

机的每次飞行,不论飞什么课目,也不论飞多高、飞多久,总是以起飞开始以着陆结束。起飞和着陆是每次飞行中的两个重要环节。所以,我们首先需要掌握好起飞和着陆的技术。

一. 滑行

飞机不超过规定的速度,在地面所作的直线或曲线运动叫滑行。

对滑行的基本要求是:飞机平稳地开始滑行,滑行中保持好速度和方向,并使飞机能停止在预定的位置。飞机从静止开始移动,拉力或推力必须大于最大静摩擦力,故飞机开始滑行时应适当加大油门。飞机开始移动后,摩擦力减小,则应酌量减小油门,以防加速太快,保持起滑平稳。滑行中,如果要增大滑行速度,应柔和加大油门,使拉力或推力大于摩擦力,产生加速度,使速度增大,要减小滑行速度,则应收小油门,必要时,可使用刹车。

二. 起飞

飞机从开始滑跑到离开地面,并升到一定高度的运动过程,叫做起飞。

飞机起飞的操纵原理

飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结果。而只有当飞机速度增大到一定时,才可能产生足以支持飞机重力的升力。可见飞机的起飞是一个速度不断增加的加速过程。;剩余拉力较小的活塞式螺旋桨飞机的起飞过程,一般可分为起飞滑跑、离地、小角度上升(或一段平飞)、上升四个阶段。对有足够剩余拉力的螺旋桨飞机,或有足够剩余推力的喷气式飞机,因可使飞机加速并上升,故起飞一般只分三个阶段,即起滑跑、离地和上升。

(一)起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。起飞中,为尽快地增速,应把油门推到最大位置。

1.抬前轮或抬尾轮

* 前三点飞机为什么要太前轮?

前三点飞机的停机角比较小,如果在整个起飞滑跑阶段都保持三点姿态滑跑,则迎角和升力系数较小,必然要将速度增大到很大才能产生足够的升力使飞机离地,这样,滑咆距离势必很长。因此,为了减小离地速度,缩短滑跑距离,当速度增大到一定程度时就需要抬起前轮作两点姿态滑跑,以增大迎角和升力系数。

* 抬前轮的时机和高度

抬前轮的时机不宜过早或过晚。抬前轮过早,速度还小,升力和阻力都小,形成的上仰力矩也小。要拾起前轮,必须使水平尾翼产生较大的上仰力矩,但在小速度情况下,水平尾翼产生的附加空气动力也小,要产主足够的上仰力矩就需要多拉杆。结果,随着滑跑速度增大,上仰力矩又将迅速增大,飞行员要保持抬前伦的平衡状态,势必又要用较大的操纵量进行往复修正,给操纵带来困难。同时,抬前轮过旱,使飞

机阻力增大而增长起飞距离。如果抬前轮过晚,不仅使滑跑距离增长,而且还由于拉杆抬前轮到离地的时间很短,飞行员不易修正前轮抬起的高度而保持适当的离地迎角。甚至容易使升力突增很多而造成飞机猛然离地。各型飞机抬前轮的速度均有其具体规定。前轮抬起高度应正好保持飞机离地所需的迎角,前轮抬起过低,势必使迎角和升力系数过小,离地速度增大,滑跑距离增长,前轮抬起过高,滑跑距离虽可缩短,但因飞机阻力大,起飞距离将增长,而且迎角和升力系数过大,又势必造成大迎角小速度离地,离地后,飞机的安定住差操纵性也不好。仰角过大,还可能造成机尾擦地。从既要保证安全又要缩短滑跑距离的要求出发,各型飞机前轮抬起高度都有其具体规定。飞行员可从飞机上的俯仰指示器或从机头与天地线的关系位置来判断前轮抬起的高度是否适当。

后三点飞机为什么要抬尾轮

后三点飞机与前三点飞机相比,停机角比较大,因此三点滑跑中迎角较大,接近其

临界迎角,如果整个滑跑阶段都保持三点滑跑,升力系数比较大,飞机在较小的速度下

即能产生足够的升力使飞机离地。此时滑跑距离虽然很短,但大迎角小速度离地后,

飞机安定性操纵性都差,甚至可能失速。因此后三点飞机,当滑跑速度增大到一定时,

飞行员应前推驾驶杆,抬起机尾作两点滑跑,以减小迎角。与前三点飞机抬前轮一样,

为了既保证安全,又缩短滑跑距离,必须适时正确地抬机尾。抬机尾过早或过晚,过

高或过低,不仅会增长滑跑距离,起飞距离,而且会危及飞行安全。各型飞机抬机尾

的速度和高度也都有其具体规定。

2. 保持滑跑方向

对螺旋桨飞机而言,起飞滑跑中引起飞机偏转的主要原因是螺旋桨的副作用。起飞滑

跑中,螺旋桨的反作用力矩力图使飞机向螺旋桨旋转的反方向倾斜,造成两主轮对地

面的作用力不等,从而使两主轮的摩擦力不等,两主轮摩擦力之差对重心形成偏转力矩。

螺旋桨滑流作用在垂直尾翼上也产主偏转力矩。前三点飞机抬前轮时和后三点飞机抬

尾轮时,螺旋桨的进动作用也会使飞机产生偏转。加减油门和推拉笃驶杆的动作愈粗猛,

螺旋桨副作用影响愈大。为减轻螺旋桨副作用的影响,加油门和推拉驾驶杆的动作应柔

和适当。滑跑前段,因舵的效用差,一般可用偏转前轮和刹车的方法来保持滑跑方向。

滑跑后段应用舵来保持滑跑方向。随着滑跑速度的不断增大,方向舵的效用不断提高,

就应当回舵,以保持滑跑方向。

喷气飞机起飞滑跑方向容易保持,其原因是;一是喷气飞机都是前三点飞机,而

前三点飞机在滑跑中具有较好的方向安定住,二是没有螺旋桨副作用的影响,所以在加

油门和抬前轮时,飞机不会产主偏转。

(二)当速度增大到一定,升力稍大于重力,飞机即可离地。离地时作用于飞机

的力。此时升力大于重力,拉力或推力大于阻力。

离地时的操纵动作,前三点飞机和后三点是不同的。前三点飞机是因飞行员拉杆产

生上仰操纵力矩,而使飞机作两点滑跑的。随着滑跑速度的增大、上仰力矩增大,迎

角将会增大。虽然飞行员不断向前推杆以保持两点滑跑姿态,但原来的俯仰力矩平衡

总是随速度的增大而不断被破坏,在到达离地速度时,迎角仍会有自动增大的趋势。

所以,前三点飞机一般都是等其自动离地。后三点飞机则不然,飞机到达离地速度时,

一般都需带杆增大迎角而后离地。这是因为后三点飞机在两点滑跑中,飞行员是前推杆,

下偏升降舵来保持的,随着速度增大,下俯操纵力矩增大,将使迎角减小,飞行员虽不

断带杆以保持两点滑跑,但在到达离地速度时,迎角仍会有减小的趋势。所以,必须

向后带杆增大迎角飞机才能离地。后三点飞机,正确掌握离地时机是很重要的。离地过

早或过晚,都将给飞行带来不利。机轮离地后,机轮摩擦力消失,飞机有上仰趋势,应向前迎杆制止。对螺旋浆飞机,机轮摩擦力矩也消失,飞机有向螺旋桨旋转方向偏转的趋势,应用舵制止。

(三)一段平飞或小角度上升对剩余拉力比较小的活塞式螺旋浆飞机,飞机离地还尚未达到所需的上升速度,故需作一段平飞或小角度上升来积累速度。飞机离地后在12米高度向前迎杆,减小迎角,使飞机平飞加速或作小角度上升加速。飞机刚离地时,不宜用较大的上升角上升。上升角过大,这会影响飞机增速,甚至危及安全。为了减小阻力,便于增速,飞机高地后,一般不低于5米高度收起落架。收起落架时机不可过早或过晚。过早,飞机离地大近,如果飞机有下俯,就可能重新接地,危及安全;过晚,速度大大,起落架产生的阻力很大,不易增速,还可能造成起落架收下好。在一段平飞或小角度上升中,特别要防止出现坡度,因为这时飞行高度低,飞机如有坡度,就会向下侧滑而可能使飞机撞地。因此发现飞机有坡度应及时纠正。

(四)当速度增加到规定时,应柔和带杆使飞机转入稳定上升,上升到规定高度起飞阶段结束。

***影响起飞滑跑距离的因素影响起飞滑跑距离的困素有油门位置、离地迎角、襟翼反置、起飞重量、机场标高与气温、跑道表面质量、风向风速、跑道坡度等。这些因素一般都是通过影响离地速度或起飞滑跑的平均加速度来影响起飞滑跑距离的。

* 油门位置油门越大,螺旋桨拉力或喷气推力越大,飞机增速快,起飞滑跑距离就短。所以,一般应用最大功率或最大油门状态起飞。

* 离地迎角离地迎角的大小决定于抬前轮或抬机尾的高度。离地迎角大,离地速度小,起飞滑跑距离短。但离地迎角又不可过大,离地迎角过大,下仅会因飞机阻力大而使飞机增速慢延长滑跑距离,而且会直接危及飞行安全因此从既要保证飞行安全又要使滑跑距离短出发,各型飞机一般都规定有最有利的离地迎角值。

* 襟翼位置放下襟翼,可增大升力系数,减小离地速度,因而能缩短起飞滑跑距离。

* 起飞重量起飞重量增大,不仅使飞机离地速度增大,而且会引起机轮摩擦力增加,使飞机不易加速。因此,起飞重量增大,起飞滑跑距离增长。

* 机场标高与气温机场标高或气温升高都会引起空气密度减小,一放面使拉力或推力减小,飞机加速慢;另一方面,离地速度增大,因此起飞滑跑距离必然增长。所以在炎热的高原机场起飞,滑跑距离显著增长。

* 跑道表面质量不同跑道表面质量的摩擦系数,滑跑距离也就不同。跑道表面如果光滑平坦而坚实,则摩擦系数小,摩擦力小,飞机增速快,起飞滑跑距离短。反之跑道表面粗糙不平或松软,起飞滑跑距离就长。

* 风向风速起飞滑跑时,为了产生足够的升力使飞机离地,不论有风或无风,离地空速是一定的。但滑跑距离只与地速有关,逆风滑跑时,离地地速小,所以起飞滑跑距离比无风时短。反之则长。

* 滑跑坡度跑道有坡度,会使飞机加速力增大或减小。

三. 着陆

飞机从一定高度下滑,井降落地面滑跑直至完全停止运动的整个过程,叫着陆。

飞机着陆的操纵原理

与起飞相反,着陆是飞机高度下断降低、速度不断减小的运动过程。飞机从一定

高度作着陆下降时,发动机处于慢车工作状态,即一般采用带小油门下滑的方法下降。

飞行高度降低到接近地面时,必须在一定高度上开始后拉驾驶杆,使飞机由下滑转入平

飘这就是所谓“拉平”。机拉平后,飞机速度仍然较大,不能立即接地.需要在离地0.5~

1米高度上继续减小速度,这个拉平后继续减小速度的过程,就是平飘。在这个过程中,

随着飞行速度的不断减小,飞行员不断后拉驾驶杆以保持升力等于重力。在离地0.15~

0.25米时,将飞机拉成接地所需的迎角,升力稍小于重力,飞机轻柔飘落接地飞机接

地后,还需要滑跑减速直至停止,这个滑跑减速过程就是着陆滑跑。由上可见,飞

机着陆过程一般可分为五个阶段:下滑段、拉平段、平飘段、接地和着陆滑跑段。

谈谈后三点飞机抬尾轮滑跑的一点小小看法:

对于短窄跑道,不是很建议用抬尾轮滑跑,因为虽然可以增加起飞安全速度,但也牺牲了滑跑距离,使滑跑距离相对过长,如是单发飞机,容易造成中断起飞距离不够,有冲出跑道的危险;

抬前轮滑跑的技术相对比较复杂,对于比较轻型的飞机,可能容易些,如果是载重的大单发或者多发后三点飞机,不建议采用此滑跑起飞方式,因为飞机重心和操纵难度的关系,操纵量比较难掌握,呵呵...

个人曾在加格达奇见过波兰产M-18空机起飞,三机起飞一定要编队玩玩,呵呵,长机两点滑跑滑到400米才开始离地,如果是负重起飞,要是短跑道,真捏把汗啊,呵呵...

这部分我们要了解飞机最简单的运动形式:平飞、上升和下降。

平飞、上升和下降指的是飞机既不带倾斜也不带侧滑的等速直线飞行。这也是飞机最基本的飞行状态。飞机平飞、上升和下降性能是飞机最基本的飞行性能,如:平飞最大速度、平飞最小速度、最大上升角、最大上升率,升限、最小下降角、最大下降距离等,这些都是飞行员首先要学习和掌握的。

一. 平飞

飞机作等速直线水平的飞行,叫平飞。平飞中作用于飞机的外力有升力、重力、拉力(或推力)和阻力。平飞时,飞机无转动,各力对重心的力矩相互平衡,且上述各力均通过飞机重心。为保持平飞,需要有足够的升力以平衡飞机的重量,为了产生这一升力所需的飞行速度,叫平飞所需速度影响平飞所需速度的因素:

*飞机重量在其它因素都不变的条件下,飞机重量越重,为保持平飞所需的升力就越大,故平飞所需速度也越大。相反,飞机重量越轻,平飞所需速度就越小。

*机翼面积机翼面积大,升力也大。为了获得同样大的升力以平衡飞机重量,所需平飞速度就小。反之,机翼面积小,平飞所需速度就大。

*空气密度空气密度小,升力也小,为了获得同样大的升力以平衡飞机重量,平飞所需速度就增大。反之,空气密度大,平飞所需速度就减小,空气密度的大小是随飞行高度以及该高度的气温气压而变化的,飞行高度升高,或在同一高度上,气温升高或气压降低,空气密度都会减小。反之增大。

*升力系数升力系数大,平飞所需速度就小。因为,升力系数大,升力大,只需较小的速度就能获得平衡飞机重量的升力。反之,升力系数小,平飞所需速度就大。

而升力系数的大小又决定于飞机迎角的大小和增升装置的使用情况。迎角不同,开力系数不同,平飞所需速度也就不同。在小于临界迎角的范围内,用大迎角平飞,升力系数大,平飞所需速度就小,用小迎角平飞,升力系数小,平飞所需速度就大,即是说,平飞中每一个迎角均有一个与之对应的平飞所需速度。

*增升装置的使用情况不同,升力系数大小也不同,平飞所需速度也将下一样。(比如放襟翼起飞,由

于升力系数大,为平衡飞机重量所需的速度就小,即离地速度小,起飞滑跑距离就短)。

1. 最大平飞速度,在一定的高度和重量下,发动机加满油门时,飞机所能达到的稳定平飞速度,就是飞机在该高度上的最大平飞速度。平飞最大速度是理论上飞机平飞所能达到的最大速度,而并不是飞机实际的最大使用速度,由于飞机强度等限制,最大使用速度比平飞最大速度可能要小。比如三叉戟飞机,在海平面,标准大气,全收状态下,平飞最大速度为480海里/小时,而最大使用速度则规定为365海里/小时。

2. 平飞最小速度,是飞机作等速平飞所能保持的最小速度。如有足够的可用拉力或可用功率,那么平飞最小速度的大小受最大升力系数的限制。因为临界迎角的升力系数最大,所以与临界迎角相对应的平飞速度(失速速度),就是平飞最小速度。对飞机的要求来说,平飞最小速度越小越好,因平飞最小速度越小,飞机就可用更小的速度接地,以改善飞机的着陆性能。临界迎角对应的平飞速度,是平飞的最小理论速度。实际上当飞机接近临界迎角时,由于机翼上气流严重分离,飞机出现强烈抖动,飞机不仅易失速而且安定性、操纵性都差。所以实际上要以该速度平飞是不可能的。为保证安全,对飞行迎角的使用应留有一定的余量,不允许在临界迎角状态飞行

3. 平飞有利速度就是以有利迎角保持平飞的速度。以有利速度平飞,升阻比最大平飞阻力

最小,航程较远

4. 经济速度就是用最小所需功率作水平飞行时的速度。用经济速度平飞所需功率最小,

即所用发动机的功率最小,比较省油,航时较长。与经济速度相对应的迎角,叫经济迎角。

**在平飞中改变速度的基本操纵方法是:要增大平飞速度,必须加大油门,并随着速

度的增大而前推驾驶杆;同理,要减小平飞速度则必须收个油门,并随着速度的减小而后

拉驾驶杆。也就是说,从一个平飞状态改变到另一个乎飞状态,必须同时操纵油门和驾驶

杆。此外,对螺旋桨飞机正必顶要修正因加减油门而引起的螺旋桨副作用的影响。但是必

须指出,上述改变平飞速度的操纵规律只有在大于经济速度的范围内才适合。

二. 上升

飞机沿向上倾斜的轨迹所作的等速直线飞行就叫上升。上升是飞机取得高度的基本方

法。上升中作用于飞机的外力和平飞相同,有升力、重力、拉力(或推力)和阻力。

飞机的上升性能主要包括最大上升角、最大上升率、上升时间和上升限度。

1.上升角和上升梯度

上升角是飞机上升轨迹与水平线之间的夹角。上升角越大,说明经过同样的水平距离后,

上升的高度越高。上升高度与水平距离的比值,就是上升梯度。飞机的剩余拉力(或剩余

推力)越大,或飞机重量越轻,则上升角和上升梯度越大。

2. 上升率和最快上升速度

在上升中,飞机每秒钟所上升的高度,叫上升率,也叫上升垂直速度,上升率越大,表明

飞机上升到一定高度所需的时间越短,飞机就能迅速取得高度。所以说,飞机的最大上升

率是飞机重要的飞行性能之一。剩余功率越大,或飞机重量越轻功率越大。因为飞机上

升的过程,实际就是将剩余功率变成势能的过程。在飞机重量不变的情况下,剩余功率越

大,飞机在单位时间内增加的势能就越多,上升率也就越大。在剩余功率一定的情况下,

飞机重量越轻,在单位时间内上升的高度越高、上升率也就越大。在重量一定的情况下升

率的大小主要决定于剩余功率的大小,而剩余功率的大小又决定于油门位置和上升速度。

在油门位置一定的情况下,用不同速度上升,由于剩余功率大小不同,上升率大小也就不

同。对低速螺旋桨飞机,加满油门,在有利速度附近,剩余功率最大,所以用近似有利速

度的速度上升,可以得到最大的上升率。

3. 上升时间和上升限度

上升率的变化决定于剩余功率的变化。所以,上升率随飞行高度的变化,也就决定于

剩余功率随飞行高度的变化。就可以确定出飞机在各个飞行高度上的最大上升率以及最快

上升速度。在额定高度以上,随着高度的升高,发动机发出的功率减小,可用功率减小,

剩余功率随之减小。所以,最大上升率随着高度的升高一直减小。既然最大上升率随高度

的增加要一直减小,那么上升到一定高度,上升率势必要减小到零。这时飞机不可能再继

续上升。上升率等于零的高度叫做理论上升限度,简称理论升限。

飞机上升到预定高度所需的最短时间,叫上升时间。

** 飞机由平飞转入上升的基本操纵方法是:加大油门到预定位置,同时柔和后拉驾

驶杆,使飞机逐渐转入上升,及至接近预定上升角(上升率)时,即前推驾驶杆,以便使

飞机稳定在预定的上升角。必要时,调整油门.以保持预定的上升速度。对螺旋桨飞机,

还应注意修正螺旋桨副作用的影响。飞机由上升转入平飞,飞行员就应前推驾驶杆,减小

迎角,以减小升力。只有升力小于重力第一分力,飞机产生向下的向心力之后,飞机运动

轨迹才会向下弯曲,才可能转入平飞。

** 飞机由上升转入平飞的基本操纵方法是:柔和地前推驾驶杆减小升力,同时收小

油门,使飞机逐渐转入平飞,待上升角接近零时,即后拉驾驶盘保持平飞。必要时调整油

门,以保持等速平飞,对螺旋桨飞机,还应注意修正螺旋桨副作用的影响。

三. 下降

飞机沿向下倾斜的轨迹所作的等速直线飞行就叫下降。下降是飞机降低高度的基本方法。下降中作用于飞机的外力和平飞相同,有升力、重力、拉力(或推力)和阻力。飞机的下降根据需要可用正拉力、零拉力或负拉力进行。拉力近似于零(闭油门)的下降叫下滑。

飞机的下降性能主要包括最小下降角、最小下降率和最大下降距离。

1. 下降角和下降率

下降轨迹与水平线之间的夹角叫下降角。飞机每秒钟所降低的高度叫下降率。下降率越大,飞机降低高度越快,下降到一定高度的时间就短。

2. 下降距离

飞机下降一定高度所通过的水平距离,叫下降距离。下降距离的长短,取决于下降高度和下降角。下降高度越高,下降角越小,下降距离就越长。以有利迎角下降,因升阻比最大,下降角最小,故下降距离最长。能获得最大下降距离的下降速度,叫做最大下降距离下降速度。对零拉力下滑时,最大下滑距离速度就等于有利速度。凡是使升阻比减小,下降角增大的因素都将使下降距离缩短。如在放起落架、襟翼,飞机结冰等情况下,升阻比减小,下降角增大,下降距离缩短,飞机用负拉力下降时,下降角增大,下降距离缩短。飞行中常可根据滑翔比的大小来估计下降距离的长短。滑翔比是下降距离与下降高度之比。滑翔比就是飞机每降低一米高度所前进的距离。在高度一定的情况下,滑翔比越大,下降距离就越长。在无风和零拉力的情况下,滑翔比就等于飞机的升阻比。

下降的操纵原理

* 操纵驾驶杆改变下降角。下降速度、下降率以及下降距离在稳定的下降中,一个迎角对应一个下降速度。移动驾驶杆改变迎角,就可相应地改变下降速度、下降角、下降率以及下降距离。在下降第一范围内,后位驾驶杆,迎角增大,升力系数增大,下降速度减小,下降角减小,下降率减小,下降距离增长,反之,前推驾驶盘,下降速度增大,下降角、下降率增大,下降距离缩短,用有利迎角下降,下降角最个,下降距离最远。用经济迎角下降,下降率最小。下降中,主要是操纵驾驶盘和油门,保持好下降速度和下降角。只要油门在规定位置,操纵驾驶杆保持好规定的下降速度,就可以获得预定的下降角。

* 加、减油门改变下降角、下降距离。下降中,不动驾驶盘,即迎角保持下变,加油门可使下降角减小,下降速度稍增大,下降距离增长,减油门可使下降角增大,下降速度稍减小,下降距离缩短。加油门,拉力增大,下降速度增大,升、阻力增大。

**飞机由平飞转入下降的基本操纵方法一般是:柔和前推驾驶盘,以减小迎角,使飞机逐渐转入下降,同时收小油门,减小拉力。待飞机接近预定的下降角(下降率)时,应及时后拉驾驶盘,保持好预定的下降角下降。

**飞机由下滑转平飞的基本操纵方法是:加大油门至平飞位置,同时柔和地后拉驾驶盘以减小下降角,待飞机接近平飞状态时,应向前回盘,保持平飞。

实际飞行中,在正逆风中或无风中着陆是很少遇到的。在侧风中着陆才算是“常规”。第五边侧风时,飞机将随风向侧向飘移,使飞机偏离跑道,修正侧风有侧滑修正法和航向修正法两种方法:

1、侧滑修正法

侧滑修下法就是向侧风方向(上风方向)压杆,同时向下风方向蹬舵,使飞机向侧风方向侧滑,航迹对准跑道中心线。例如,侧风从右边吹来,就向右压杆,蹬左舵。向右压杆的结果是使飞机带右坡度,造成右侧滑。蹬左舵是制止因右侧滑引起的机头向右偏转,保持航向对正跑道中心线。飞机接地前需回杆、回舵,以正常姿态接地。侧滑修正法适用于侧风速较小的情况,因为蹬满反舵后,飞机能达到的侧滑角是有限的。

2、航向修正法

航向修正法就是操纵飞机向侧风方向(上风方向)转一角度,使飞机的航迹压在跑道的延长线上。如右图所示,要修正从右边吹来的侧风,就使飞机航向往右方偏,侧风越大,所需偏转的角度越大。由于速度合成的结果,使飞机的航迹压在跑道延长线上。

飞机接地前,应蹬舵使机头正对跑道中心线,同时向右(上风方向)压杆,以右轮单轮接地,接地后继续加大向右压杆力度,此时仍要蹬舵使机头保持正对跑道中心线。

随着飞机的减速,左轮轻轻接地,此时前轮仍高高在上,继续用方向舵保持机头方向,保持向右的压杆力,直至前轮因飞机的进一步减速而自然放下接地,此时,向右压杆到底,蹬左舵以免机头向右偏(机头自动右偏是侧风对垂直尾翼的“风标效应”引起的)。如果侧风很强,满蹬左舵仍不能制止机头右偏,就用左轮的机轮刹车--单轮刹车来纠正方向。在侧风中原则上应少用刹车,因为这时机轮易打滑。机轮打滑不仅使车胎磨损加剧,而且制动效果远比不上机轮不打滑时。

记住机轮接地的顺序为上风主轮->下风主轮->前轮

航向修正法利用航向与航迹的夹角来修正侧风,一般不受风速限制,但由于航向与跑道不平行,不便判断飞机的运动方向(航迹)。

侧风着陆难度较大,特别是航向修正法接地前后的一系列动作,初练习时难免在跑道上“欢蹦乱跳”,但只要勤思考、多尝试,必定可以把波音“要将飞机飞到跑道上,而不是落到跑道上”这说法表现得淋漓尽致。

空客A320 飞行手册教程

AIRBUS A320 飞行手册教程IFR 视野面板介绍 (1)主要飞行显示幕Primary Flight Display (PFD) (2)导航显示萤幕Navigation Display (ND) (3)计时器按钮Chronometer button (4)高度表拨定值Altimeter (5)电子飞行仪器系统Electronic Flight Instrument System( EFIS) (6)发动机指示及警告显示Engine/Warning Display (7)飞行控制装置Flight Control Unit(FCU) (8)起落架显示萤幕/自动煞车选择纽Gear/Auto Brakes

(9)地面接近警报系统Ground Proximity Warning System(GPWS) (10)备用飞行仪表Backup Instruments (11)系统显示萤幕System Display(SD) (12)电子中央飞机监视系统Electronic Central Aircraft Monitoring (ECAM) (13)起落架控制杆L anding Gear (14)飞行时钟Clock 头顶面板介绍 (1)发动机灭火开关Engine Fire (2)液压控制面板Hydraulics (3)燃油系统面板Fuel (4)电力控制面板Electrical

(5)空调设定面板AIR COND (6)雨刷开关W IPER (7)防结冰开关A nti-Ice (8)灯光控制开关EXT LT (9)辅助动力装置开关APU (10)安全带警示及禁止吸烟警示SEAT BELT & NO SMOKING (11)警急状况路线导引灯INT LT (12)舱压控制开关CABIN PRESS (13)发动机手动开启开关Manual Engine Start Panel (14)大气资讯及惯性导航系统Air Data Inertial Reference System(ADIRS) (15)紧急逃生Evacuation EVAC (16)紧急电力发动装置E MER ELEC PWR (17)地面接近警报系统选择开关G PWS (18)座舱通话纪录器及飞行纪录器开关R COR (19)氧气供应系统O XYGEN (20)与后舱组员及机务人员通讯按钮C ALLS (21)货舱烟雾警告CARGO SMOKE (22)空气循环系统VENTILATION

A320飞机V2500放行题库(ME)

A320系列飞机概述题库(总共201题) A320系列飞机综述(11) 1.(i)东航的A320系列有几个燃油加油车加油点? A A.1个 B.2个 C.3个 D.4个 2.(ii)以下哪种描述不准确,在东航的A320上,飞机顶升时,查看飞机的水平可从 C A.可从加油面板处,查看水平仪 B.可从MCDU 进入CFDS查看 C.可从MCDU 进入AIDS查看 D.可从起落架舱处,查看水平仪 3.(ii)牵引飞机时,必须保证前起落架的高度不得大于 A A.300mm B.310mm C.400mm D.407mm 4.(i)关于发动机舱站位的描述可以从AMM哪个章节查找? B A.ATA05 B.ATA06 C.ATA12 D.ATA20 5.(ii)A320系列飞机机身分成几个主要区域? A A.5个主要区域 B.7个主要区域 C.8个主要区域 D.9个区域 6.(i)下机身的区域编号为 A A.100 B.200 C.400 D.700 7.(ii)196 BB的第二个B代表 B A.门或面板的顺序 B.门或面板的位置 C.门或面板的区域 D.主要区域 8.(ii)飞机的区域检查可从AMM内的那个章节查找? A A.ATA05 B.ATA06 C.ATA12 D.ATA20 9. (i)电路识别的显示可在哪里查询 D A.AMM、ASM B.AMM、AWM C.IPC、AMM D.ASM、AWM 10. (i)飞机X轴的0站位位于: B A.机头处B.机头前 C.机头后 D.机身纵轴 11. (i) 静电敏感器件是如何标识的: C A.用红色的环形标签 B.用绿色的三角标签 C.用黄底的黑色标签 D.用蓝色的三角标签 ATA21空调和增压一般介绍(10)

空客A320飞行手册---飞行的主要组成部分及功用

飞行的主要组成部分及功用 **到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成 1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支掌飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 *飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。 二、飞机的升力和阻力 **飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理 流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。 **连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。 伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。 **飞机的升力绝大部分是由机翼产生,尾翼通常产生负升力,飞机其他部分产生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼

A320机型 第22章自动飞行系统

22章重点 1、FMGC、ELAC、惯导,哪个是AFS(自动飞行系统)的计算机?FMGC 2、FCU(飞行控制组件)在遮光板上。 3、FMA(飞行方式指引)在PFD 顶部 4、A320飞行系统核心计算机?FMGC 5、自动飞行系统的FMGC(飞行管理指引计算机)装在电子舱 MCDU(多功能控制显示组件)装在驾驶舱 FCU装在驾驶舱遮光板上 6、FMGC有2个 FAC有2个 FCU有1个,分为3部分FCU有两个通道 7、自动飞行系统有2套 自动推力有1套A/THR也有两个通道 8、AP(自动驾驶)衔接电门在FCU A/THR(自动推力)衔接电门在FCU 9、FE叫飞行包络保护,FEC叫飞行包络计算机,FE有2套 10、FE的功能:风切变探测、alpha-floor包络保护 11、包络保护功能在FAC 12、自动飞行系统操纵时,飞机侧杆不动,油门杆也不动,但是脚蹬可能会动,因为脚蹬是钢索传动 13、自动飞行系统的功能:自动操纵飞机各个舵面,自动完成推力的计算和改变,使飞机沿着预先设定的飞行计划飞行 14、AFS(自动飞行系统)的故障探测隔离功能在:FIDS(故障隔离和探测系统) 15、FMGC输出指令到AP,再由AP输出到ELAC,SEC和FAC,操纵各个舵面 16、飞控计算机有ELAC(升降舵和副翼计算机)、FAC(飞机增稳计算机)、SEC(扰流板升降 舵计算机)、FMGC(飞机管理指引计算机) 17、AP推力载荷:在AP接通时,侧杆上会有推力载荷,即防止误操作,若施加一定的力,克服了负载会断开自动驾驶(同A/THR) 18、自动推力输出推力给FADEC(全权限数字电子控制) 19、自动推力切断方法:油门杆放入慢车位或者使用油门杆侧面的自动推力切断电门 20、FMGC功能:(全选) 21、FMGC功能分为FM和FG部分,FM主管飞行计划,FG主管飞行制导,FG的功能分为AP,FD,A/THR 22、飞行计划的监控由FM(飞行管理)完成 23、AP、FD、A/THR功能在FMGC实现 24、着陆测试由FMGC完成,检查自动着陆的能力 FMA上显示着陆能力的等级CAT 3 2 1 25、在进近过程中可以同时衔接2个AP,AP1为主,AP2热备份(同DIR) 26、自动推力可以人工或自动脱开。人工脱开:按压油门杆侧面的脱开电门,或者设置推力在慢车位,或者再次按压FCU上的A/THR衔接电门(不推荐此种方式,因为会在EWD上出现一个自动推力断开的黄色警告信息)。 27、自动推力由FMGC计算 28、AP在离地5s后可以接通

空客ESPM手册的应用

空客ESPM手册的应用 本文给出在新版手册体系下ESPM手册的结构以及使用方法介绍,在手册使用过程中的技巧及要点,重要章节的介绍及应用,利用手册解决空客飞机维修过程中的问题。 标签:手册结构;导线修理 1.概述 1.1 ESPM手册简介 ESPM手册全称ELECTRICAL STANDARD PRACTICES MANUAL主要用于描述空客飞机电气线路标准施工和电气标准件的规范。是一本非客户化手册,适用于所有空客飞机。特别需要指出的是发动机的线路标准施工并不在ESPM手册中,相关内容需根据发动机的型号参照其它手册执行。 1.2 ESPM手册使用现状 近年来随着国内空客飞机机队规模扩大,飞机机龄升高,由于飞机线路原因而造成的故障也在逐渐增多。为了保证高质量的维修标准,提高飞机线路系统的可靠性,ESPM手册作为线路施工的关键指导手册,其使用频次及应用范围也在不断扩大。但由于空客公司对维修手册的更新,在现行手册体系下,ESPM手册的结构较以前有了很多变化,手册的查询方式也有变化。 2.ESPM 手册的结构 2.1 ESPM手册的组成 ESPM手册由两部分组成,分别是前言和正文。 手册前言包括“重要信息”、“手册介绍”。重要信息是指手册版本更新信息;手册介绍包含手册的由来、术语定义、适用性等。与以前版本手册比较,新版本手册取消了字母索引、件号索引、杂项索引、工具索引、替换表格、手册使用方法介绍六项内容,正是由于这种改变导致了现行手册的查询方法较以往有了重大改变。 手册正文信息可以通过手册章节以及系统的搜索功能获得。但由于施工过程中的一些重要信息不在文字内容中而是在图表中,这些信息是无法搜索的。因此在目前的手册体系中通过手册章节来获取信息是最常用的方法。ESPM手册各章节目录如下: 20-10 安全施工20-30标准规范与推荐措施

A320系统知识普及帖之5-自动飞行系统之FMGC篇上

A320飞机的自动飞行系统相对比较简单,主要由4部计算机组成.2部FMGC,2 部FAC. 控制面板为MCDU和FCU 我们通常把MCDU叫做长期控制界面,因为在飞行计划和性能参数输入后,不会有大的改动。而把FCU称作短期控制界面。在空中可以随时修正速度,航向,高度等信息。 在本文中我将对FMGC的功能进行简单介绍。 A320系列飞机的FMGC由HONEYWELL或THALES/SMITHS公司提供 比如以THALES/SMITHS公司为例 C13043AA04(CFM ENGINE)和C13043BA02(IAEENGING)两种型号,计算机价格昂贵,单价在20万刀以上。 两部FMGC的工作方式为主从模式,由飞行引导部分的接通状态来决定那部为主要,那部为从属计算机。例如AP1接通,则FMGC1 为主要。如果AP2接通则FMGC2为主。完全按照AP,AP2,FD1,FD2,A/THR1,ATHR2的次序决定。 主要计算机来计算各种飞行参数,从属计算机也会计算相同的参数,如果计算结果一致则 完全服从主计算机的指令。由一部FMGC控制EFCS和FADEC。 两部计算机的工作方式有三种 1. 正常模式(Normal mode) 顾名思义就是说两部计算机都工作的状态。由其中一部控制EFCS和FADEC 2. 单一模式(Single Mode) 指有一部FMGC故障的情况。 3. 独立模式(independent Mode) 主FMGC计算各种数据控制系统,从FMGC接收同样的数据并计算但并不控制系统。从FMGC的数据要和主FMGC数据比较。如果出现较大的偏差就会出现独立工作模式 比如速度超过2节,重量超过2吨等。。。出现偏差后,从属FMGC会试图和主FMGC同步,如果同步不成功进入独立模式。 比较常见的情况是在更新完一部FMGC的数据库后,造成两部FMGC的数据库不同,会进入独立模式。 FMGC 内部有两个通道, COMMAND CHANNEL 和 MONITORING CHANNEL 分别有自己独立的供电组件,使用不同的编程软件控制. FMGC内部分成两部分,飞行管理部分FM和飞行引导部分FG 在FM内部加载了6个数据库

完整word版,A320题库-自动飞行FMGS

1. 飞行管理和引导系统(FMGS)包括以下哪些主要部件?( C ) A. 两部飞行管理和引导计算机(FMGC)和两部多功能控制和显示组件(MCDU) B. 一部飞行控制组件(FCU)和两部飞行增稳计算机(FAC) C. 以上都对 2.有两种飞行引导方式:管理引导和选择引导,哪种方式优先? ( A ) A. 选择引导 B. 管理引导 C. 同等优先权 3. FMGC的功能是:( C ) A. 飞行引导和飞行包线保护 B. 飞行管理和飞行包线保护 C. 飞行管理和飞行引导 4. FMGC的正常操作是:( C ) A. 一次只有一台FMGC工作 B. FMGC1优先,FMGC2备份 C. FMGC按主动/随动原则工作 5. 飞行中,FMGS的位置是如何自动更新的: ( C ) A. 用所选择的NDB,VOR或DME台数据 B. 当飞行员选择DME台后 C. 通过自动调谐功能使用DME 6. FMGC单一方式工作时: ( A ) A. 剩下的那部FMGC独立地与两部MCDU交流 B. 剩下的那部FMGC仅与相关的的MCDU交流 C. 剩下的那部FMGC通过失效的FMGC与对方的MCDU交流 7. 在管理飞行中,速度/马赫转换: ( A ) A. 是自动的 B. 必须由机组建立,并只在爬升阶段 C. 必须由机组建立,爬升和下降阶段均可 8. MCDU页面里的绿色是什么意思? ( B ) A. 表示飞行员可修改的数据 B. 表示由FMGC产生的数据,机组不可修改 C. 总是表示临时飞行计划 9. MCDU页面的琥珀色方格表示什么意思? ( C ) A. 不让输入数据,或由FMGC计算的数据将会显示 B. FMGC数据库正在检查重要数据

空客资料使用说明

空客资料使用说明 空客资料阅览室以纸型和电子版方式为本校师生提供4类15种空客机型的通用和客户化资料,其中包括AMM、ASM、AWM、IPC、ACRT、TSM、CAA TS、TDFC、ESPM等。此外,图书馆工作人员专门收集和制作的有关空客的视频、图片资料同样使读者赏心悦目。 一、空客资料简称中英文对照 简称中英文全称 1 AMM Aircraft Maintenance Manual 航空器维修手册 2 ASM Aircraft Schematic Manual 航空器图册 3 AWM Aircraft Wiring Manual 航空器布线图册 4 IPC Illustrated Parts Catalog 图解零件目录 5 SRM Structural Repair Manual 结构修理手册 6 MFP Facility Planning Manual Maintenance Facility Planning 维修设施计划 7 MPD Maintenance Planning Document 维修计划文件 8 NTM Nondestructive Testing Manual 无损检修手册 9 TEM Illustrated Tool and Equipment Manual 图解工具与设备 手册 10 TSM Trouble Shooting Manual 排故手册 11 FCOM Flight Crew Operating Manual 机组操作手册 12 FMGS FMGS Pilot’s Guide 飞行管理和引导系统驾驶员手册 13 MMEL Master Minimum Equipment List 主最低限度设备清单 14 FM Flight Manual 飞行手册 15 AC Airplane Characteristics For Airport Planning 用于机场 计划的航空器特征 16 ARM Aircraft Recovery Manual航空器恢复手册 17 QRHB Quick Reference Hand Book 快速参考手册 18 CLS Cargo Loading System Manual 货物装载系统手册 19 WBM Weight and Balance Manual 载重与平衡手册 20 ACRT ADDITIONAL Cross Reference Tables 21 TDFC Technical Documentation Familiarization Course 技术文 件熟知课程 22 SM Standard Manual 标准手册 23 CAATS Computer Assisted Aircraft Trouble Shooting 计算机辅 助航空器排故 24 ESPM Electrical Standard Practices Manual 电子标准工艺手册

空客A320简易操作手册范本.docx

空客 A320 简易操作手册 作者 : CNA4022查看次数:11发表时间:2006/5/4 13:28【论坛浏览】A320/A321 飞行机组操作手册-标准操作程序 (仅适用于FS系列,真实飞行切勿照搬) 03.00目录 03.01概述 03.02飞行准备 03.03机外安全检查 03.04驾驶舱预先准备 03.05机外检查 03.06驾驶舱准备 03.07推出前或起动前 03.08发动机起动 03.09起动后 03.10滑行 03.11起飞前 03.12起飞 03.13起飞后 03.14爬升 03.15巡航 03.16下降准备 03.17下降

03.18 ILS进近 03.19非精密进近 03.20目视进近 03.21精密进近 03.22着陆 03.23复飞 03.24着陆后 03.25停机 03.26离机 03.01概述 本章中的程序是由空中客车工业公司推荐的, 经过 cgc 修改而适用于FS98/FS2000 系列 .标准操作程序按飞行阶段划分, 并靠记忆实施. 这些程序假设所有系统正常工作和所有自动功能正常使用. 机组必须从发动机起动到爬升顶点, 从下降顶点到停机, 使用头戴式耳机. 自动驾驶设计的目的是为了在整个飞行中辅助机组. 以下是自动驾驶操纵面板上按钮的简要说明: HDG/COURSE航-向 / 航道 VS-垂直速率 SPEED速-度 ALT-高度 上述按钮可以旋转( 左 - 右+), 可以按入 ( 中间 ), 接通时窗口内有一小点显示.

APP-ILS进近 A/T-自动油门 AP-自动驾驶仪 上述旋钮只可以接通/ 断开 . 自动推力设计的目的是为了在整个飞行中帮助机组人员进行推力管理. . 飞行管理系统FMS在这个模拟机上不可用, 请参照其GPS管理系 统 03.02飞行准备 飞机的技术状态:请确认你的飞机没有故障. 气象简报 : 你可以从网上下载最新的天气实况 , 或者自行输入天气 , 包括起飞机场、着陆机场、备降机场、航路天气 . 航行通告 (NOTAM): 航路及其设备是否有变化. 飞行计划和操作要求:制定最佳航路计划, 确认最佳高度层, 计划燃油 . 03.03机外安全检查 刚刚到达飞机时进行检查以保证飞机和周围环境对操作是安全的. 轮挡 ............检查放好 起落架舱门 ......检查位置 APU区域 .........检查 03.04驾驶舱预先准备 下面的检查必须在电源供给之前完成 , 防止因疏忽而造成系统工作 , 对飞机和人员造成危害 .

空客A320简易操作手册范本

空客A320简易操作手册 【论坛浏览】作者:CNA4022 查看次数:11 发表时间:2006/5/4 13:28 A320/A321飞行机组操作手册—标准操作程序 (仅适用于FS系列,真实飞行切勿照搬) 03.00目录 03.01概述 03.02飞行准备 03.03机外安全检查 03.04驾驶舱预先准备 03.05机外检查 03.06驾驶舱准备 03.07推出前或起动前 03.08发动机起动 03.09起动后 03.10滑行 03.11起飞前 03.12起飞 03.13起飞后 03.14爬升 03.15巡航 03.16下降准备

03.17下降 03.18 ILS 进近 03.19 非精密进近 03.20 目视进近 03.21 精密进近 03.22 着陆 03.23 复飞 03.24 着陆后 03.25 停机 03.26 离机 03.01 概述 本章中的程序是由空中客车工业公司推荐的,经过cgc修改而适用于FS98/FS2000系列. 标准操作程序按飞行阶段划分,并靠记忆实施. 这些程序假设所有系统正常工作和所有自动功能正常使用 机组必须从发动机起动到爬升顶点,从下降顶点到停机,使用头戴式耳机. 自动驾驶设计的目的是为了在整个飞行中辅助机组 以下是自动驾驶操纵面板上按钮的简要说明: HDG/COURS航向/航道 VS-垂直速率 SPEED速度 ALT-高度上述按钮可以旋转(左-右+),可以按入(中间),接通时窗口内有一小点显示

APP-ILS 进近 A/T-自动油门 AP-自动驾驶仪 上述旋钮只可以接通/断开? 自动推力设计的目的是为了在整个飞行中帮助机组人员进行推力管理 飞行管理系统FMS在这个模拟机上不可用,请参照其GPS管理系统. 03.02飞行准备 飞机的技术状态:请确认你的飞机没有故障. 气象简报:你可以从网上下载最新的天气实况,或者自行输入天气,包括起飞机场、着陆机场、备降机场、航路天气. 航行通告(NOTAM):航路及其设备是否有变化. 飞行计划和操作要求:制定最佳航路计划,确认最佳高度层,计划燃油. 03.03机外安全检查 刚刚到达飞机时进行检查以保证飞机和周围环境对操作是安全的 轮挡...... 检查放好 起落架舱门……检查位置 APU区域..... 检查 03.04驾驶舱预先准备 下面的检查必须在电源供给之前完成,防止因疏忽而造成系统工作,对飞机和人员造成危害.

A320系列飞机FAC相关的经验探讨 无锡基地 陆亦彬解析

A320系列飞机FAC相关的经验探讨 FAC(飞行增稳计算机):是自动飞行系统的重要部件,2个FAC、2个FMGC、2个MCDU、1个FCU共同构成了自动飞行系统。 一、F AC功用: 1、偏航阻尼功能:由yaw damper实现 A.人工控制时实现由ELAC发出的偏航指令,在ELAC故障时也可以提供抑制荷兰滚的功能(这时ADIRU提供数据给FAC用来计算); 偏航阻尼.jpg B.自动控制时实现由FMGC发出的自动飞行指令:包括完成偏航指令和滚弯动作。 C.在自动飞行状态下还可也起到协调转弯、抑制荷兰滚和在一台发动机失效状况下对飞机姿态的恢复。 2.方向舵配平功能 A.人工控制时实现飞行员通过配平手轮发出的配平指令(control and reset)。 执行由ELAC发出偏转指令(当发动机失效时)。 B.自动控制时完成自动飞行的配平指令,并在一台发动机失效时产生恢复飞机姿态的功能。 3.方向舵行程限制功能 A.按照预先设定好的规则来限制方向舵行程,即在不同的速度下,对方向舵舵面行程有不同程度的限制。

TLU Control Law.jpg B.万一双FAC行程限制功能失效,只要缝翼伸出就会回到低速的限制状态,即保证在近进和落地滑跑过程中最大幅度运动舵面的需要。 方向舵行程限制是不能显示的,只能在ECAM上显示方向舵可以最大运动到的位 置。 4.飞行包络保护功能 FAC接受ADIRU、LGCIU、FMGC、SFCC的数据计算特征速度,并显示在PFD 的速度刻度上。 飞行包络保护1.jpg, 每个FAC由独立的按钮电门控制,并实现不同的功能 A.控制PFD上特征速度的显示(包括最大空速,目标速度,速度增大或减小的趋势, ECAM速度范围,最小可选速度,迎角保护速度,最大迎角速度,最大马赫数, 最大起落架放下速度,最大襟缝翼放下速度,最小襟缝翼放下速度) 正常情况下,FAC1数据显示在CAPT PFD上,FAC2数据显示在F/O PFD上,如 果参数或计算机错误,相关的PFD数据显示由另一个FAC取代。如果FAC获得 的大气数据和DMC显示数据不一致,则会在ECAM上显示“ADR DISAGREE” 的信息。FAC可以计算飞机的重心:飞行中,通过ADIRU, FMGC, SFCC的参数 以及重力参数计算特征速度和重心;在地面重力数据由FMGC提供;

飞机维护手册AMM查询

飞机维护手册 第一节维护手册的概述和结构 3.1.1维护手册的概述 飞机维护手册是外场维护中使用最频繁的一本手册,是飞机工作人员的工作指南,这本手册的内容丰富、充实、多样。而且,在维修文件历史的传承中,出现了很多维护手册内容的分支,在不同时代出现了不同内容的维护手册,新旧不同版本的维护手册的内容也不尽相同。最新版本(波音737-600/700/800/900飞机)的维护手册在工作的分类上,将通用性、原理性的信息另成一册称为系统描述部分(Systems Description Section, SDS),继承了原来(波音737-300/400/500飞机)在01-99页部分的概述内容,由于这部分内容不涉及工作内容,波音公司可以免责其中的错误。而原有的第五章定时性检修的数据,都写在维修计划数据MPD中,这部分不再写在AMM中,现在第五章的内容只包含非定时性的维修检查。而原来停场封存数据专门成册的出版物,现在写在AMM手册11章中。 本书的第二章第一节简要介绍了AMM手册,AMM手册实际上是工作程序的集合,针对航线可更换件LRU进行的维护步骤和程序的集合。它是由飞机制造厂商发布的,依据各种组件、系统、APU、发动机的供货商提供的数据和制造厂商的技术数据综合编写而成,手册基本上都是严格按照ATAl00格式进行编排的,所以,掌握ATA100内容对手册的查阅是非常重要的。 下面以波音737-300飞机为例介绍AMM手册。学会查阅AMM的工作步骤,是机务维护人员的必修课程,是以维护手册为标准进行施工的必要前提。 3.1.2维护手册AMM的结构 维护手册的结构图已经出现在第二章第三节的内容中,维修手册依据ATAl00的章节形式“**--**--**”进行划分。除此之外维护手册根据自身的性质,按照工作的不同内容,将页码分成不同的区段。从表3-1中不难看出,页码的第一位是功能位,代表该页码段的工作内容和性质。而后面两位是顺序的页码,表明的是每页的排序,由于AMM手册的基本单位是页,因此页码对AMM手册的查询是一个关键点。 需特别指出的是,新的手册(波音737-600/700/800/900飞机)中,将飞机系统和组件的故障查找和故障隔离,另外编写了两本手册分别为故障隔离手册FIM(空客公司称为故障查找手册TSM)、故障报告手册FRM,故障隔离手册用于对故障的分析、隔离和排除,故障报告手册是故障发生时,如何使用故障代码等形式进行报告。这部分内容原载于AMM手册201-299页,而新手册201-299页则是描述组件在飞机中的位置。此外,新手册还增加了放行的偏离指南,以对应最低设备清单的内容。空客手册中401-499页,还有针对组件的脱开。因此在不同机型的AMM手册中,未熟练使用前,先应熟悉各页码段的内容,以方便查询。

相关主题