搜档网
当前位置:搜档网 › 国内外蒸汽吞吐+蒸汽驱稠油开采技术

国内外蒸汽吞吐+蒸汽驱稠油开采技术

国内外蒸汽吞吐+蒸汽驱稠油开采技术
国内外蒸汽吞吐+蒸汽驱稠油开采技术

浅谈国内外蒸汽吞吐+蒸汽驱稠油开采技术

【摘要】全球稠油储量巨大,但是开发成本较高,开发技术也较复杂,本文主要介绍蒸汽吞吐+蒸汽驱稠油开发技术,该技术是目前稠油开发的主流技术,且发展比较成熟,开发效果好,得到了广泛的应用,该技术分为直井蒸汽吞吐+蒸汽驱技术和水平井蒸汽吞吐+蒸汽驱技术。水平井特超稠油注蒸汽吞吐hdcs技术在国内的王庄油田发展成为特超稠油注蒸汽吞吐hdcs技术。

【关键词】稠油;蒸汽吞吐;蒸汽驱

1.引言

稠油又称为重油,“稠”指的是粘度,“重”指的是密度。对开发来说,粘度是影响产能和采收率的重要指标,粘度越大,开发难度越大,经济效益也越低。同时稠油中金属和其它元素的含量较高,需要投入更多的成本来提取有用产品,除去杂质。所以稠油开采和炼制难度大且成本高。但是稠油的储量巨大,全球石油资源大概是1.4-2.1×108m3(9-13万亿桶),常规原油只占其中的大约30%,其余都是稠油、超稠油和沥青(如图1所示)[1]。

稠油将在未来的石油工业中扮演一个重要的角色,现在许多国家正转向稠油开发来增加产量、更新储量评估、测试新技术、投资基础设施建设,使其稠油资源的开发不至于落后。目前国内外超稠油主体开发技术主要有双水平井sagd、直井与水平井组合sagd、直井蒸汽吞吐+蒸汽驱、水平井蒸汽吞吐+蒸汽驱、露天开采五种。下面分别介绍五种技术的国内外技术现状和发展趋势。

蒸汽吞吐技术

摘要 蒸汽吞吐(huff——puff)最早出现于20世纪50年代,目前已成为热力采油的主要方法。蒸汽吞吐又称循环注入蒸汽方法(cyclic steam injection),它是周期性地向油井中注入蒸汽,将大量热能带入油层的一种稠油增产措施,注入的热能使原油粘度大大降低,从而提高油层和油井中原油的流动能力,起到增产作用。 关键词:稠油;热采技术;蒸汽吞吐

目录 摘要 0 目录 (1) 第1章稠油的定义及分类 (2) 1.1 稠油的定义 (2) 1.2 分类标准 (2) 1.3 稠油与常规轻质原油相比主要所具有的特点 (3) 第2章蒸汽吞吐开采方法 (4) 2.1 注汽阶段 (4) 2.2 焖井阶段 (5) 2.3 回采阶段 (5) 2.4 蒸汽吞吐采油的主要生产特征 (6) 第3章蒸汽吞吐机理 (8) 3.1 蒸汽吞吐的传热机理 (8) 3.2 蒸汽吞吐采油机理 (8) 3.3 稠油油藏进行蒸汽吞吐的增产机理 (10) 第4章影响蒸汽吞吐效果的因素 (12) 4.1 油藏地质条件对蒸汽吞吐开采的影响 (12) 4.2 注汽工艺参数对蒸汽吞吐开采的影响 (17) 4.3 注汽工艺参数的选择 (22) 第5章蒸汽吞吐实例 (23) 5.1 深井注蒸汽采油技术 (23) 5.2 优化注汽工艺参数,规范施工作业,改善吞吐效果 (24) 第六章结论 (25)

第1章稠油的定义及分类 1.1 稠油的定义 稠油(重质原油)是指在原始油藏温度下脱气原油粘度为100~10000mPa.s 或者在15.6℃及大气压条件下密度为0.9340~1.0000g/cm3。 1.2 分类标准 我国稠油沥青质含量低、胶质含量高、金属含量高,稠油粘度偏高,相对密度则较低。根据我国稠油的特点分类标准列入表1-1。在分类标准中,以原油粘度作为主要指标,相对密度作为其辅助指标,当两个指标发生矛盾时则按粘度进行分类。以粘度为主的分类方法有利于指明原油在油藏中的流动性及产能潜力。将此原油分类标准以外的原油成为中质原油及轻质原油。 表1-1 中国稠油分类标准 稠油分类主要指标辅助指标开采方式 相对密度 名称类别粘度,mPa·s (20℃),g/cm3 Ⅰ50*(或100)~10000 >0.9200 普通稠油 Ⅰ-1 50 *~150 *>0.9200 可以先注水亚类 Ⅰ-2 150 *~10000 >0.9200 热采特稠油10000~50000 >0.9500 热采 超稠油 >50000 >0.9800 热采(天然沥青) * 指油层条件下的原油粘度;无*指油层温度下脱气原油粘度

稠油油藏蒸汽驱的研究

稠油油藏蒸汽驱耐高温堵剂类型及汽窜封堵工艺的研究现状、存 在问题及对策 前言 中国稠油资源较为丰富,陆上稠油资源约占石油总资源量的20%以上。最新研究表明,我国稠油预测资源量197x10gt,己探明稠油地质储量18.1x10gt,己动用地质储量11.93x10gt,剩余未动用地质储量6.14x10gt。主要分布在西藏、青海、新疆、四川、内蒙、广西、浙江、贵州等地约250x10gt。目前己经建立了新疆油区、辽河油区、胜利油区和河南油区四大稠油开发生产区。 稠油热采的主要方法有蒸汽吞吐、蒸汽驱、火烧油层、热水驱等。其中蒸汽吞吐作为一种相对简单和成熟的热采技术己广泛应用于稠油开采中,成为稠油开采的主要方法。目前我国稠油开发方式所占比重为蒸汽吞吐(约占78%),蒸汽驱(约占10%)和常规水驱(12%)等。蒸汽吞吐是单井作业,对各种类型稠油油藏地质条件的适用范围较蒸汽驱广,经济上的风险比蒸汽驱开采小得多,因此蒸汽吞吐通常作为油田规模蒸汽驱开发之前的先导开发方式,以减少生产的阻力和增加注入能力。此外,对于井间连通性差、原油粘度过高以及含沥青砂,不适合蒸汽驱的油藏,仍将蒸汽吞吐作为一种独立的开发方式,因而它在稠油开发中占有重要的地位。 在热力开采过程中,受蒸汽超覆、平面指进和储层非均质性等因素影响,经过多轮次蒸汽吞叶开采的油井,其层间矛盾和平面矛盾口益突出,出现高低渗透层的吸汽差异:高渗透层为强吸汽层,低渗透层为弱吸汽层,甚至不吸汽。在高轮次吞叶阶段还会产生汽窜通道,导致井间汽窜干扰,而蒸汽驱开采必然加重这种趋势。目前,解决这一矛盾最有效的方法之一就是应用高温调剖剂技术,通过解决蒸汽在纵向上和平面上的吸汽不均问题,达到改善吸汽剖面,提高稠油动用程度及采收率的目的。所以此次调研将针对稠油油藏耐高温堵剂以及汽窜封堵工艺进行研究。 正文 1.耐高温堵剂的分类 根据封堵方法的不同,将油井调剖堵剂分为选择性堵剂和非选择性堵剂。其中,选择性堵剂有水基、油基、醇基堵剂;非选择性堵剂有水泥浆封堵、树脂堵剂、硅酸盐堵剂、冻胶堵剂。根据矿场实际,又将堵剂分为沉淀型无机盐类堵水化学剂、聚合物冻胶型堵水和调剖化学剂、颗粒型物理堵塞类调剖剂、泡沫类堵水和调剖化学剂、树脂类堵水化学剂、离子型堵水化学剂、耐高温堵水和调剖剂

胜利油田超稠油蒸汽驱汽窜控制技术_曹嫣镔

石油勘探与开发 2012年12月PETROLEUM EXPLORATION AND DEVELOPMENT Vol.39 No.6 739 文章编号:1000-0747(2012)06-0739-05 胜利油田超稠油蒸汽驱汽窜控制技术 曹嫣镔1, 2,刘冬青2,张仲平2,王善堂2,王全1,夏道宏1 (1. 中国石油大学(华东);2. 中国石化胜利油田分公司采油工艺研究院) 基金项目:国家重大科技专项“大型油气田及煤层气开发”(2011ZX05011-002) 摘要:针对超稠油油藏蒸汽驱过程中汽窜严重的问题,开展室内蒸汽驱汽窜控制技术研究,将氮气泡沫与热固性堵剂相结合封堵汽窜,热固性堵剂封堵大孔道,氮气泡沫调整蒸汽的吸汽剖面。优化后的泡沫剂体系300 ℃阻力因子达到30以上,且对低含油饱和度区域具有选择性封堵作用,适用于超稠油油藏条件下高渗透带的封堵;热固性堵剂在静态120 ℃可4 h形成固结,150 ℃可2 h有效固结,在蒸汽动态驱替过程中可形成有效封堵。利用双岩心管开展堵调工艺评价研究,结果表明,采用热固性堵剂和氮气泡沫相结合的封堵汽窜方式比单纯应用氮气泡沫提高采收率5.7%,驱替效率整体达到60.8%。2011年在单56超稠油藏进行现场实施,措施后综合含水下降10.2%,生产井井口温度下降15 ℃,井组日产油量增加28 t以上,单轮次措施有效期198 d,措施增油2 562 t,效果明显。图7表2参10 关键词:超稠油;蒸汽驱;泡沫;热固性堵剂;汽窜 中图分类号:TE357.4 文献标识码:A Steam channeling control in the steam flooding of super heavy oil reservoirs, Shengli Oilfield Cao Yanbin1, 2, Liu Dongqing2, Zhang Zhongping2, Wang Shantang2, Wang Quan1, Xia Daohong1 (1. China University of Petroleum (EastChina), Dongying 257000, China; 2. Shengli Oil Production Research Institute, SLOF, Sinopec, Dongying 257000, China) Abstract:In view of the severe steam channeling in the steam flooding of super heavy reservoir, lab experiment on steam channeling control were carried out. The combination of nitrogen foam and thermoset blocking agent was tested to seal steam channeling, in which thermoset blocking agent plugs big pore throats, while nitrogen foam adjusts steam absorption profile. The optimized foam formulation has a resistance factor of over 30 at 300 ℃, can plug low oil saturation areas selectively, and applies to the plugging of high permeability zones in super-heavy oil reservoirs. Thermoset blocking agent, which would consolidate at 120 in 4 h and consolidate at 150 ℃ in 2 h, ℃can provide effective plugging during dynamic steam flooding. The best steam channeling control mode was determined using parallel tube model. By the combination of nitrogen foam and thermoset blocking agent, the recovery rate is 5.7% higher than the application of nitrogen foam only, with the overall sweeping efficiency reaching up to 60.8%. In 2011, the mode was used in the steam flooding in Shan-56 reservoir. The water cut drops 10.2%, the wellhead temperature of producer drops more than 15 ℃, the oil production of the well group increases over 28 tons per day, the valid period of a single cycle is up to 198 days, and the oil production increases 2 562 t, showing significant improvement in steam flooding. Key words:super heavy oil; steam flooding; nitrogen foam; thermoset blocking agent; steam channeling 0 引言 超稠油油藏黏度高、流动性差,蒸汽与稠油流度比大,蒸汽驱过程中极易发生汽窜,导致温度场发育不均匀,生产井综合含水上升,井口温度上升,热利用率低,这也是超稠油蒸汽驱提高采收率最大的难点所在[1-4]。胜利油田超稠油油藏储量丰富,其中单56是典型的超稠油藏,埋深1 080~1 150 m,油藏条件下稠油黏度47 000~92 000 mPa?s,油层厚度30 m,孔隙度30%~36%,渗透率3~4 μm2,油水体积比为1。该区块主体2001年投入开发,经过加密,2007年井距为140 m×100 m,其中超稠油蒸汽驱试验井组含油面积0.23 km2,地质储量124×104t,注汽井4口,生产井21口,采出程度达到21.3%,综合含水79.2%,油藏压力已下降到5 MPa以下。对于单56区块,单纯采用蒸汽吞吐的开采方式剩余可采储量有限,必须通过转换开发方式进一步提高采收率。2008年9月开始在单56-9-N13等4个井组开展蒸汽驱现场试验,通过转换开发方式稳定了井组产量,采油速度在2.9%,油汽比0.29,取得良好的开发效果。试验过程中超稠油油藏蒸汽汽窜严重,试验井组2年内发生汽窜28井次,一旦发生汽窜,采用关井、降低注汽速度等措施,影

普通稠油蒸汽吞吐开发优化焖井时间的探索与管理

普通稠油蒸汽吞吐开发优化焖井时间的探索与管理 作者:凌风云 引言齐108块是位于辽河油田西部凹陷西斜坡欢曙上台阶的一个断块型油气田,开发目的层为沙三下莲花油层,含油面积为4.1平方公里,地质储量为2157万吨,原油平均粘度为2217mPa.s,属稠油开发型油气田。在加强热焖井的管理上进行了长期的探索和实践,对热焖井管理的规律有了比较系统的认识,形成了一整套比较合理的管理制度和方法,在改善稠油中后期吞吐效果、提高原油产量方面见到了比较明显的效果。 一、加强热焖过程机理研究,为热焖井管理提供科学依据。 从实践中我们认识到,热焖井的管理是一个比较复杂的生产管理过程,有着其自身的特点和规律,只有正确认识这些特点和规律,才能合理制定管理制度和方法,进而指导实际生产管理工作。为此,我们注重油井热焖过程机理研究,为热焖井管理提供科学依据。 (一)优化焖井时间的重要性 蒸汽吞吐生产中,注汽后的焖井,主要是为了把注入蒸汽所携带的潜热有效地传给油藏,以防止采油时采过多的蒸汽;同时也为了把地层均匀加热,以发挥更大的油层产油能力。国外的经验是,对不同油藏和注入条件(注汽量和蒸汽干度),焖井时间一般为3~4d。我国设计的焖井时间大都在2~3d,实施中有的为了“趁热打铁”甚至把焖井时间缩到1~2d,这样做的结果会造成大量的热损失。 焖井时间越短,注入热越集中在井底附近,开井后被重新汽化的水所带走的潜热越多,但焖井时间也不能过长。焖井时间过长,向顶底层的热损失就会增大,而且也会拖延生产时间。所以,对于一个具体油藏和注汽条件(注汽量和干度),应存在一个最佳焖井时间。 需要说明的是,适当延长焖井时间,留在油藏中热量较多,这对下一个周期是有利的。所以,我们应该针对具体油藏和注汽条件,通过加强对影响焖井时间的因素来分析优化焖井时间,以提高蒸汽吞吐效果。(二)对影响油井热焖时间因素的研究 我们在实际工作中发现,影响油井热焖时间的因素很多,其中,最主要的因素是油层的热焖压力和温度的变化以及液面的恢复。油层的热焖温度可以从光纤测温曲线中测出,而油层的热焖压力变化直接反映在油井热焖压力上,液面可以在无压后由油管内测得。在一个合理的温度和压力且有液面的情况下下泵开井,油井会取得较好的周期生产效果。 1、热焖井温度变化对热焖时间影响 由于油层温度对原油粘度影响较大,温度升高(≥120℃)后原油粘度迅速降低。当温度降到一定数值(30℃≤)后,原油粘度随温度变化趋于平缓。据齐108块油层粘温关系,原油粘度在温度达到120℃时原油粘度下降减缓,因此合适的油层温度决定了油井的热焖时间, 2、热焖井压力变化对热焖时间影响

陈南稠油油藏蒸汽吞吐存在主要问题及对策

陈南稠油油藏蒸汽吞吐存在主要问题及对策 摘要:陈南稠油油藏具有“薄、稠、砂、低”的特点。针对蒸汽吞吐技术开采以来暴露出的热采递减快、出砂严重、套损井增多等问题,研究了稠油热采配套技术应用,提出了优化热采管理的各项措施,有效提高了[1]油层动用程度,控制了稠油产量的递减,改善稠油蒸汽吞吐开发效果。 关键词:稠油油藏;蒸汽吞吐;出砂;配套技术;热采管理 一、概况 陈南稠油油藏位于山东省东营市利津县陈庄镇内,为具继承性发育的受基岩控制的披覆构造薄层边际稠油油藏,河流相沉积,储层平面变化快。油藏埋深1180-1320m,探明含油面积20.6km3,地质储量1942.39×104t。其主要特点为“储层薄、油稠、出砂严重、含油饱和度低”,地面脱气原油粘度(50℃)一般10000-50000mPa·s,储层孔隙度32%,渗透率2500×104μm2,属于高孔、高渗储层,区块构造平缓、油稠,造成含油饱和度低50-55%。 二、开发过程中存在的主要问题 1.随着蒸汽吞吐轮次增加,吞吐效果变差,措施选井难度大 随周期轮次的增加,油层压力逐渐下降(如陈373块原始地层压力12.9MPa,下降到目前的10.4MPa),原油密度、粘度逐渐变大,渗流阻力增加,吞吐周期缩短,周期累油量和油汽比明显降低,含水呈上升趋势。五轮之后吞吐效果更差,单井周期累油量由1953t下降到838t,油汽比仅为0.5。统计完整周期油井生产规律,周期间产油量递减22.3%,油汽比递减30.4%,含水上升速度为3.67%。 同时随轮次增加,地下存水率增加,排水期延长,加热半径小,单井日油水平由5.2t下降到2.7t,递减快,为下一步优选油井转周增加了难度。 2.地层出砂严重 陈南稠油油藏埋藏浅,油层胶结疏松。蒸汽吞吐开采后,岩石间的胶结物在流体的作用下被蒸汽溶解和冲刷,胶结强度大大降低,易造成出砂;同时不合理的开采速度和油井工作制度突变,也易造成出砂。2011年共计出砂24口油井,严重影响热采开发效果。 3. 套损井比例逐渐加大 目前已发现18口热采井套损,以套漏、套错为主。套损原因一是注汽产生的热应力对套管和水泥环具有损坏作用,二是油井产出液含硫高,对套管腐蚀;三是固井质量差。

稠油油藏提高采收率技术

稠油油藏提高采收率技术 摘要:作为一种非常规石油资源,“重油”又被称为“稠油”。世界上的重油资源非常丰富,已在多个国家发现了重油资源。专家们估计,在全球约10万亿桶的剩余石油资源中,70%以上是重油。我国的石油储量也相当丰富。已建立了辽河油田、新疆油田、胜利油田、河南油田以及海洋油区等五大重油开发生产区,稠油产量占全国原油总产量的10%。但是稠油粘度大,难以流动,阻碍了原油的顺利开采。针对稠油粘度对温度的敏感性,随着温度升高而急剧下降的特点,目前世界上已形成提高稠油采收率四大技术系列,即化学法、气驱、热力和微生物采油。 关键词:稠油油藏;采收率 稠油,国际上称之为重质油或重油。严格地讲,“稠油”和“重油”是两个不同性质的概念。“稠油”是以其粘度高低作为分类标准,而原油粘度的高低取决于原油中胶质、沥青及蜡含量的多少。“重油”是以原油密度的大小进行分类,而原油密度的大小往往取决于其金属、机械混合物及硫含量的多少。 一.稠油的特点 我国稠油油藏分布广泛,类型很多,埋藏深度变化很大,一般在10m~2000m之间,主要是砂岩储集层,其特点与世界各国的稠油特性大体相似,主要有: (1)粘度高、密度大、流动性差。它不仅增加了开采难度和成本,而且使油田的最终采收率非常低。稠油开采的关键是提高其在油层、井筒和集输管线中的流动能力。

(2)稠油的粘度对温度极其敏感。随稠油温度的降低,其粘度显著增加。大量的实验证明,温度每降低10℃,原油粘度约增加1倍。目前国内外稠油采用的热力开采方法正是基于稠油的这一特点。 (3)稠油中轻质组分含量低,而焦质、沥青质含量高 中国稠油资源多数为中新生代陆相沉积,少量为古生代的海相沉积。储层以碎屑岩为主,具有高孔隙、高渗透、胶结疏松的特征。稠油储量最多的是东北的辽河油区,其次是东部的胜利油区和西北的新疆克拉玛依油区。中国重油油藏具有陆相沉积的特点,油层非均质性严重,地质构造复杂,油藏类型多,油藏埋藏深。油藏深度大于800m的稠油油储量约占已探明储量的80%以上,其中约有一半的油藏埋深在1300m~1700m。吐哈油田的稠油油藏埋深在2400m~3400m,而塔里木油田的轮古稠油油藏埋深在5300m左右。 二.国内外提高稠油采收率技术 2.1.1 蒸汽吞吐 蒸汽吞吐是一种相对简单和成熟的注蒸汽开采稠油技术。 蒸汽吞吐技术机理主要是加热近井地带原油,使之粘度降低,当生产压力下降时,为地层束缚水和蒸汽的闪蒸提供气体驱动力。 蒸汽吞吐的工艺过程是先向油井注入一定量的蒸气,关井一段时间,待蒸汽的热能向油层扩散后,再开井生产,即在同一口井进行注入蒸汽、关井浸泡(闷井)及开井生产3个阶段,蒸汽吞吐工艺描述如图2-1。注入蒸汽的量以及闷井的时间是根据井深、油层性质、原油粘度、井筒热损失等条件预先设计好的。 封隔器 吞 蒸汽 蒸汽注入 油砂层 流体采出 吐

采油工程新技术的发展趋势分析

中国科技期刊数据库 工业A 2016年1期 37 采油工程新技术的发展趋势分析 孙玉超 大庆市采油一厂四矿中六队,黑龙江 大庆 163000 摘要:我国石油需求量非常巨大,而现存石油储量随着开采深度地不断增加,开采难度愈来愈大,使用新型的采油工程技术对我国石油开采事业的发展意义重大。本文对当前采油工程新技术及其发展的趋势展开讨论分析。 关键词:采油工程新技术;发展趋势;运用 中图分类号:TE355 文献标识码:A 文章编号:1671-5799(2016)01-0037-01 前言 我国大部分油田处于地形地势、地层结构较为复杂的地带,开采难度日渐增大,传统石油开采工艺已经不能适应我 国当前的石油开采的要求[1] 。采油工程新技术的应用及时地解决了这一开采问题,有效地提高了开采的效率。 1 采油工程新技术分析 1.1 热超导采油技术 热超导技术是一种新技术,其作用原理是对某种物质进行特殊的处理,即将其与配置好的化学物质共同压入密封管柱内,然后加热使管柱的两端不均衡受热,引发化学物质的化学相变化,气态分子运动受到激发而成不规则碰撞运动状态,由此产生的巨大能量会通过声波向该物质传递热量,使其热阻趋于0或者减小至0,进而满足生产所需的条件。该项技术应用在采油工程中主要有超导加热热洗技术和能耗 自平衡稠油采油技术两种技术措施[2] 。前者的技术原理是利用专用的超导加热设备,将原油加热,从而清除油井内壁的石蜡结晶,具有成本投入低、耗能少、稳定性好、不污染油层的优点;后者技术原理是将超过临界点的导热液体注入井下,再利用导热液体的良好导热性能将油井下的热量传到地面,该技术的特点是不需要使用专门的电力加热设备就可以起到清除井壁石蜡、降低原油粘度,从而提高采油的效率。 1.2 水力振动采油技术 水力振动采油技术主要利用高压水射流的振动脉冲起 到提高采油效率的效果[3] 。该技术主要通过对整个油井套管进行控制,在井下和油管装置激振器,在井底形成振动脉冲,利用水利波清除井底的泥浆等原油中参杂的杂质,同时使低下沉淀的盐类产生和谐振动,在振动中形成不闭合的孔洞或者性状与排列均无规则的缝隙。振动脉冲的周期性在经过一定时间后会形成巨大的冲击力,从而使地底缝隙变化成网络裂缝,同时形成的脉冲会在油藏中发生交变反应,产生一种变应力,最终起到改变原油表面张力、分子构造的作用,从而使原油的流动性能得到改善,降低原油开采的技术难度。由此可见,在该项技术的控制过程中,水力振动能够加强地质对油层的渗透作用,清除杂志,减少水分占原油的比例,提升原油的质量,有效地提高了采油工作的效率。 1.3 纳米材料采油技术 纳米技术是现代科学技术中非常先进的一项技术,并且已运用在多个领域,在采油工程中纳米材料采油技术的主要 技术措施是纳米MD 膜驱动原油技术[4] 。其技术原理是分解纳米级别的微型驱动分子,使其由原始的胶合形态朝分散心态变化,通过这一分散技术促进采油的效率的提高。纳米MD 是一种微小粒子,主要是由形态不同的多种混合物分子随机组成的,首先经过流态化处理,分子的电荷作用使其能够在油层表面粘附,经过一定的积累就可形成一层MD 膜,且MD 膜的韧性很强,十分的坚固,可以有效地减少原油附着于地底岩层、油井壁的现象,从而使地面开采工作更加顺利,提高采油效率。 1.4 热处理油层采油技术 热处理地层采油技术主要利用热能对油田进行一系列处理,从而起到提高采油效率的技术。该项技术原理是通过热能加热使原油温度增高、降低其浓度,减弱原油粘性,加热会增加波及系数,原油就会不断的膨胀,原油的排除动力就会大大增强,从而降低采油的难度。利用该项技术主要有三种方法,一是蒸汽驱采油法,该方法通过蒸汽吞吐对井筒 周边地层的原油加热,但是这一方法在粘稠度较大的井筒原油中效果不明显,采油效率比较低,因此未能得到广泛的应用。二是火烧油层采油法,该方法首先将大量氧气注入井筒内油层中,然后点燃使其燃烧,将燃烧过程中产生的热量作采油的驱动力,虽然这一方法的操作复杂性较高,但是效果较好,因此应用范围较第一种方法广泛。三是蒸汽吞吐采油法,首先在油田内注入大量的蒸汽并密封好,然后对其数天的连续加热,然后再开井采油,这种方式操作十分简便,且成本投入低,因此在采油工程中的应用比较广泛。 1.5 微生物采油技术 在采油工程新技术的发展历程中,微生物采油技术相比以上几项技术而言是最新型的全新技术,该技术原理是利用微生物的细菌的活性及其发酵作用得到提高采油效率的效果。首先将某类微生物细菌注入油层,原油层会在该细菌的活性和发酵作用综合作用下产生酵化反应,在微生物强大的生命力推动下,井底原油得以快速往上方流动,大大降低了原油开采的难度,开采效率得到有效的提高。这一技术操作方法简单,成本投入低,并且十分环保,在采油工程尤其是年代久远的油田和含水量较高的油田应用优势更高,应用前景广阔。 2 未来的发展趋势分析 我国的综合实力在不断地提升,现代科技更新换代越来越来快,因此采油工程技术也在不断地发展进步,我国的采油工程新技术将会朝着以下方向发展:①朝着信息化和数字化方向发展,原油的开采会得到更有力的信息数据支持;②朝着智能化、自动化和集成化方向发展,优化资源的配置;③朝着实时性发展,原油的开采过程会得到全程的实时监测和调控,为开采工作的顺利展开提供有力的保障;④朝着节能环保方向发展,坚持以人为本和可持续发展;⑤朝着探勘与开采一体化的方向发展,原油开采的流程会更加规范化和简易化。同时,技术研究的重点在高效、低成本的宗旨下积极发展复杂结构经、水平井的采油技术,并反复研究已有的技术,在高效的基础上最大程度地降低开采的成本,包括整体压裂技术、三维压裂技术、弱冻胶调驱技术、液流转技术和深部调剂技术等等。 3 结语 石油是我国重要的能源,作为我重要经济命脉之一,油田生产的效率、经济效益与我国国民经济关系密切。在传统工艺不能适应当下原油开采难度的情况下,采油工程新技术的应用有效地解决了这一问题,随着技术的不断进步,采油工程新技术将会朝着自动化、信息化、智能化、数字化、一体化等方向发展,我国油田生产的成本投入会越来越低、效率与经济效益也会越来越高。 参考文献 [1]常定军.采油工程新技术的发展趋势分析[J].化工管理,2015(01):159. [2]那旭.采油工程技术的发展与展望[J].硅谷,2015(03):2-3. [3]郑文源.采油工程新技术的发展前景及展望[J].科技与企业,2013(19):171. [4]齐丽丽.探究采油工程新技术[J].化学工程与装备,2013(05):167-168.

孤东油田九区蒸汽驱开采效果分析

孤东油田九区蒸汽驱开采效果分析 2008-10-30:数字油田 一、地质概况 孤东油田稠油区块为岩性-构造油藏,油层薄、埋藏深、生产中易出砂、边底水活跃、净总比低,属于高孔、高渗油藏(表1-1)。九区位于孤东油田的南部,为岩性-构造层状油藏。其主力含油层Ng4-6为稠油层,含油面积1.2km2,地质储量375×104t,可采储量103×104t。主力层为42、52+3、55+61,构造高点位于GD6-1井附近,由此向南倾没。油藏埋深为1320~1400m左右,50℃时地面原油黏度一般在1153~4660 mPa·s。其中42层原油物性较好,一般在1600~2200 mPa·s,平均为1982 mPa·s。 九区馆上段为河流相沉积,砂体自下而上表现为由细砂岩、粉砂岩、泥质粉砂岩及泥岩构成的正韵律组合,岩石颗粒分选中等,粒度平均分选系数1.6,粒度中值0.12mm,泥质含量6.5%,平均孔隙度33~35%,平均渗透率为1000~3000×10-3μm2。岩石润湿性属中性, 储层为弱速敏性、中等偏弱水敏性、中等偏弱碱敏性、弱温敏性。 从各层的小层平面图上可以看出,各层的边水主要位于油层的东部和西南部,纵向上愈向下水体体积愈大。Ng52水体体积约为油体体积的1.2倍,油水体积约占总孔隙体积的一半,表明Ng52水体较小。Ng55水体体积约为油体体积的1.5倍,油水体积约占总孔隙体积的2/5,水体积约占总孔隙体积的3/5,表明该层边底水不活跃。Ng61水体体积为油体体积的1.4倍,油水体积约占总孔隙体积的2/5,水体积约占总孔隙体积的3/5,表明该层边底水不 活跃。 孤东九区馆上4~6油层除受时间单元-岩性控制外,主要受构造控制,其油藏类型为岩性 -构造层状油藏(表1、图1)。 原油组分中,烷烃占37.30%,芳烃占23.15%,非烃占25.84%,沥青质占4.72%,总烃占60.45%。

毕业设计- 简述蒸汽吞吐采油技术

简述蒸汽吞吐采油技术

【摘要】 蒸汽吞吐技术是利用高温泡沫调剖技术、化学滴注乳化降粘技术、声波解堵技术相互配合,通过化学、物理多元作用疏通低渗透油层、控制高渗透油层,使各类油层在蒸汽吞吐过程中均匀动用,同时可降低原油粘度,达到提高油藏动用程度,提高单井产量的目的.近年来在采油技术中的已得到大家的广泛应用。本文介绍了蒸汽吞吐技术的原理以及应用。 【关键词】:技术原理,主要生产特征,发展前景。

目录 第一章:蒸汽吞吐现状 (4) 第二章主要机理 (6) 第三章蒸汽吞吐采油的主要生产特征 (8) 第四章蒸汽吞吐开采效果的主要技术评价指标 (9) 第五章多元化蒸汽吞吐技术的主要技术应用 (10) 第六章蒸汽吞吐技术在现实中的实际应用 (10) 参考文献 (12) 致谢 (13)

第一章:蒸汽吞吐技术现状 蒸汽吞吐又叫周期性注蒸汽、蒸汽浸泡、蒸汽激产等。所谓蒸汽吞吐就是先向油井注入一定量的蒸汽,关井一段时间,待蒸汽的热能向油层扩散后,再开井生产的一种开采重油的增产方法。蒸汽吞吐作业的过程可分为三个阶段,即注汽、焖井及回采。 多元化蒸汽吞吐技术是利用高温泡沫调剖技术、化学滴注乳化降粘技术、声波解堵技术相互配合,通过化学、物理多元作用疏通低渗透油层、控制高渗透油层,使各类油层在蒸汽吞吐过程中均匀动用,同时可降低原油粘度,达到提高油藏动用程度,提高单井产量的目的.本文介绍了该工艺的技术原理和施工工 艺.2007年多元化蒸汽吞吐采油技术在锦45块、锦25块应用21井次,措施成功率100%,有效率75%,周期对比增产原油6714t,延长生产周期25d,平均单井增油320t,总油气比比上周期高出 0.13,投入产出比1:2.7. 我国已经探明的石油地质储量有相当比例的稠油、超稠油,国内四大稠油油田(新疆、辽河、胜利、河南)有4万口左右的稠油油井,加上其他油田较小的稠油区块,全国每年稠油产量超过2000万吨。如何在安全、高效、清洁的前提下,提高稠油、超稠油的开发效果,是难点,也是技术创新的活跃点。 与传统饱和蒸汽热采技术相比,过热蒸汽吞吐技术是提高稠

浅析分层蒸汽驱的工艺技术

龙源期刊网 https://www.sodocs.net/doc/4415050533.html, 浅析分层蒸汽驱的工艺技术 作者:杨淑英 来源:《科技创新导报》2013年第13期 摘要:蒸汽驱是指应用在稠油油藏蒸汽吞吐开采的中后期,能够进一步提高原油采收率的重要手段。迄今为止,大部分稠油区已进入了吞吐中后期,转换开发方式的需求显得愈发重要,因此,开展分层蒸汽驱工艺技术的研究势在必行。 关键词:分层蒸汽驱配汽流量设计与调整分层汽驱管柱地面模拟实验 中图分类号:TE357 文献标识码:A 文章编号:1674-098X(2013)05(a)-0089-01 同普通蒸汽驱相比,分层蒸汽驱不仅需要解决蒸汽驱长期连续注汽过程中管柱的锚定与座封、油套环空的长效密封与隔热以及长期注汽后整体管柱的解封,同时分层蒸汽驱需要根据油藏各层段层间差异及其动用程度确定各层段的合理配注量,并设计相应的配注结构及其配汽孔径的合理调整方式,依据测试结果最终实现层间配注量的动态调整。 1 分层蒸汽驱工艺管柱及其配套工具的研制 1.1 分层蒸汽驱注汽管柱 1.1.1 管柱结构 分层蒸汽驱注汽管柱是由真空隔热管(同时与其配上隔热管接箍密封器)、压力补偿式隔热型汽驱伸缩管、多级长效汽驱密封器、Y441-152强制解封汽驱封隔器、层间配汽装置、以 及层间密封器等工具组成。 1.1.2 管柱工艺特点。 (1)液压座封上提分级解封,下井和提出一趟管柱完成,可实现分层汽驱2-3层段的分层配汽。(2)管柱耐温350 ℃、耐压17 MPa,使用寿命3年以上。(3)管柱采用金属和非金属双级密封,双向锚定,管柱自身调节伸缩补偿。(4)可实现分层汽驱注汽过程中,各层段配汽量的动态调节。(5)申请6项国家专利,其中压力补偿式隔热伸缩管、隔热管接箍密封器、强制解封蒸汽驱封隔器等已获4项实用新型专利授权。 1.2 配套工具的研制 1.2.1 Y441强制解封蒸汽驱封隔器

稠油蒸汽吞吐开采技术研究概述

收稿日期:2006-06-06;改回日期:2006-07-31 基金项目:该项目受油气藏地质及开发工程国家重点实验室基金项目资助(项目编号:P LN0141) 作者简介:曾玉强(1979-),男,2003年毕业于西南石油学院石油工程专业,现为该院在读博士研究生,主要研究方向为油气田开发。 文章编号:1006-6535(2006)06-0005-05 稠油蒸汽吞吐开采技术研究概述 曾玉强1,刘蜀知1,王 琴1,任 勇2,鲁小会3 (11西南石油大学,四川 成都 610500;21中油长庆油田分公司,陕西 西安 710021; 31中油新疆油田分公司,新疆 克拉玛依 834000) 摘要:利用蒸汽吞吐开采稠油最早出现在20世纪50年代,作为一种相对简单和成熟的注蒸汽开采技术,目前仍在委内瑞拉、美国和加拿大广泛应用。在研究大量文献的基础上,回顾了蒸汽吞吐开采技术的发展和现状,总结了蒸汽吞吐采油原理和开采特征,热力模型的发展,以及现阶段存在的问题,展望了未来的发展方向。研究认为:蒸汽吞吐在稠油开发中仍然将继续占有重要的地位;其采油原理复杂,是一项复杂、技术难度大的系统工程;进入开采中后期,必须运用各种手段改善吞吐效果并适时地转入合理的二次热采方式。关键词:稠油;蒸汽吞吐技术;开采特征;概述中图分类号:TE35714 文献标识码:A 引 言 研究表明,除南极洲外各大洲均蕴藏有十分可观的稠油。全球已探明的稠油资源储量超过3000×108t ,而可供开采的稀油资源仅剩下1700×108t [1]。过去稠油开发主要集中在美洲大陆,近20a 来亚洲的稠油开发得到了发展。20世纪80年代初,我国的稠油资源才开始工业性开发,至2002年产量已达1300×104t ,占全国原油产量的8%。2000年初,世界上强化采油的日产量大约是3616 ×104t ,其中热力采油的日产量约为2017×104t ,约占强化采油的5616%,可见稠油热采在强化采油中占有主导地位[2]。在热力采油中,注蒸汽开采的产量约占97%,其次为火烧油层,产量约占热力采油的212%,其它的热力采油方法(如蒸汽辅助重力泄油,热水驱,电加热等)还处在小规模的试验研究阶段[3]。我国目前稠油开发主要包括蒸汽吞吐(约占78%),蒸汽驱(约占10%)和常规水驱(12%)等方法。 蒸汽吞吐工艺施工简单,收效快,不需要进行特别的试验研究,可以直接在生产井实施,边生产边试验,因而受到人们的普遍欢迎。尤其在某些油藏条件下,例如油层厚,油层埋藏浅,井距小,特别是重力排油能力达到经济产量时,蒸汽吞吐可以获得较高的采收率[4]。蒸汽吞吐是单井作业,对各种 类型稠油油藏地质条件的适用范围较蒸汽驱广,经济上的风险比蒸汽驱开采小得多,因此蒸汽吞吐通常作为油田规模蒸汽驱开发之前的先导开发方式,以减少生产的阻力和增加注入能力。此外,对于井间连通性差、原油粘度过高以及含沥青砂,不适合蒸汽驱的油藏,仍将蒸汽吞吐作为一种独立的开发方式,因而它在稠油开发中将继续占有重要的地位。 1 蒸汽吞吐采油原理和开采特征 111 筛选标准 稠油热采项目一般投资较高,风险也比普通油藏开发大,因此选择适宜于蒸汽吞吐的油藏就显得尤为重要。要做好这项工作,需要对油藏地质的各项参数进行研究评价。经综合研究,得出了我国的 蒸汽吞吐开采筛选标准(表1)[5]  。112 蒸汽吞吐增油机理 蒸汽吞吐过程中的传热介质包含物理的、化学的、热动力学的各种现象,是一个十分复杂的综合作用过程,同时也是一个具有不同流动梯度的非稳定渗流过程。蒸汽吞吐的采油原理主要包括[6~8]: (1)油层中原油加热后粘度大幅度降低,流动阻力大大减小。粘温敏感性是稠油热采的主要机理。 第13卷第6期2006年12月 特种油气藏S pecial Oil and G as Reserv oirs V ol 113N o 16 Dec 12006

简述蒸汽吞吐采油技术

毕业论文 所属系部:石油工程系 专业:油气开采 年级/班级:油气开采一班 作者: 学号: 指导教师: 评阅人:

【摘要】 蒸汽吞吐技术是利用高温泡沫调剖技术、化学滴注乳化降粘技术、声波解堵技术相互配合,通过化学、物理多元作用疏通低渗透油层、控制高渗透油层,使各类油层在蒸汽吞吐过程中均匀动用,同时可降低原油粘度,达到提高油藏动用程度,提高单井产量的目的.近年来在采油技术中的已得到大家的广泛应用。本文介绍了蒸汽吞吐技术的原理以及应用。 【关键词】:技术原理,主要生产特征,发展前景。

目录 第一章:蒸汽吞吐现状 (4) 第二章主要机理 (6) 第三章蒸汽吞吐采油的主要生产特征 (8) 第四章蒸汽吞吐开采效果的主要技术评价指标 (9) 第五章多元化蒸汽吞吐技术的主要技术应用 (10) 第六章蒸汽吞吐技术在现实中的实际应用 (10) 参考文献 (12) 致谢 (13)

第一章:蒸汽吞吐技术现状 蒸汽吞吐又叫周期性注蒸汽、蒸汽浸泡、蒸汽激产等。所谓蒸汽吞吐就是先向油井注入一定量的蒸汽,关井一段时间,待蒸汽的热能向油层扩散后,再开井生产的一种开采重油的增产方法。蒸汽吞吐作业的过程可分为三个阶段,即注汽、焖井及回采。 多元化蒸汽吞吐技术是利用高温泡沫调剖技术、化学滴注乳化降粘技术、声波解堵技术相互配合,通过化学、物理多元作用疏通低渗透油层、控制高渗透油层,使各类油层在蒸汽吞吐过程中均匀动用,同时可降低原油粘度,达到提高油藏动用程度,提高单井产量的目的.本文介绍了该工艺的技术原理和施工工 艺.2007年多元化蒸汽吞吐采油技术在锦45块、锦25块应用21井次,措施成功率100%,有效率75%,周期对比增产原油6714t,延长生产周期25d,平均单井增油320t,总油气比比上周期高出 0.13,投入产出比1:2.7. 我国已经探明的石油地质储量有相当比例的稠油、超稠油,国内四大稠油油田(新疆、辽河、胜利、河南)有4万口左右的稠油油井,加上其他油田较小的稠油区块,全国每年稠油产量超过2000万吨。如何在安全、高效、清洁的前提下,提高稠油、超稠油的开发效果,是难点,也是技术创新的活跃点。 与传统饱和蒸汽热采技术相比,过热蒸汽吞吐技术是提高稠

采油技术

1. 注水开采法 在注水开发油藏中,因注入水沿高孔隙度、高渗透带、大孔喉或裂缝窜流而使基质、低孔隙度、低渗透带中的油气采出程度低,甚至采不出而成为剩余油,因此要加大采出剩余油的力度。 注水吞吐采油是将水注入产层,注入水优先充满高孔隙度、高渗透带、大孔喉或裂缝等有利部位,关井后,在毛细管力作用下,使注入水与中、小孔喉或基质中的油气产生置换,导致产层中的油水重新分布,然后开井降压,使被置换至高孔隙度、高渗透带、大孔喉或裂缝中的油气随部分注入水一起采出。因此,注水吞吐采出的油量与岩石物性、润湿性、界面张力、油水黏度和关井时间紧密相关。 注水吞吐采油对不同润湿性油藏都有效,亲水性越强,则越有利于注水吞吐采油。可以预见,储层条件相同,并具有相同的剩余可采储量,只要改变注入水性质,延长关井时间,亲油储层不但可以实施注水吞吐,而且仍可采出较多石油。如果加入表面活性剂和防粘土膨胀剂可降低油水界面张力,使岩石向亲水方向转化,并保护了储层,可进一步提高采收率[3 ] 。 多年实践证明,水质的好坏直接关系到油田的开发效果及整体效益。因此,含油污水的处理至关重要。尽管各油田采出水水质各异,但一般都具有“四高”特点,即含油量高、悬浮物含量高、矿化度高和腐蚀性高。含油污水的“四高”特点和油田注水对 水质的特殊要求,决定了含油污水处理的高难度和高投入。另外在污水处理方面存在一定的难度,这是注水采油一个难以解决的问题。 2 、注气采油法 注气法主要有注二氧化碳、氮气驱、烟道气及混合气等。从技术可行性考虑,一般适用于注气开发的油藏具有以下特点: (1) 储层泥质含量过高,注水开发易引起水敏的油藏; (2) 油层束缚水饱和度高,注水效果不好的油藏; (3) 一般稠油油藏; (4) 裂缝不 发育,不易引起气窜的均质油藏; (5) 薄油层。 2. 1 二氧化碳驱机理 由于二氧化碳在油中的溶解度大,在一定的温度及压力下,当原油与CO2 接触时,原油体积增加,黏度降低。CO2 在原油中的溶解还可以降低界面张力及形成酸性乳化液。CO2 在原油中的溶解度随压力的增加而增加,当压力降低时,饱和了CO2的原油中的CO2 就会溢出,形成溶解气驱[7 ] 。与二氧化碳相关的另一个开采机理是由CO2 形成的自由气饱和度可以部分代替油藏中的残余油。 2. 2 氮气驱机理 利用注氮气采油主要是因为以下几个原因: (1)氮气具有比较好的膨胀性,使其具有良好的驱替、气举和助排等作用,可以保持油气藏流体的压力; (2)氮气可以进入水不能进入的低渗透段,可降低渗透带处于束缚状态的原油驱替成为可流动的原油; (3)氮气被注入油层后,可在油层中形成束缚气饱和度,从而使含水饱和度及水相渗透率降低,在一定程度上提高后续水驱 的波及面积; (4) 氮气不溶于水,微溶于油,能够形成微气泡,与油水形成乳状液,降低原油黏度,提高采收率。 不同油藏可采用不同的注气方式,表1 、表2 列出了几种注气方式的参考标准。

稠油蒸汽吞吐技术

稠油蒸汽吞吐技术

第一节稠油的特性及分类 一、稠油的一般特性 1.稠油中的胶质与沥青质含量高,轻质馏分少。 我国主要稠油油田原油中的胶质与沥青含量在25%-50%之间,而原油 轻质馏分(300℃)一般仅10%左右。 2.稠油对温度的敏感性强。 由粘温曲线可见: 随温度升高,其粘度急剧下降。 这一特性也是进行注蒸汽的原因。 3.稠油中的石蜡含量一般较低。 我国多数稠油油田原油中的石蜡含量仅5%左右,因而凝固点也较低。 4.同一稠油油藏其原油性质在平面、垂向上常有较大差别。 5.稠油中的硫、氧、氮等杂原子的含量高,并含有较多的稀有金属。 二、稠油的分类标准 1.国际重油分类标准 2.我国稠油的分类标准

3.应强调的几点: ①国际上称重油、轻油,适于商业贸易的称谓。 我国称稠油、稀油。适于开采方法的称谓。 ②粘度值是指油藏温度条件下的脱气粘度。 ③原油粘度为主要指标,相对密度为辅助指标。 ④井口取油样时,必须确保油样没有受到化学剂或掺入轻油的污染,并设法含有的水及机械杂质清除干净。 第二节水及水蒸汽的热特性 一、水是最好的注热载体 1.除液态氨外,其余任何液体 的比热(或热容)都比水小。 水的比热是1卡/kg.℃。 2.水的饱和温度随压力的增加 而增加,当压力确定后,饱和 温度只有唯一值。 3.当水的温度低于此压力下的饱和温度,则水是热水; 如果水的温度等于饱和温度,称为饱和水。 当饱和水逐渐被加热,液态水开始沸腾或汽化,称为水与汽两相混合液体,此时的温度并不增加,而吸收的热量用于水的汽化,汽化所需的热能很大,称为汽化潜热。 当将饱和水继续加热达到完全汽化时,此时蒸汽称为饱和蒸汽。 如果继续加热,饱和蒸汽吸收更多的热量后,在固定压力下,蒸汽的温度将升高,超过了饱和温度,此时蒸汽称为过热蒸汽。 二、湿饱和蒸汽的特性 1.干度:

相关主题