搜档网
当前位置:搜档网 › TM解译标志及波段组合

TM解译标志及波段组合

TM解译标志及波段组合

水域

建设用地

耕地

林地

草地

未利用地

TM波段组合

3,2,1

这种RGB组合模拟出一副自然色的图象。有时用于海岸线的研究和烟柱的探测。 4,5,3

用于土壤湿度和植被状况的分析。也很好的用于内陆水体和陆地/水体边界的确定。

2 4,3,

红外假色。在植被、农作物、土地利用和湿地分析的遥感方面,这是最常用的波段组合。

7,4,2

土壤和植被湿度内容分析;内陆水体定位。植被显示为绿色的阴影。 5,4,3 城镇和农村土地利用的区分;陆地/水体边界的确定。

4,5,7

探测云,雪和冰(尤其在高维度地区)。

4,3/4,3 NDVI,标准差植被指数;TM波段4:3的不同比率被证明在增强不同植被类型对比度方面很有用。

实践应用

3,2,1

普通色图象。适宜于浅海探测作图。

4,3,2

红外色图象。提供中等的空间分辨率。在这种组合中,所有的植被都显示为红色。MultiSpec 3-ch. Default。

7,5,4

适宜于湿润地区。提供了最大的空间分辨率。

7,4,2

适宜于温带到干旱地区。提供最大的光谱多样性。

TM影像是指美国陆地卫星4,5号专题制图仪(thematic mapper)所获取的多波段扫描影像。有7个波段,其波谱范围:

TM-1为0.45,0.52微米,为蓝色波段,该波段位于水体衰减系数最小的部位,对水体的穿透力最大,用于判别水深,研究浅海水下地形、水体浑浊度等,进行水系及浅海水域制图。

TM,2为0.52,0.60微米,为绿色波段,该波段位于绿色植物的反射峰附近,对健康茂盛植物反射敏感,可以识别植物类别和评价植物生产力,对水体具有一定的穿透力,可反映水下地形、沙洲、沿岸沙坝等特征。

TM,3为0.63,0.69微米,为红波段,该波段位于叶绿素的主要吸收带,可用于区分植物类型、覆盖度、判断植物生长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、水文等特征均可提供丰富的植物信息;以上为可见光波段。

TM-4为0.76,0.90微米,为近红外波段;为近红外波段,该波段位于植物的高反射区,反映了大量的植物信息,多用于植物的识别、分类,同时它也位于水体的强吸收区,用于勾绘水体边界,识别与水有关的地质构造、地貌等。

TM-5为1.55,1.75微米,为短波红外波段,该波段位于两个水体吸收带之间,对植物和土壤水分含量敏感,从而提高了区分作物的能力,此外,在该波段上雪比云的反射率低,两者易于区分,TM-5 的信息量大,应用率较高。

TM-7为2.08,2.35微米,为中红外波段,波长比 TM-5 大,是专为地质调查追加的波段,该波段对岩石、特定矿物反应敏感,用于区分主要岩石类型、岩石水热蚀变,探测与交代岩石有关的粘土矿物等。

TM-6为10.40,12.50微米,为热红外波段。该波段对地物热量辐射敏感,根据辐射热差异可用于作物与森林区分、水体、岩石等地表特征识别;

TM影像应该是分波段的,TM有7个波段1-3波段为可见光,4、5、7波段为近红外,6波段为远红外,可以分波段进行合成,也可以在erdas里边合成后存储为其它图像格式比如tif,但是没有做过用其它格式分别提取tm各波段值。

影像空间分辨率除热红外波段为120米外,其余均为30米,像幅185×185公里2。每波段像元数达61662个(TM-6为15422个)。一景TM影像总信息量为230兆字节),约相当于MSS影像的7倍。因TM影像具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度,成为20世纪80年代中后期得到世界各国广泛应用的重要的地球资源与环境遥感数据源。能满足有关农、林、水、土、地质、地理、测绘、区域规划、环境监测等专题分析和编制1?10万或更大比例尺专题图,修测中小比例尺地图的要求。

殷守敬=====

1.TM1 0.45-0.52um,蓝波段,对水体穿透强,对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等.

2.TM2 0.52-0.60um,绿波段,对健康茂盛植物的反射敏感,对力的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征.

3.TM3 0.62-0.69UM ,红波段,叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面.

4 .TM4 0.76-0.96UM 近红外波段,对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,水域测量.

5.TM5 1.55-1.75UM,中红外波段,处于水的吸收波段,一般1.4-1.9UM内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力.易于反映云与雪.

6.TM6 1.04-1.25UM热红外波段,可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,

水体岩石,以及监测与人类活动有关的热特征,进行热制图.

7.TM7 2.08-3.35UM,中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用

于区分主要岩石类型,岩石的热蚀度,探测与交代岩石有关的粘土矿物.

Landsat卫星的TM ETM各波段介绍

Landsat卫星的TM/ETM各波段介绍 北京揽宇方圆信息技术有限公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、PLEIADES、高分一号、高分二号、资源三号等世界上最高分辨率卫星影像的代理权,能够为户提供全天候、全覆盖、多分辨率、多尺度的影像产品。整合最丰富的遥感影像数据资源,为用户提供最专业的遥感影像数据服务,北京揽宇方圆致力成为中国遥感影像数据服务第一品牌。 一、波段介绍 1.TM1 0.45-0.52um,蓝波段 对水体穿透强, 该波段位于水体衰减系数最小,散射最弱的部位(0.45—0.55um),对水体的穿透力最大,可获得更多水下信息,用于判断水深,浅海水下地形,水体浑浊度,沿岸水,地表水等; 能够反射浅水水下特征,区分土壤和植被、编制森林类型图、区分人造地物类型,分析土地利用。 对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等。 2.TM2 0.52-0.60um,绿波段 对植物的绿反射敏感该波段位于健康绿色植物的绿色反射率(0.54—-0.55um)附近; 对健康茂盛植物的反射敏感, 主要观测植被在绿波段中的反射峰值,这一波段位于叶绿素的两个吸收带之间,利用这一波段增强鉴别植被的能力 对绿的穿透力强, 探测健康植被绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种,植被类型和评估作物长势 对水体有一定的穿透力,可反映水下特征,水体浑浊度,水下地形,沙洲,沿岸沙地等。. 可区分人造地物类型, 3.TM3 0.62-0.69um ,红波段 对水中悬浮泥沙反映敏感。该波段位于含沙浓度不同的水体辐射峰值(0.58—-0.68um)附近,对水中悬浮泥沙反映敏感。 叶绿素的主要吸收波段, 能增强植被覆盖与无植被覆盖之间的反差,亦能增强同类植被的反差,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率, 测量植物绿色素吸收率,并以此进行植物分类; 此外其信息量大,广泛用于对裸露地表,植被,岩性,地层,构造,地貌等为可见光最佳波段; 可区分人造地物类型 4 .TM4 0.76-0.96UM 近红外波段, 对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量, 处于水体强吸收区,水体轮廓清晰,用于勾勒水体,绘制水体边界、探测水中生物的含量和

不同波段组合说明

Landsat8 ETM+7个不同波段组合说明 Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。 OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段 (band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。 如表1是国外公布的OLI波段合成的简单说明。表2是前人在长期工作中总结的Landsat TM(ETM+)不同波段合成对地物增强的效果。对比表3,可以将表1和表2的组合方案结合使用。 表1:OLI波段合成

741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具 有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形 迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及 火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成 片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山 岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类 4处,C类5处。为该区优选找矿靶区提供遥感依据。 743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。这是因为 TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的 最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色 调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 754 对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成的标准 假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律。 754 陆地卫星图像的标准假彩色指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MSS4图像、 第五波段MSS5图像和第七波段MSS7图像,分别配以兰、绿、红色的彩色合成图像上的彩色。并称此种 合成的图像为陆地卫星标准假彩色图像。在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅 兰色(浅水),冰雪为白色等。 541 XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、 TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。 543 例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。 543 波段选取及主成份分析。我们的研究采用1995年8 月2日的TM数据。对于屏幕显示和屏幕图象分析,选用信息量最为丰富的5、4、3波段组合配以红、绿、兰三种颜色生成假彩色合成图象,这个组合的合成图象不仅类似于自然色,较为符号人们的视觉习惯, 而且由于信息量丰富,能充分显示各种地物影像特征的差别,便于训练场地的选取,可以保证训练场地 的准确性;对于计算机自动识别分类,采用主成分分析(K-L变换)进行数据压缩,形成三个组分的图象 数据,用于自动识别分类。 543 742 该项工作是采用以遥感图像解译为主结合地质、物化探资料进行研究的综合方法。解译为 目视解译,解译的遥感图像有:以1984年3月成像经处理放大为1:5万卫星TM假彩色片(5、4、3波 段合成)和1979年7月拍摄的1:1.6万黑白航片为主要工作片种;采用1986年11月的1:10万TM假 彩色片(7、4、2波段合成》为参考片种。 432 卫星遥感图像示蓝藻暴发情况我们先看一看蓝藻爆发时遥感监测机理。蓝藻暴发时绿色的藻类

遥感影像的波段组合及用途

高光谱遥感数据最佳波段的选择根据自己对具体影像解译的要求进行波段的选择,以提高解译的速度和精度。 若要获得丰富的地质信息和地表环境信息,可以选择TM(7、4、1)波段的组合,TM(7、4、1)波段组合后的影像清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚; 若要获得监测火灾前后变化分析的影像,可以选择TM(7、4、3)波段的组合,它们组合后的影像接近自然彩色,所以可通过TM(7、4、3)彩色合成图的分析来掌握林火蔓延与控制及灾后林木的恢复状况; 若要获得砂石矿遥感调查情况,可以选择TM(5、4、1)波段组合;用TM影像编制洲地芦苇资源图时,宜用TM(3、4、5)波段组合的影像,分辨率最高,信息最丰富;用MSS图像编制土地利用地图,通常采用MSS(4、5、7)波段的合成影像; 若要再区分林、灌、草,则需要选用MSS(5、6、7)波段的组合影像。 遥感影像时相的选择 : 遥感影像的成像季节直接影响专题内容的解译质量。对其时相的选择,既要根据地物本身的属性特征,又要考虑同一地物不同地域间的差异。例如解译农作物的种植面积最好选在8、9月份,因为这时作物成熟了,但还没有收割,方便各种作物的区别;解译海滨地区的芦苇地及其面积宜用5、6月份的影像;解译黄淮海地区盐碱土分布图宜用3、4月份的影像。 高分辨率影像的选择 : 分辨率的选择要符合自己的实际需要,分辨率高对解译速度和精度都有很大帮助。随着科技的不断发展,已经有了15~30m分辨率的ETM/TM影像、2.5~5.0m分辨率的SPORT 影像、2m分辨率的福卫二号、lm分辨率的ORBVIEW一3/IKONOS、0.6m分辨率的QUICK BIRD 等。法国SPOT-5卫星影像分辨率可达到2.5m,并可获得立体像对,进行立体观测。SPOT 一5卫星上的主要遥感设备是2台高分辨率几何成像仪(HRVIR),其工作谱段有4个,主要任务是监测自然资源分布,特别是监测农业、林业和矿产资源,观测植被生长状态与农田含水量等项,对农作物进行估产,了解城市建设与城市土地利用状况等。卫星遥感传感器和遥感数据处理技术发展很快,一些传感器的立体观测,各类遥感数据分辨率的提高,为遥感影像解译标志和遥感影像信息模型的开发、研究提供了有利条件,为快速和精确地进行解译提供了便利。 ETM+遥感不同波段的用途 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色

TM图像简介

TM图像简介 众所周知,美国陆地卫星的主题制图仪TM共有七个波段,而在假彩色合成仪上用三原色合成彩色图像,只能选用其中三个波段。七个波段选用其三,共有35种可能,每个波段并有三种原色可选,这样共有210种合成的可能。如单纯用试验的方法来选择,显然这是一个冗长而又低效的途径。对于具体景物的图像来说,选用波段的一个主要依据是该波段辐射量的方差应尽可能大,因为方差的大小体现了所含信息内容的多少。但是由于景物各波段的辐射特性之间的相关性,用三个方差最大的波段合成的结果并不一定能获得最多的信息。 一、波段特征及其选择: 光学遥感所接收的电磁波辐射源是地物对太阳光的反射和散射,其波长主要分布在可见光、近红外区域。目前使用较多的光学遥感卫星有:美国发射的LANDSAT 的TM 数据分7 个波段,其中6 个波段波长范围为0 .45~2 .35 μm,空间分辨率为30 m,时间分辨率为16 d,其中TM5 对线性构造反映清晰,一个热红外波长范围为10 .4~12 .5 μm,空间分辨率为120 m,在揭示第四纪覆盖区的隐伏断裂及活动性构造方面具有一定优势,可用于地热制图、地质、制图等。多波段的传感器提供了空间环境不同的信息,以下以TM为例:

TM1 0.45-0.52um蓝波段:对叶绿素和夜色素浓度敏感,对水体穿透强,用于区分土壤与植被、落叶林与针叶林、近海水域制图,有助于判别水深及水中叶绿素分布以及水中是否有水华等。 TM2 0.52-0.60um,绿波段:对健康茂盛植物的反射敏感,对力的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征。在所有的波段组合中,TM 波段-2 的分类精度是最高的,达到了 75.6%。从单时相遥感影像的分类来讲,这种分类精度只相当于中等水平。但若从多时相图像的角度来看,这一精度则相当于在采用分类后比较法时,每一景图像的平均分类精度需达到86.9% 的水平②,而这种分类精度,特别是在山区,其实已经是比较好的了。 TM3 0.62-0.69UM ,红波段:叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面。TM4 0.76-0.96UM近红外波段:对无病害植物近红外反射敏感,对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,水域测量,生物量测定及水域判别。 TM51.55-1.75UM中红外波段:对植物含水量和云的不同反射敏感,处于水的吸收波段,一般1.4-1.9UM内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力,

TM的波段介绍

一、波段介绍 1.TM1 0.45-0.52um,蓝波段 对水体穿透强, 该波段位于水体衰减系数最小,散射最弱的部位(0.45—0.55um),对水体的穿透力最大,可获得更多水下信息,用于判断水深,浅海水下地形,水体浑浊度,沿岸水,地表水等; 能够反射浅水水下特征,区分土壤和植被、编制森林类型图、区分人造地物类型,分析土地利用。 对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等。 2.TM2 0.52-0.60um,绿波段 对植物的绿反射敏感该波段位于健康绿色植物的绿色反射率(0.54—-0.55um)附近; 对健康茂盛植物的反射敏感, 主要观测植被在绿波段中的反射峰值,这一波段位于叶绿素的两个吸收带之间,利用这一波段增强鉴别植被的能力 对绿的穿透力强, 探测健康植被绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种,植被类型和评估作物长势 对水体有一定的穿透力,可反映水下特征,水体浑浊度,水下地形,沙洲,沿岸沙地等。. 可区分人造地物类型, 3.TM3 0.62-0.69um ,红波段 对水中悬浮泥沙反映敏感。该波段位于含沙浓度不同的水体辐射峰值(0.58—-0.68um)附近,对水中悬浮泥沙反映敏感。 叶绿素的主要吸收波段, 能增强植被覆盖与无植被覆盖之间的反差,亦能增强同类植被的反差,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率, 测量植物绿色素吸收率,并以此进行植物分类; 此外其信息量大,广泛用于对裸露地表,植被,岩性,地层,构造,地貌等为可见光最佳波段; 可区分人造地物类型 4 .TM4 0.76-0.96UM 近红外波段, 对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量, 处于水体强吸收区,水体轮廓清晰,用于勾勒水体,绘制水体边界、探测水中生物的含量和土壤湿度; 区分土壤湿度及寻找地下水,识别与水有关的地质构造,地貌,土壤,岩石类型等均有利。测量生物量和作物长势,区分植被类型, 用来增强土壤-农作物与陆地-水域之间的反差。 5.TM5 1.55-1.75UM,中红外波段, 该波段位于水的吸收带(1.4—-1.9um)之间,受两个吸收带的影响,反映植物和土壤水分含量敏感。 探测植物含水量和土壤湿度, 区别雪和云: 适合庄稼缺水现象的探测 作物长势分析,从而提高了区分不同作用长势的能力. 6.TM6 1.04-1.25UM热红外波段,

(完整word版)遥感影像的波段组合及用途

遥感影像的波段组合及用途 高光谱遥感数据最佳波段的选择根据自己对具体影像解译的要求进行波段的选择,以提高解译的速度和精度。 若要获得丰富的地质信息和地表环境信息,可以选择TM(7、4、1)波段的组合,TM(7、4、1)波段组合后的影像清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚; 若要获得监测火灾前后变化分析的影像,可以选择TM(7、4、3)波段的组合,它们组合后的影像接近自然彩色,所以可通过TM(7、4、3)彩色合成图的分析来掌握林火蔓延与控制及灾后林木的恢复状况; 若要获得砂石矿遥感调查情况,可以选择TM(5、4、1)波段组合;用TM影像编制洲地芦苇资源图时,宜用TM(3、4、5)波段组合的影像,分辨率最高,信息最丰富;用MSS图像编制土地利用地图,通常采用MSS(4、5、7)波段的合成影像; 若要再区分林、灌、草,则需要选用MSS(5、6、7)波段的组合影像。 遥感影像时相的选择: 遥感影像的成像季节直接影响专题内容的解译质量。对其时相的选择,既要根据地物本身的属性特征,又要考虑同一地物不同地域间的差异。例如解译农作物的种植面积最好选在8、9月份,因为这时作物成熟了,但还没有收割,方便各种作物的区别;解译海滨地区的芦苇地及其面积宜用5、6月份的影像;解译黄淮海地区盐碱土分布图宜用3、4月份的影像。 高分辨率影像的选择: 分辨率的选择要符合自己的实际需要,分辨率高对解译速度和精度都有很大帮助。随着科技的不断发展,已经有了15~30m分辨率的ETM/TM影像、2.5~5.0m分辨率的SPORT影像、2m分辨率的福卫二号、lm分辨率的ORBVIEW一3/IKONOS、0.6m分辨率的QUICK BIRD等。法国SPOT-5卫星影像分辨率可达到2.5m,并可获得立体像对,进行立体观测。SPOT一5卫星上的主要遥感设备是2台高分辨率几何成像仪(HRVIR),其工作谱段有4个,主要任务是监测自然资源分布,特别是监测农业、林业和矿产资源,观测植被生长状态与农田含水量等项,对农作物进行估产,了解城市建设与城市土地利用状况等。卫星遥感传感器和遥感数据处理技术发展很快,一些传感器的立体观测,各类遥感数据分辨率的提高,为遥感影像解译标志和遥感影像信息模型的开发、研究提供了有利条件,为快速和精确地进行解译提供了便利。 ETM+遥感不同波段的用途 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。

Landsat TM、ETM+数据介绍

TM各个波段的特征 B1 为蓝色波段,该波段位于水体衰减系数最小的部位,对水体的穿透力最大,用于判别水深,研究浅海水下地形、水体浑浊度等,进行水系及浅海水域制图; B2 为绿色波段,该波段位于绿色植物的反射峰附近,对健康茂盛植物反射敏感,可以识别植物类别和评价植物生产力,对水体具有一定的穿透力,可反映水下地形、沙洲、沿岸沙坝等特征; B3 为红波段,该波段位于叶绿素的主要吸收带,可用于区分植物类型、覆盖度、判断植物生长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、水文等特征均可提供丰富的植物信息; B4 为近红外波段,该波段位于植物的高反射区,反映了大量的植物信息,多用于植物的识别、分类,同时它也位于水体的强吸收区,用于勾绘水体边界,识别与水有关的地质构造、地貌等; B5 为短波红外波段,该波段位于两个水体吸收带之间,对植物和土壤水分含量敏感,从而提高了区分作物的能力,此外,在该波段上雪比云的反射率低,两者易于区分,B5 的信息量大,应用率较高; B6 为热红外波段,该波段对地物热量辐射敏感,根据辐射热差异可用于作物与森林区分、水体、岩石等地表特征识别; B7 为短波外波段,波长比 B5 大,是专为地质调查追加的波段,该波段对岩石、特定矿物反应敏感,用于区分主要岩石类型、岩石水热蚀变,探测与交代岩石有关的粘土矿物等; B8 为全色波段(Pan),该波段为 Landsat-7 新增波段,它覆盖的光谱范围较广,空间分辨率较其他波段高,因而多用于获取地面的几何特征。 ============================= 波段组合: TM321(RGB):均是可见光波段,合成结果接近自然色彩。对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。一般而言:深水深兰色;浅水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。可用于水库、河口及海岸带研究,但对水陆分界的划分不合适。这种RGB组合模拟出一副自然色的图象。有时用于海岸线的研究和烟柱的探测。 TM453(RGB):2个红外波段、1个红色波段。对内陆湖泊及河流分辨清楚。植被类型及长势可由棕、绿、橙、黄等色调分别。能区分土壤含水量(水分越多则越暗)。用于土壤湿度和植被状况的分析。也很好的用于内陆水体和陆地/水体边界的确定。 TM742(RGB):植被基本都是绿色,城市呈现品红色或紫色,草地淡绿色,森林深绿色(针叶林色调比阔叶林暗)。能区分土壤和植被的含水量。适用于水/陆边界划分、土/植被边界划分,但不适于植被分类。土壤和植被湿度内容分析;内陆水体定位。植被显示为绿色的阴影。 TM432(RGB):标准假彩色。植被呈现各种红色调。深红色/亮红色为阔叶林,浅红色为草地等生物量较小的植被。密集的城市地区为青灰色。最适合用于植被分类。红外假色。在植被、农作物、土地利用和湿地分析的遥感方面,这是最常用的波段组合。

TM遥感影像解译技术手册

TM遥感影像解译技术手册 1、TM遥感影像的数据类型为DAT,我们拿到的一景影像中的原始数据有三个文件,一个是SCENE01文件夹,其中包括TM影像的7个波段,band1到band7,还包括一个header.dat的头文件,共8个数据,另外的两个是LBL和SELF文件,可以用记事本打开,记录这景TM影像的一些基本信息,如时间、经纬度、像元的行列数等。 2、TM影像的打开 我们要打开这些TM影像有两个方法,一是用ERDAS打开,二是用ENVI打开,首先我们用ERDAS打开,因为TM原始数据为二进制DAT数据,首先将band1到band7TM的7个波段通过ERDAS 的import模块将其转成ERDAS可以用的IMG格式文件,首先点击菜单条上的import然后在type(类型)中选择Generic Binary(二进制),在media里选择file,imput里选择我们要选择的TM影像波段,如band1,存出一个路径,点击OK按钮,我们转出的格式为ERDAS 可以打开的IMG格式,只是在现在是单波影像,分为7个单独的文件,不利于我们以后的解译工作,需要将这7个波段组合成一个文件,点击菜单条上的interpreter模块,然后点击Utilities,在弹出的菜单条中选择layer stack,在弹出的窗口中选择需要合成的单波段文件,然后点击add按钮,重复的将需要合成的7个单波段加入到对话框中,在output file中写入文件名和调整输出路径,输出数据类型为unsignde8 bit,波段组合选择union,然后选中Ignore Zero In Stats复选框(统计忽略0值),点击OK按钮,执行波段组合。这样我们就可以从ERDAS

波段组合

M波段组合 2011-03-22 23:00:30| 分类: RS|字号订阅 TM波段选择 321:真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。 432:标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。举例:卫星遥感图像示蓝藻暴发情况我们先看一看蓝藻爆发时遥感监测机理。蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。由于所含高叶绿素A的作用,蓝藻区在LandsatTM2波段具有较高的反射率,在TM3波段反射率略降但仍比湖水高,在TM4波段反射率达到最大。因此,在TM4(红)、3(绿)、2(蓝)假彩色合成图像上,蓝藻区呈绯红色,与周围深蓝色、蓝黑色湖水有明显区别。此外,蓝藻暴发聚集受湖流、风向的影响,呈条带延伸,在TM图像上呈条带状结构和絮状纹理,与周围的湖水面也有明显不同。 741:波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 743:我国利用美国的陆地卫星专题制图仪图像成功地监测了大兴安岭林火及灾后变化。这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 541:XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。 543:波段选取及主成份分析我们的研究采用1995年8月2日的TM数据。对于屏幕显示和屏幕图象分析,选用信息量最为丰富的5、4、3波段组合配以红、绿、兰三种颜色生成假彩色合成图像,这个组合的合成图像不仅类似于自然色,较为符号人们的视觉习惯,而且由于信息量丰富,能充分显示各种地物影像特征的差别,便于训练场地的选取,可以保证训练场地的准确性;对于计算机自动识别分类,采用主成分分析(K-L变换)进行数据压缩,形成三个组分的图像数据,用于自动识别分类。该项工作是采用以遥感图像解译为主结合地质、物化探资料进行研究的综合方法。解译为目视解译,解译的遥感图像有:以1984年3月成像经处理放大为1:5万卫星TM假彩色片(5 、4、3波段合成)和1979年7月拍摄的1:1.6万黑白航片为主要工作片种;采用1986年11月的1:10万TM假彩色片(7、4、2波段合成)为参考片种。 453:本研究遥感信息源是中国科学院卫星遥感地面接收站于1995年10月接收美国MSS卫星遥感TM波段4(红)、波段5(绿)、波段3(蓝)CCT磁带数据制作的1∶10万和1∶5万假彩色合成卫星影像图。图上山地、丘陵、平原台地等喀斯特地貌景观及各类用地影像特征分异清晰。成像时期晚稻接近收获,且稻田中不存积水,因此耕地类型中的水田色调呈粉红色;旱地由于作物大多收获,且土壤水分少而呈灰白色;菜地则由于蔬菜长势好,色调鲜亮并呈猩红色。园地色调呈浅褐色,且地块规则整齐、轮廓清晰。林地中乔木林色调呈深褐色,而分布于喀斯特山地丘陵等地区的灌丛则呈黄到黄褐色。牧草地大多呈黄绿色调。建设用地中的城镇呈蓝色;公路呈线状,色调灰白;铁路呈线条状,色调为浅蓝;机场跑道为蓝色直线,背景草地呈蓝绿色;在建新机场建设场地为白色长方形;备用旧机场为白色色调,外形轮廓清晰、较规则。水库和河流则都呈深蓝色调。采取4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地物的色彩显示规律与常规合成片相似,符合过去常规片的目视判读习惯。 472:在采用TM4、7、2波段假彩色合成和1:4 计算机插值放大技术方面,在制作1:5万TM影像图并成1:5万工程地质图、塌岸发展速率的定量监测以及在单张航片上测算岩(断) 层产状等方面,均有独到之处。 三.类型提取:

高光谱遥感数据最佳波段的选择根据自己对具体影像解译的要求进行波段的选择

543 742 该项工作是采用以遥感图像解译为主结合地质、物化探资料进行研究的综合方法。解译为 目视解译,解译的遥感图像有:以1984年3月成像经处理放大为1:5万卫星TM假彩色 片(5、4、3波段合成)和1979年7月拍摄的1:1.6万黑白航片为主要工作片种;采用1986年11月的1 : 10万TM假彩色片(7、4、2波段合成》为参考片种。 432 卫星遥感图像示蓝藻暴发情况 我们先看一看蓝藻爆发时遥感监测机理。蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。由于所含高叶绿素A的作用,蓝藻区在LandsatTM2 波段具有较高的反射率,在TM3波段反射率略降 但仍比湖水高,在TM4波段反射率达到最大。因此,在TM4 (红)、3 (绿)、2 (蓝)假彩色合成图像上,蓝藻区呈绯红色,与周围深蓝色、蓝黑色湖水有明显区别。此外,蓝藻暴发聚集受湖流、风向的影响,呈条带延伸,在TM图像上呈条带状结构和絮状纹理,与 周围的湖水面也有明显不同。 453 本研究遥感信息源是中国科学院卫星遥感地面接收站于1995年10月接收美国MSS卫星 遥感TM波段4(红卜波段5(绿卜波段3(蓝)CCT磁带数据制作的1 : 10万和1 : 5万假彩色合成卫星影像图。图上山地、丘陵、平原台地等喀斯特地貌景观及各类用地影像特征分异清晰。成像时期晚稻接近收获,且稻田中不存积水,因此耕地类型中的水田色调呈粉红色;旱地由于作物大多收获,且土壤水分少而呈灰白色;菜地则由于蔬菜长势好,色调鲜亮并呈猩红色。园地色调呈浅褐色,且地块规则整齐、轮廓清晰。林地中乔木林色调呈深褐色,而分布于喀斯特山地丘陵等地区的灌丛则呈黄到黄褐色。牧草地大多呈黄绿色调。 建设用地中的城镇呈蓝色;公路呈线状,色调灰白;铁路呈线条状,色调为浅蓝;机场跑道为蓝色直线,背景草地呈蓝绿色;在建新机场建设场地为白色长方形;备用旧机场为白色色调,外形轮廓清晰、较规则。 水库和河流则都呈深蓝色调。 453 采取4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地物的色彩451

TM各波段分析

TM图像波段介绍 一、各波段特征: 1。TM1 0。45-0.52um,蓝波段,对水体穿透强,对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等。 2.TM2 0.52—0.60um,绿波段,对健康茂盛植物的反射敏感,对力的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征。 3。TM3 0。62-0.69UM ,红波段,叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面. 4 。TM4 0.76-0.96UM 近红外波段,对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,水域测量. 5。TM5 1。55-1。75UM,中红外波段,处于水的吸收波段,一般1.4-1.9UM内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力。易于反映云与雪. 6.TM6 1.04—1.25UM热红外波段,可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,进行热制图。 7.TM7 2.08-3.35UM,中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型,岩石的热蚀度,探测与交代岩石有关的粘土矿物。 二.波段组合: 1、TM321(RGB):均是可见光波段,合成结果接近自然色彩.对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形.一般而言:深水深兰色;浅水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。可用于水库、河口

遥感常用波段组合

常用波段组合: (一)321:真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。(二)432:标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。 举例:卫星遥感图像示蓝藻暴发情况 我们先看一看蓝藻爆发时遥感监测机理。蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。由于所含高叶绿素A的作用,蓝藻区在LandsatTM2波段具有较高的反射率,在TM3波段反射率略降但仍比湖水高,在TM4波段反射率达到最大。因此,在TM4(红)、3(绿)、2(蓝)假彩色合成图像上,蓝藻区呈绯红色,与周围深蓝色、蓝黑色湖水有明显区别。此外,蓝藻暴发聚集受湖流、风向的影响,呈条带延伸,在TM图像上呈条带状结构和絮状纹理,与周围的湖水面也有明显不同。 (三)451:信息量最丰富的组合,TM图像的光波信息具有3~4维结构,其物理含义相当于亮度、绿度、热度和湿度。在TM7个波段光谱图像中,一般第5个波段包含的地物信息最丰富。3个可见光波段(即第1、2、3波段)之间,两个中红外波段(即第4、7波段)之间相关性很高,表明这些波段的信息中有相当大的重复性或者冗余性。第4、6波段较特殊,尤其是第4波段与其他波段的相关性得很低,表明这个波段信息有很大的独立性。计算各种组合的熵值的结果表明,由一个可见光波段、一个中红外波段及第4波段组合而成的彩色合成图像一般具有最丰富的地物信息,其中又常以4,5,3或4,5,1波段的组合为最佳。第7波段只是在探测森林火灾、岩矿蚀变带及土壤粘土矿物类型等方面有特殊的作用。最佳波段组合选出后,要想得到最佳彩色合成图像,还必须考虑赋色问题。人眼最敏感的颜色是绿色,其次是红色、蓝色。因此,应将绿色赋予方差最大的波段。按此原则,采取4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地物的色彩显示规律与常规合成片相似,符合过去常规片的目视判读习惯。例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。 (四)741:波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 (五)742:1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处,并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类4处,C类5处。为该区优选找矿靶区提供遥感依据。 (六)743:我国利用美国的陆地卫星专题制图仪图像成功地监测了大兴安岭林火及灾后变化。这是因为TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 (七)754:对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律。

TM不同波段组合及其用途解析

741 741 波段组合图像具有兼容中红外、近红外及可见光波段信息 的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表 环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构 造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石 地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 742 1992 年,完成了桂东南金银矿成矿区遥感地质综合解译,利用 1:10 万 TM7、4、2 假彩色合成片进行解译,共解译出线性构造1615 条,环形影像 481 处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银 A 类成矿远景区 2 处,B 类 4 处,C 类 5 处。为该区优选找矿靶区提供遥感依据。 743我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。这是因为 TM7 波段( 2.08-2.35 微米)对温度变化敏感; TM4、TM3 波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743 彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 754对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星 MSS7, MSS5,MSS4 合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而 可用作分析湖泊水位变化的地理规律。754 陆地卫星图像的标准假彩色指采用陆地卫星 多光谱扫描仪所成的同一图幅的第四波段 MSS4 图像、第五波段 MSS5 图像和第七波段 MSS7 图像,分别配以兰、绿、红色的彩色合成图像上的彩色。并称此种合成的图像为陆 地卫星标准假彩色图像。在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅兰 色(浅水),冰雪为白色等。 541 XX 开发区砂石矿遥感调查是通过对陆地卫星 TM 最佳波段组

TM各波段分析

本页仅作为文档封面,使用时可以删除 This document is for reference only-rar21 year.March

TM图像波段介绍 一、各波段特征: 蓝波段,对水体穿透强,对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等. 绿波段,对健康茂盛植物的反射敏感,对力的穿透力强,用于探测健康植物绿色反射率,按绿稣反射评价植物的生活状况,区分林型,树种和反映水下特征. ,红波段,叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息疑大多为可见光最佳波段,广泛用于地貌,岩性,上壤,植被,水中泥沙等方面. 4 .TM4近红外波段,对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,水域测量. 中红外波段,处于水的吸收波段,一般内反映含水量,用于土壤湿度植物含水屋调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力•易于反映云与雪. 热红外波段,可以根拯辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,进行热制图. 中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型, 岩石的热蚀度,探测与交代岩石有关的粘上矿物.

二.波段组合: 1> TM321 (RGB):均是可见光波段,合成结果接近自然色彩。对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。一般而言:深水深兰色:浅水浅兰色;水体悬浮物是絮状影象:健康植被绿色:上壤棕色或褐色。可用于水库、河口及海岸带研究,但对水陆分界的划分不合适。这种RGB组合模拟出一副自然色的图象。有时用于海岸线的研究和烟柱的探测。 2、TM453 (RGB) : 2个红外波段、1个红色波段。对内陆湖泊及河流分辨淸楚。植被类型及长势可由棕、绿、橙、黄等色调分别。能区分丄壤含水量(水分越多则越暗)。用于土壤湿度和植被状况的分析。也很好的用于内陆水体和陆地/水体边界的确怎。 (水体对B4近红外波段有较强吸收作用) 3、TM742 (RGB):植被基本都是绿色,城市呈现品红色或紫色,草地淡绿色,森林深緑色(针叶林色调比阔叶林暗)。能区分土壤和植被的含水量。适用于水/陆边界划分、土/ 植被边界划分,但不适于植被分类。上壤和植被湿度内容分析:内陆水体泄位。植被显示为绿色的阴影。(叶绿素对B4近红外波段反射较强) 4、TM432 (RGB):标准假彩色。植被呈现各种红色调。深红色/亮红色为阔叶林,注红色为草地等生物量较小的植被。密集的城币地区为青灰色。最适合用于植被分类。红外假色。在植被、农作物、丄地利用和湿地分析的遥感方而,这是最常用的波段组合。 5、TMS43 (RGB):城镇和农村土地利用的区分;陆地/水体边界的确定。 6、TM457 (RGB):探测云,雪和冰(尤其在髙维度地区)。 二、波段融合及专题应用:

土地资源TM影像目视解译标志的建立

土地资源TM影像目视解译标志的建立 (一) 解译标志的概念 解译标志是地物在影像上的表现形式(或称样子、模式),是目视解译、判读的基础,根据建立的解译标志,对图像上的各种特征进行分析、比较、推理 [2]和判断,可以提取用户所需专题信息。地物特征有光谱特征、空间特性和时间特征。地物的这些特征在图像上以灰度变化的形式表现出来,因此图像灰度 [6.24]是以上三者的函数。即 d = f{?λ,(X,Y,Z), ?τ} 不同的地物,这些特征不同,在图像上的表现形式也不同。由于地物所处周围自然环境复杂,在判读地物的性质或一些自然现象时,有必要融合判读者的经验(对地理环境的认识和分析能力)和必要的各种资料(如专题统计资料、专题图件,不同分辨率、不同比例尺的遥感影像资料等)。 (二) 解译标志的建立 1、土地资源分类 根据土地资源的利用属性和经营特点、利用方式和覆盖特征,建立土地资源 [11]的分类系统。具体内容如下: 1、耕地:11、水田:111、山地水田,11 2、丘陵水田,112、平原水田。 12、旱地:121、山区旱地,122、丘陵旱地,123、平原旱地。 1 2、林地:21、有林地,22、灌木林地,23疏林地,24、其它林地。 3、草地:31、高覆盖草地,32、中覆盖草地,33、低覆盖草地。 4、水域:41、河渠,42、湖泊,43、水库,44、冰川永久积雪,4 5、 海涂,46、滩地。

5、城乡工矿建设用地:51、城镇用地,52、农村用地,53、工交建设用地。 6、未利用土地:61、沙地,62、戈壁,63、盐碱地,64、沼泽地, 65、裸土地,66、裸岩石砾地, 67、寒漠、苔原等。 1、建立TM影像目视解译标志 在土地资源分类的基础上,建立土地利用类型的解译标志,并建成主要土地资源TM数字影像目视解译信息表(见表一)。 2.1 耕地解译标志 ll、水田:占本区极少部分,主要分布在热量及水分条件较好的陕南和陇南亚热带气候区及宁夏银川平原。 lll、山地水田:主要在陕西南部及陇南山区水分条件较好的山坡。片状或条带状分布。插秧不久为灰青色或暗红色。生长旺季为粉红色,长势越好颜色越红,收割后灰色或黑色。长势最盛时与周围草地和林地的区别是水田影像平滑均一,色泽一致。 l12、丘陵水田:主要分布在陕西及陇南低山丘陵区水分条件较好的坡地 2 和沟谷底部,在河谷大多分布在河流两岸。呈片状或条带状分布。插秧不久为灰青色或暗红色。生长旺季为粉红色,收割后青灰色或黑色。 l13、平地水田:主要分布在陕西汉中平原、宁夏银川平原,陇南宽阔河谷、关中平原及陕北河谷地有零星分布。呈面状、片‘状或带状分布,有沟渠依稀可见。插秧不久为灰青色或暗红色。生长旺季为粉红色,收割后灰色或黑色。 12、旱地:为本地主要耕地类型。 121、山地旱地:主要分布在四省区的山区坡地,呈片状或条带状分布,有明显的边界存在,纹理均一。庄稼未长起之前为灰色、青色、黄色,有庄稼时为粉红色到红色,长势越好颜色越红。

Landsat TM 组合

Landsat TM 波段组合 3,2,1 这种RGB组合模拟出一副自然色的图象。有时用于海岸线的研究和烟柱的探测。 4,5,3 用于土壤湿度和植被状况的分析。也很好的用于内陆水体和陆地/水体边界的确定。 4,3,2 红外假色。在植被、农作物、土地利用和湿地分析的遥感方面,这是最常用的波段组合。7,4,2 土壤和植被湿度内容分析;内陆水体定位。植被显示为绿色的阴影。 5,4,3 城镇和农村土地利用的区分;陆地/水体边界的确定。 4,5,7 探测云,雪和冰(尤其在高维度地区)。 4-3/4+3 NDVI-标准差植被指数;TM波段4:3的不同比率被证明在增强不同植被类型对比度方面很有用。 实践应用 3,2,1 普通色图象。适宜于浅海探测作图。 4,3,2 红外色图象。提供中等的空间分辨率。在这种组合中,所有的植被都显示为红色。MultiSpec 3-ch. Default。 7,5,4 适宜于湿润地区。提供了最大的空间分辨率。 7,4,2 适宜于温带到干旱地区。提供最大的光谱多样性。 321:真彩色合成,即3、2、1波段分别赋予红、绿、蓝色,则获得自然彩色合成图像,图像的色彩与原地区或景物的实际色彩一致,适合于非遥感应用专业人员使用。432:标准假彩色合成,即4、3、2波段分别赋予红、绿、蓝色,获得图像植被成红色,由于突出表现了植被的特征,应用十分的广泛,而被称为标准假彩色。 举例:卫星遥感图像示蓝藻暴发情况 我们先看一看蓝藻爆发时遥感监测机理。蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。由于所含高叶绿素A的作用,蓝藻区在LandsatTM2波段具有较高的反射率,在TM3波段反射率略

相关主题