搜档网
当前位置:搜档网 › 粘弹性阻尼器教程文件

粘弹性阻尼器教程文件

粘弹性阻尼器教程文件
粘弹性阻尼器教程文件

金属耗能阻尼器

U型钢板、钢棒、环型、双圆型、x型和三角型。

摩擦阻尼器

是一种位移相关型阻尼器。

粘弹性阻尼器

是一种速度相关型阻尼器,

粘滞阻尼器

TMD TLD

3目前研究开发的阻尼器种类很多,归纳起来主要有:(1)金属阻尼器;(2)

摩擦阻尼器;(3)粘滞阻尼器;(4)粘弹性阻尼器;(5)复合型阻尼器。

(1)金属阻尼器

由于金属材料在弹塑性范围以后具有较好的滞回性能,因而被用来制造各种类型的耗能装置。常用的有:软钢阻尼器、铅阻尼器和形状记忆金属阻尼器。

软钢阻尼器[22-25]是充分利用软钢具有良好的屈服后性能,进入塑性阶段后具

有良好的滞回特性。1972年Kelly首先进行金属阻尼器的研究和实验的;1991年

Wittaker等人和1992年Tsai等人分别研究了X型软钢阻尼器(XADAS)和三角

形软钢阻尼器(TADAS)的减震特性。目前这两种阻尼器是国内外研究较多的软

钢阻尼器。由于软钢阻尼器具有滞回特性稳定,低疲劳性能好,对环境和温度的

适应性强和长期性能稳定等优点,因此引起了国内外学者的广泛关注,并已在一

些建筑物上开始应用。软钢阻尼器的缺点是:可恢复性差,其滞回耗能性能受其

形状的影响较为显著,如形状制作不合适,会引起滞回环的畸变。

铅阻尼器[24]是充分利用铅具有密度大、熔点低、塑性高、强度低、润滑能力

强等特点,同时由于铅具有较高的延性和柔性,故在变形过程中可以吸收大量的

能量,并且具有较强的变形跟踪能力。同时,通过动态回复和再结晶过程,其组

织和性能还可恢复至变形前的状态,因此铅阻尼器具有以下优点:①使用寿命不

受限制;②提供的阻尼力可靠;③对位移变化敏感;④构造简单,工作中不需维

护。但它具有恢复性差和对环境造成污染等缺点。目前研制开发出的阻尼器类型粘弹性阻尼器减震性能研究与优化分析

4

主要有:铅挤压阻尼器、铅剪切阻尼器、铅节点阻尼器、异型嵌阻尼器等。

形状记忆合金(SMA)[26]是一种兼有感知和驱动功能的新型材料,它与传统

材料的区别是具有高阻尼和大变形超弹性特性,能够重复屈服而不产生永久变形,

因而具有很好的耗能能力。目前,主要的记忆合金为Ni-Ti合金、Cu基合金和Fe

基合金等。90年代初,一些学者对形状记忆合金阻尼结构的地震反应进行了研究。

美国国家地震工程研究中心对装有铜锌铝记忆合金装置的5层钢框架模型进行了

试验研究。

(2)摩擦阻尼器

摩擦阻尼器[26-28]的研究始于70年代末。目前,研究开发的摩擦阻尼器主要

有:Pall摩擦阻尼器、Sunitome摩擦阻尼器、摩擦剪切铰阻尼器、滑移型长孔螺

栓节点阻尼器。这些摩擦阻尼器都具有较好的库仑特性,摩擦耗能明显,可提供

较大的附加阻尼。荷载大小和频率对其性能的影响不大,且构造简单,取材容易,

造价低廉,因而具有很好的应用前景。摩擦阻尼器的缺点是两种材料在恒定的正

压力作用下,保持长期的静接触,会产生冷粘结或冷凝固,所期望的摩擦系数发

生改变。在地震作用时,滑动面产生滑动而使摩擦装置产生退化,地震后会产生

永久偏位,需要进行维修和保护。目前国内外对摩擦阻尼器及装有摩擦阻尼器的

结构体系的试验研究和分析较多,已建立了一套专用的设计方法并编制了专用的

摩擦阻尼器减震支撑框架分析程序(FDBFAP),用来分析和设计摩擦减震支撑框

架。

(3)粘滞阻尼器

粘滞阻尼器[29-31]一般是由缸体、活塞和流体组成。活塞在缸体内可作往复运

动,活塞上有适量小孔,筒内盛满流体,当活塞和筒体间产生相对运动时,流体

从活塞上的小孔内通过,产生流体阻尼力,从而耗散运动能量,减小结构的反应。

活塞上孔的数量和筒内流体的体积,可根据阻尼器所需提供的阻尼值来确定,流

体可为硅油或其它粘性液体。粘滞阻尼器能提供较大的阻尼,有效地减小结构的

振动,同时阻尼器产生的阻尼力与结构的位移反应和柱中弯矩异相,因此该阻尼

器在减小结构层间位移和剪力的同时,不会在柱中产生与柱弯矩相同的轴力。此

外,粘滞阻尼器受激励频率和温度的影响较小,但粘滞阻尼器的加工制作较难,

粘滞流体易发生渗漏。

粘滞阻尼器早就广泛地应用于军事、航天、船舶、设备和管网的减震中,最

近几年才应用于土木工程,在意大利那不勒斯市的一座钢结构中,粘滞阻尼器连

接在楼板和柱之间。使用有限元程序SAP对该结构有无阻尼器的两种工况下的频

率和振型进行了计算,分析结果证明,整个结构的动力反应大幅度地减少。

(4)粘弹性阻尼器

粘弹性阻尼器主要是依靠粘弹性阻尼材料的剪切滞回耗能特性来增加结构的阻尼,减小结构的动力反应。最早的粘弹性阻尼器是美国3M公司Mahmood研制开发的。它由两处T型钢板夹一块矩形钢板组成,T型约束钢板与中间钢板间夹有一层粘弹性材料,可以在变形时吸收能量。

(5)复合型阻尼器

复合型阻尼器[32-33]是由两种或两种以上的耗能元件组合而成的新型耗能减

震装置。目前已研制开发的复合阻尼器有:铅粘弹性阻尼器、铅橡胶阻尼器、流

体粘弹性阻尼器、软钢磨擦耗能器等。

耗能减震技术的研究、应用与发展

一、结构振动控制的概念及分类

传统的抗震设计是通过增强结构本身的抗震性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,中震可修,大震不倒。而这种抗震

方式缺乏自我调节能力,在不确定的地震作用下,很可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大,这样既给建筑布置带来一定的困难,在经济上又要增加相当多的投资。近年来,在土木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构共同承受地震作用,以调谐和减轻结构的地震反应。

结构振动控制可分为被动控制、主动控制、半主动控制和混合控制。

被动控制——无外加能源的控制,其控制力是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸能减震技术。

主动控制——有外加能源的控制,其控制力是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作动器三部分组成。主动控制是将现代控制理论和自动控制技术应用于结构抗震的高新技术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质量阻尼系统(AMD)等。主动控制研究较多的国家是美国、日本和中国,我国自80年代末期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验大楼和Kankyu Chaya mechi大楼。

半主动控制——有少量外加能源的控制,其控制力虽也由控制装置自身的运动而被动的

产生,但在控制过程中控制装置可以利用外加能源主动调整自身的参数,从而起到调节控制力的作用。现有的半主动控制技术包括:半主动隔震装置、半主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。

混合控制——在结构上同时应用被动控制和主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装置的长处,克服它们的弱点,以获得更好的控制效果。目前提出的混合控制方法主要有:同时采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和耗能减震相结合的混合控制系统。世界上第一个安装混合控制系统的建筑是位于日本东京的清水公司技术研究所。

在这四种控制技术中,主动控制的效果最好,但由于建筑结构体形巨大导致所需的外加

建筑用液体粘滞阻尼器设计方法简介

1.阻尼器应用的设计目标和理念 传统建筑,无论木结构,钢筋混凝土,钢结构已经有上百年的抗风,抗震历史,为什么提出在这些建筑中添加阻尼器?精简总结,有以下几点原因: ●对于一些使用要求较高的建筑结构(超高层,大跨结构等),地震,抗风形成动力难题,需 要更合理的解决办法; ●对比其他传统方案,减少结构受力体系的造价; ●科学不断发展,开辟了解决结构工程问题的新思路;可以使结构最大限度的保持在弹性范围 内工作,为结构提升安全保障。 以某抗震加固工程为例,我们对剪力墙(传统方案)和液体粘滞阻尼器两个方案从理念和计算结果作了如下对比如下表: 我国现行抗震设计规范中已经开始有了关于消能减震的有关规定。结合国内外有关阻尼器应用发展情况和我们的应用体会,我们再谈一下在建筑上使用阻尼器的目标和理念。简单的说,我们安置阻尼器可以有以下几个目的。 A 增加抗震、抗风能力 原设计可能已经可以满足所有规范规定的抗震抗风要求,加上液体粘滞阻阻尼器,在振动过程中起到耗能和增加结构阻尼的作用,从而降低结构反应的基底剪力,减少整个结构的受力,也就可以大大提高结构的抗地震能力。同时,只要阻尼器安装的合适,设置到不同的需要方向,还可以预防和减少原设计没有考虑,或考虑不足的振动受力。 对特别重要的结构,高发地震区,花钱不多,设置这一第二防线是很值得的。对于非严重地震区,也可以用阻尼器达到抗风和增加抗震能力的目的。 B.用阻尼器去防范罕遇大地震或大风 按小震不坏大振不倒的原则,我们可以用常规的设计办法使设计满足多遇地震的抗震要求。对于罕遇的大地震可能显得不足、不理想或不经济。用结构的被动保护系统-特别是阻尼器来等待和解决这罕遇大地震的问题,不仅新建结构建议采用这一设计理念,原设计未设防抗震或设防不足的结构加固工程也很适于。 这一理念会带来经济实用和可靠的结果,设计的好,可以为工程节省费用。国外抗震先进国家大都采用这一理念。在所有可能发生地震的地区,我们主要想提出推广的这一设计理念。 国外有的工程,在结构的小振设计中也充分利用施加了阻尼器的优越。他们大胆的用加阻尼器后的修正反应谱作结构的设计。

高分子材料的高弹性和粘弹性

第二节高分子材料的高弹性和粘弹性 本章第二、三节介绍高分子材料力学性能。力学性能分强度与形变两大块,强度指材料抵抗破坏的能力,如屈服强度、拉伸或压缩强度、抗冲击强度、弯曲强度等;形变指在平衡外力或外力矩作用下,材料形状或体积发生的变化。对于高分子材料而言,形变可按性质分为弹性形变、粘性形变、粘弹性形变来研究,其中弹性形变中包括普通弹性形变和高弹性形变两部分。 高弹性和粘弹性是高分子材料最具特色的性质。迄今为止,所有材料中只有高分子材料具有高弹性。处于高弹态的橡胶类材料在小外力下就能发生100-1000%的大变形,而且形变可逆,这种宝贵性质使橡胶材料成为国防和民用工业的重要战略物资。高弹性源自于柔性大分子链因单键内旋转引起的构象熵的改变,又称熵弹性。粘弹性是指高分子材料同时既具有弹性固体特性,又具有粘性流体特性,粘弹性结合产生了许多有趣的力学松弛现象,如应力松弛、蠕变、滞后损耗等行为。这些现象反映高分子运动的特点,既是研究材料结构、性能关系的关键问题,又对正确而有效地加工、使用聚合物材料有重要指导意义。 一、高弹形变的特点及理论分析 (一)高弹形变的一般特点 与金属材料、无机非金属材料的形变相比,高分子材料的典型高

弹形变有以下几方面特点。 1、小应力作用下弹性形变很大,如拉应力作用下很容易伸长100%~1000%(对比普通金属弹性体的弹性形变不超过1%);弹性模量低,约10-1~10MPa(对比金属弹性模量,约104~105MPa)。 2、升温时,高弹形变的弹性模量与温度成正比,即温度升高,弹性应力也随之升高,而普通弹性体的弹性模量随温度升高而下降。 3、绝热拉伸(快速拉伸)时,材料会放热而使自身温度升高,金属材料则相反。 4、高弹形变有力学松弛现象,而金属弹性体几乎无松弛现象。 高弹形变的这些特点源自于发生高弹性形变的分子机理与普弹形变的分子机理有本质的不同。 (二)平衡态高弹形变的热力学分析 取原长为l0的轻度交联橡胶试样,恒温条件下施以定力f,缓慢拉伸至l0+ d l 。所谓缓慢拉伸指的是拉伸过程中,橡胶试样始终具有热力学平衡构象,形变为可逆形变,也称平衡态形变。 按照热力学第一定律,拉伸过程中体系内能的变化d U为: dU- = dQ dW (4-13) 式中d Q为体系吸收的热量,对恒温可逆过程,根据热力学第二定律有, dQ= TdS (4-14)

宽温域高阻尼粘弹性材料

宽温域、粘弹性、高阻尼防护材料 为了满足飞机、舰船等装备减振降噪、密封防腐蚀的实际需求,我们研制了一种新颖的宽温域、高阻尼、粘弹性防护材料。其特征是:宽温域、多功能、系列化。因而具有非常广泛的应用前景。 一. 震动、噪音的危害 在恶劣的工作环境中,震动、噪声、腐蚀介质等环境因素对装备造成损伤现象不仅非常普遍,而且有的还相当严重。 振动和噪声的危害:①振动和噪声不仅干扰武器装备导航、攻击系统的正常工作,还会极大地降低装备的隐身性能,其危害极其严重。例如,振动和噪声能降低潜艇的隐身性能,容易被敌方的声纳设备监控而遭受攻击。②振动和噪声能加速装备机械构件的疲劳损伤、腐蚀-疲劳损伤,从而缩短使用寿命。③振动和噪声能影响机械加工的精度和产品的质量。④振动和噪声能干扰人们的安宁、舒适的生活环境和工作环境。 腐蚀介质的危害表现在二个方面:一是引起装备的金属物件发生腐蚀损伤,二是引起非金属物件发生老化损伤。它严重地影响装备使用的可靠性、安全性及使用寿命。 因此,开展阻尼-防护新产品、新技术研究,不仅是具有重大的军事意义,而且还具有重要的社会意义。 二、减振降噪技木的分类 目前实用的减振降噪技术,主要有三种阻尼结构涂层形式:自由阻尼结构涂层、约束阻尼结构涂层、复合阻尼-隔声结构涂层。 ⑴自由阻尼结构涂层 自由阻尼结构涂层,就是在基材上涂敷一层粘弹性阻尼材料形成外部呈自由状态的阻尼层。当基材弯曲振动时,通过阻尼层材料的拉压变形将振动能量变成热能而消耗掉,达到减振降噪的目的。自由阻尼结构理论是由德国的Oberst于1956年提出的。实施方法简便,经济。 ⑵约束阻尼结构涂层 约束阻尼结构涂层,就是除了在基材板上涂敷一层粘弹性材料形成阻尼层之外,还要在其上再涂敷一层高模量的材料形成约束层。当基材弯曲振动时,通过阻尼材料的剪切变形将振动能量变成热能而消耗掉,达到减振降噪的目的。在约束阻尼结构中,约束层不得与基板相联接。 约束阻尼结构理论是由kerwin于1959年提出来的。约束阻尼结构涂层的阻尼效果比自由阻尼结构涂层好。 其缺点是:与自由阻尼结构涂层相比较,由于增加了一层约束层,因此,实施工艺复杂,用料多,重量重,成本高,施工周期长。 ⑶复合阻尼-隔声结构涂层

浅谈阻尼器的类型和原理分析

广州大学 研究生文献综述论文题目浅谈阻尼器的类型 学院土木工程学院 班级名称2016级专硕一班 学号2111616149 学生姓名陆富龙 2016 年12 月18 日

关于阻尼器的类型总结 摘要:随着抗震在结构中的重要性越来越重要,高强轻质材料的采用,高层、超高层等高柔结构及特大跨度桥梁不断涌现,相关的研究也越来越多,从结构抗震到结构的减震再到结构的隔振,各种的理念层出不穷,然在抗震中,现在比较方便和比较常用的就是在建筑结构上加入阻尼器,用以吸收地震或风震产生的能量,以提高结构的抗震性能,随着科技的发展,各种阻尼器不断的更新创新,运用各种的原理来优化阻尼器,对于形式多样、要求各异的工程结构,如何在推广应用消能技术时,选择适合的阻尼器类型并进行阻尼器的合理优化设计将关系到这一技术的发展前景,具有重要的现实意义,值得进一步探讨研究。 关键词:阻尼器,类型,适用 Abstract:with the earthquake is becoming more and more important in the importance of the structure, high-strength lightweight material used, high-rise structure and extra long-span Bridges and super-tall soft, related research also more and more, from the structure seismic to structure of shock absorption and vibration isolation of the structure, various LiNianCeng out one after another, but in the earthquake, is now more convenient and more commonly used in building structures with dampers, earthquake or wind to absorb energy, to improve the seismic performance of structure, with the development of science and technology, the updating and innovation of various dampers, use all kinds of the principle to optimize damper, for a variety of forms and requirements of different engineering structure, how to promote application of energy dissipation technology, select the appropriate type of damper and the optimization of damper design will be related to the development prospects of this technology, has important practical significance and worthy of further research are discussed. Keywords:damper,type,apply

ANSYS粘弹性材料Prony总结

ANSYS 粘弹性材料 1.1 ANSYS 中表征粘弹性属性问题 粘弹性材料的应力响应包括弹性部分和粘性部分,在载荷作用下弹性部分是即时响应的,而粘性部分需要经过一段时间才能表现出来。一般的,应力函数是由积分形式给出的,在小应变理论下,各向同性的粘弹性本构方程可以写成如下形式: () ()0 02t t de d G t d I K t d d d σττττττ ?=-+-?? (1) 其中 σ=Cauchy 应力 ()G t =为剪切松弛核函数 ()K t =为体积松弛核函数 e =为应变偏量部分(剪切变形) ?=为应变体积部分(体积变形) t =当前时间 τ=过去时间 I =为单位张量。 该式是根据松弛条件本构方程(1),通过将一点的应变分解为应变球张量(体积变形)和应变斜张量(剪切变形)两部分,推导而得的。这里不再敖述,可参考相关文献等。 ANSYS 中描述粘弹性积分核函数()G t 和()K t 参数表示方式主要有两种,一种是广义Maxwell 单元(VISCO88 和 VISCO89)所采用的Maxwell 形式,一种是结构单元所采用的Prony 级数形式。实际上,这两种表示方式是一致的,只是具体数学表达式有一点点不同。 1.2 Prony 级数形式 用Prony 级数表示粘弹性属性的基本形式为: ()1exp G n i G i i t G t G G τ∞=?? =+- ??? ∑ (2) ()1exp K n i K i i t K t K K τ∞=?? =+- ??? ∑ (3) 其中,G ∞和i G 是剪切模量,K ∞和i K 是体积模量,G i τ和K i τ是各Prony 级数分量的松弛时间(Relative time)。再定义下面相对模量(Relative modulus) 0G i i G G α= (4) 0K i i K K α= (5) 其中,0G ,0K 分别为粘弹性材质的瞬态模量,并定义式如下:

粘弹性

粘弹性功能梯度有限元法 摘要:有效离散的问题域的能力,使一个有吸引力的仿真技术的有限元方法造型复杂的边界值问题,如沥青混凝土路面材料非均匀性。专门―分级元素‖已被证明是提供高效,准确的功能梯度材料的模拟工具。以前的研究一直局限于功能梯度材料数值模拟弹性材料的行为。因此,当前的工作重点是对功能梯度材料的粘弹性材料有限元分析。在执行分析,使用弹性-粘弹性对应原理,和粘弹性材料的级配占内的元素广义ISO参数化配方。本文强调粘弹性沥青混凝土路面和几个例子的行为,包括核查问题领域的大规模应用,提交证明本办法的特点。DOI: 10.1061/_ASCE_MT.1943-5533.0000006 CE数据库标题:粘弹性;沥青路面混凝土路面;有限元方法。 关键词:粘弹性功能梯度材料,沥青路面,有限元法;通信原则。 概况 功能梯度材料(FGMs_)的特点是空间创建非均匀分布的各种微观结构巩固阶段将具有不同属性的大小和形状、,以及,通过转乘的加固作用和连续的方式(Suresh 和莫滕森基质材料)。他们通常被设计成产生财产渐变旨在优化下不同类型的结构响应加载条件(thermal,机械、电气、光学、etc)。(Cavalcante et al.2007)。这些属性渐变是在生产几种方法,例如通过循序渐进的含量变化相对于另metallic),采用热的一个阶段ceramic障涂层,或通过使用数量足够多具有不同的属性(Miyamoto et al 的构成阶段。1999_可以根据定制设计器粘弹性FGMs (VFGMs)符合设计要求等作用下粘弹性柱轴向和热加载(Hilton 2005)。最近,Muliana(2009_)提出了黏弹性细观力学模型FGMs 的行为。除了设计或量身定制的功能梯度材料,几个土木工程材料的自然表现出梯度材料的性能。席尔瓦等人。(2006)已研究和仿真竹子,这是一个自然发生的梯度材料。除了自然发生,各种材料和结构呈现非均质物质的分布和构成属性层次生产或建设的做法,老龄化的结果,不同金额暴露恶化代理商,等沥青混凝土路面是一个这样的例子,即老龄化和温度变化产量连续分级的非齐次构性质。老化和温度引起的财产梯度已经有据可查的一些研究人员沥青路面1995年_garrick领域;米尔扎和witczak的1996年,2006年apeagyei; chiasson等。2008_。目前沥青路面粘弹性模拟状态限于要么忽视非均质财产梯度2002年_kim和buttlar;萨阿德等。2006年,2006年BAEK和AL-卡迪;戴夫等。,2007_或者他们考虑通过分层的方法,例如,在美国的关联模型国家公路和运输官员_aashto_机械经验路面设计指南_mepdg_ _araINC。,EC。2002_。精度从使用的重大损失沥青路面层状弹性分析方法有被证明_buttlar等。2006_。广泛的研究已经进行了高效,准确地模拟功能梯度材料。例如,cavalcante等人。_2007_,张和保利诺_2007_,arciniega雷迪_2007_,歌曲和保利诺_2006_都报道功能梯度材料的有限元模拟。然而,大多数的以前的研究一直局限于弹性材料行为。一各种土木工程材料,如聚合物,沥青混凝土,水泥混凝土等,表现出显著的速率和历史影响。这些类型的材料的精确模拟必须使用粘弹性本构模型。1postdoctoral副研究员,DEPT。土木与环境工程大学。伊利诺伊大学厄巴纳- 香槟分校,分校,IL 61801_corresponding author_。工程,系2donald BIGGAR威利特教授。公民权利和环境工程,大学。在厄巴纳香槟分校,伊利诺伊州,IL 61801。3professor和narbey哈恰图良的教师学者,部。民间 与环境工程,大学。位于Urbana-Champaign的伊利诺斯州,分校,IL 61801。 注意:这个手稿于2009年4月17日完成,2009年10月15日提交了批准,2010年2月5日在线发表。直到2011年6月1日,讨论期间打开,必须提交单独讨论个别文件。本文是在民事部分的材料杂志 工程,第一卷。23,没有。1,2011年1月1日起,。ASCE,ISSN 0899-1561 /2011/1-39-48 / $ 25.00。土木工程材料杂志?ASCE / 2011年1月/ 39到2012年,下载03 61.178.77.85。再分配受ASCE许可证或版权。访问https://www.sodocs.net/doc/4714525706.html,当前工作提出有限元_fe_的制定专为粘弹性功能梯度材料的分析,特别是沥青混凝土。Paulino和金_2001_探索elasticviscoelastic对应范围内的原则_cp_功能梯度材料。在目前已使用制定基于CP-结合广义的ISO参数制定的研究_gif_金保利诺_2002_。本文提出了有限元的制定,验证,和沥青的详情路面模拟的例子。除了模拟沥青人行道,目前的做法也可以被用于其他工程系统表现出梯度的粘弹性分析行为。这种系统的例子包括金属和在高温_billotte等金属复合材料。二零零六年; koric和托马斯的2008_;聚合物和塑料的系统,经过氧化和/或紫外线硬化_hollaender等。1995年海尔等。1997_和分级纤维增强水泥混凝土结构。分级粘弹性的其他应用领域分析包括精确的模拟接口层之间的接口,如粘弹性材料之间不同的沥青混凝土升降机或模拟的

粘弹性阻尼减振的基本概念

第一章粘弹性阻尼减振的基本概念 1.1振动控制和阻尼的概念 1.1.1振动与噪声的危害 振动是一种普遍的物理现象,我们这里讨论涉及到的震动问题主要是机械结构的振动及由此产生的物理现象。 大多数情况下,机械振动会造成严重危害,必须采用各种有效的方法加以控制,振动与噪声的危害主要包括: 1)振动造成机械结构的损坏,破坏工作条件。如建筑物在地震中受到随机 激励后,其强度承受不了共振响应造成损坏。 2)振动降低机器、仪器或工具的精度。如运载工具(火箭等)的命中精度 和控制装置如仪器、计算的抗振能力直接有关。 3)振动引起噪声,严重污染环境。如一些大型的振动设备工作过程中会产 生严重的噪声污染。 4)振动增加机械磨损,降低及其寿命。如在常高在低不平的路面上行驶, 汽车的寿命会严重减少。 1.1.2振动与噪声控制的主要方法 振动控制的工程含义有两层:振动利用和振动抑制。前者指利用系统的振动以实现某种工程目的;后者则指抑制系统的振动以保证系统正常工作,延长其使用寿命,本文主要讨论的是后面一个问题。 振动控制的方法很多,就机械产品设计和结构改进的角度上作分析和研究,振动和噪声控制主要是从消除振源或噪声源;隔离振源(及声源)与受影响机构间的传递和联系;以及减少结构本身响应这三个方面采取措施。 1)消除振动源或噪声源。 2)隔离振源(或声源)与受影响机构(或环境)之间的联系及能量传输。 3)结构的抗振及抗噪设计。 1.2阻尼减振降噪技术的定义以及工程应用实例 1.2.1阻尼技术的定义 从减振降噪的角度上来看,阻尼是指损耗振动能量的能力、也就是将机械振动及声振的能量,转变成热能或其它可以损耗的能量,从而达到减振及降噪的目的。 阻尼减振、降噪技术就是充分运用阻尼耗能的一般规律,从材料、测量、

粘滞阻尼器的机制机理

粘滞阻尼器的机制机理、应用实例及评价 1 粘滞阻尼器的抗震机制机理 传统抗震方法是依靠构件的弹塑性变形并吸收地震能量来实现的。这种传统设计方法在很多时候是有效的,但也存在着一些问题。随着建筑技术的发展,房屋高度越来越高,结构跨度越来越大,而构件端面却越来越小,己经无法按照传统的加大构件截面或加强结构刚度的抗震方法来满足结构抗震和抗风的要求。 1972年美籍华裔学者J.P.T.Yao(姚治平)第一次明确提出结构控制这一概念。所谓结构振动控制指采用某种措施控制结构反应(位移、速度或加速度)使其在动力荷载作用下不超过某一限量,以满足工程要求。振动控制按照控制措施是否需要外部能源,可以分为主动控制、半主动控制、被动控制及混合控制。 结构耗能减震体系是将结构的某些非承重构件(如支撑、剪力墙等)设计成耗能杆件,或在结构物的某些部位(节点或联结处)装设阻尼器,在风荷载轻微地震时,这些杆件或阻尼器处于刚弹性状态,结构物具有足够的侧向刚度以满足正常使用的要求;强地震发生时,随着结构受力和变形的增大,这些杆件和阻尼器,率先进入非弹性变形状态,产生较大阻尼,大量消耗输入结构的地震能量,从而使主体结构避免进入明显的非弹性状态并迅速衰减结构的地震反应,保护主体结构。 从动力学观点看,耗能装置的作用相当于增大结构的阻尼,从而减小结构的反应。由于其装置简单、材料经济、减震效果好、使用范围广等特点,在实际结构控制中的应用前景广泛。耗能减震器依据不

同的材料、不同的耗能机理和不同的构造来制造,有很多品种。近三十年来,我国科研人员主要研究的阻尼器有摩擦阻尼器、金属阻尼器、粘弹性阻尼器和粘滞性阻尼器。摩擦阻尼器和金属阻尼器的耗能特征与耗能器两端的位移相关,称为位移相关型耗能减震器。粘弹性阻尼器和粘滞性阻尼器的耗能特征与耗能器两端的速度相关,称为速度相关型耗能减震器。 粘滞液体阻尼器(VFD,Viscous Fluid Damper)是一种速度相关型的耗能装置,它是利用液体的粘性提供阻尼来耗散振动能量。粘滞液体阻尼器早先就在航天、机械、军事等领域得到应用,最早应用于土木工程是在1974年所建的一座桥梁上,此后,在房屋的基础隔震、管网、地震加固、房屋抗风和抗震的设计中得到应用。粘滞液体阻尼器的种类很多,归纳起来可分为两类,第一类是粘滞液体在封闭的容器中产生一定的流速来进行耗能的阻尼器。在这类阻尼器中,活塞要迫使粘滞液体在很短的时间内通过小孔,这将产生很大的压力。此类阻尼器的内部工艺设计要求较高。第二类粘滞液体在敞开的容器中产生一定的位移来进行耗能的阻尼器。此类阻尼器要求粘滞液体尽量粘稠以获得最大限度的阻尼。因此,设计中粘滞液体材料的选择是关键问题。这类粘滞阻尼器常用的形式是粘滞阻尼墙。建筑中常用的粘滞液体阻尼器多是第一类阻尼器。 2.粘滞性阻尼器在实际工程中的应用 南京奥体中心观光塔,塔身顶点标高110.2 m。由于风振和地震影响较大,在88.1~105.7 m之间设置了30个粘滞阻尼器。设置阻

阻尼材料发展现状与应用进展_张文毓

2011年4月材 料 开 发 与 应 用 文章编号:1003 1545(2011)02 0075 04 阻尼材料发展现状与应用进展 张文毓 (中国船舶重工集团公司第七二五研究所,河南洛阳 471039) 摘 要:综述了国外阻尼材料发展现状,对阻尼材料的发展趋势进行了展望。关键词:阻尼材料;发展;应用中图分类号:TB34 文献标识码:A 收稿日期:2010-06-22 作者简介:张文毓,女,1968年生,高级工程师,现主要从事情报研究工作。E -m a i:l Z W Y68218@163 com 。 阻尼材料是将固体机械振动能转变为热能而耗散的材料,主要用于振动和噪声控制。阻尼材料按特性分为4类[1] : 橡胶和塑料阻尼板:用作夹芯层材料。应用较多的有丁基、丙烯酸酯、聚硫、丁腈和硅橡胶、聚氨酯、聚氯乙烯和环氧树脂等。这类材料可以满足-50-200 C 范围内的使用要求。 橡胶和泡沫塑料:用作阻尼吸声材料。应用较多的有丁基橡胶和聚氨酯泡沫,以控制泡孔大小、通孔或闭孔等方式达到吸声的目的。 阻尼复合材料:用于振动和噪声控制。它是将前两类材料作为阻尼夹芯层,再同金属或非金属结构材料组合成各种夹层结构板和梁等型材,经机械加工制成各种结构件。 高阻尼合金:阻尼性能在很宽的温度和频率范围内基本稳定。应用较多的是铜 锌 铝系、铁 铬 钼系和锰 铜系合金。下面对阻尼材料的发展、应用等进行分析、综述,以期对阻尼材料有一个全面的了解。 1 国外阻尼材料发展现状 1.1 主要研究计划 (1)美国先进研究项目局正在筹划复合材料壳体潜艇的研究工作。复合材料壳体潜艇既吸收一部分艇的自噪声,又可吸收一部分敌方主动式声呐发出的声波,从而提高艇的隐蔽性。 (2)美国海军金属加工中心开展研究计划项目之一,旨在对一种备选的阻尼材料进行鉴定和验证,拟用于弗吉尼亚核潜艇(SSN 774),使海 军能够更加有效使用阻尼材料,降低总成本。 (3)美国国家涡轮机高周疲劳计划,由美国空军、海军及国家宇航局合作,分7个专题,其中之一为被动阻尼技术。 (4)美国海军结构基础减震计划,采用层压复合材料用于减震。 (5)日本理工大学2002研究计划中有基于分子设计开发新型高阻尼材料的项目。 (6)英国剑桥大学CAVEND I S H 实验室承担的一项合同项目,利用液晶弹性体制作阻尼材料[2] 。 (7)在美国TDSI (T e m asek Defence Syste m Institute)支持下[3] ,新加坡计划研究一种具有高阻尼和高刚性的潜艇螺旋桨材料,其目标是开发一种粘弹性复合材料,以减少水下武器和随艇设备的辐射噪声,实现隐身潜艇。其内容是:开发各种超低噪声粘弹性复合材料以制备具有高阻尼和高刚性的潜艇螺旋桨;通过涂覆一种高阻尼、高刚性的颗粒增强复合材料,开发一种机械装置的被动减噪方法。1.2 主要研究内容1.2.1 粘弹性阻尼材料 (1)粘弹性材料应力 应变本构关系模型及性能预测研究; (2)粘弹性阻尼材料高频动态力学性能测试技术研究; (3)静压力条件下动态力学性能测试表征技术研究; (4)粘弹性材料阻尼微观设计技术研究; 75

粘弹性阻尼结构的优化设计

第32卷 第4期 2000年12月西安建筑科技大学学报J 1X i ’an U n iv .of A rch.&T ech.V o l .32 N o.4D ec .2000 粘弹性阻尼结构的优化设计 徐赵东1,刘军生2,赵鸿铁1,庄国华3 (1.西安建筑科技大学,陕西西安710055;2.陕西建筑科学研究院,陕西西安710082; 3.无锡中策减震科技公司,江苏无锡214026) 摘 要:根据粘弹性阻尼结构的性能及减震原理,分别利用时程分析法、随机振动理论和现代控制理论对粘弹性阻尼结构进行优化设计,并给出一实例分析,得出有关结论. 关键词:粘弹性阻尼结构;优化设计;减震 中图分类号:P 3151966 文献标识码:A 文章编号:100627930(2000)0420321204The opti m u m design of the v iscoelastic structure X U Z hao 2d ong 1,L IU J un 2sheng 2,ZH A O H ong 2tie 1,ZH UA N G Guo 2hua 3(1.X i’an U n iv .of A rch .&T ech .X i’an 710055,Ch ina ;2.Shanx i A rch .Science R esearch In st . X i’an 710082,Ch ina ;3.W ux i Buffer T ech .Comp .W ux i 214026,Ch ina ) Abstract :In the ligh t of the p roperty and the damp ing ab so rp ti on p rinci p le of the viscoelastic structu re ,the op ti m um design of the viscoelastic structu re respon se is perfo rm ed by the ti m e h isto ry analysis m ethod ,the random vib rati on theo ry and the modern con tro l theo ry .T hen an examp le is given and som e conclu si on s are derived . Key words :the v iscoelastic structu re ;the op ti m um d esig n ;d am p ing absorp tion 收稿日期:1999210228 基金项目:陕西省自然科学基金项目(99C 02) 作者简介:徐赵东(19752),男,安徽潜山人,西安建筑科技大学博士生,从事建筑结构的抗震研究. 粘弹性阻尼器是一种被动减震控制装置,它具有经济实用、性能可靠、安装方便等特点,具有广阔的应用前景,目前关于粘弹性阻尼结构的分析研究已有不少,但关于粘弹性阻尼结构优化设计的研究却很少,因此有必要对粘弹性阻尼结构的优化设计进行系统研究. 本文基于粘弹性阻尼结构的性能及其减震原理,分别利用时程分析法、随机振动理论和现代控制理论对粘弹性阻尼结构进行优化设计,作者用M A TLAB 编制了相关程序,并通过一实例分析证实了这三种理论能很好地进行粘弹性阻尼结构的优化设计. 图1 常用的粘弹性阻尼器1 粘弹性阻尼结构的性能 粘弹性阻尼器由粘弹性材料和约束钢板组成.常用的粘弹性阻尼器 如图1所示,中间的粘弹性材料是一种高分子聚合物,既具有弹性又具 有粘性,同时具备弹簧和流体的性质.其性能常用储存刚度、损耗因子和 每圈耗能来表征.粘弹性阻尼器具有很强的耗能能力,且受到温度、频率 和应变幅值的影响,其耗能能力据所选择的粘弹性材料有一最佳使用温度;频率越高,耗能性能越好;应变幅值越大,耗能性能越不稳定[1].

粘弹性

第7章聚合物的粘弹性 7.1基本概念 弹:外力→形变→应力→储存能量→外力撤除→能量释放→形变恢复 粘:外力→形变→应力→应力松驰→能量耗散→外力撤除→形变不可恢复 理想弹性: 服从虎克定律 σ=E·ε 应力与应变成正比,即应力只取决于应变。 理想粘性:服从牛顿流体定律 应力与应变速率成正比,即应力只取决于应变速率。 总结:理想弹性体理想粘性体 虎克固体牛顿流体 能量储存能量耗散 形状记忆形状耗散 E=E(σ.ε.T) E=E(σ.ε.T.t) 聚合物是典型的粘弹体,同时具有粘性和弹性。 E=E(σ.ε.T.t) 但是高分子固体的力学行为不服从虎克定律。当受力时,形变会随时间逐渐发展,因此弹性模量有时

间依赖性,而除去外力后,形变是逐渐回复,而且往往残留永久变形(γ∞),说明在弹性变形中有粘流形变发生。 高分子材料(包括高分子固体,熔体及浓溶液)的力学行为在通常情况下总是或多或少表现为弹性与粘性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性称之为粘弹性。粘弹性的本质是由于聚合物分子运动具有松弛特性。 7.2聚合物的静态力学松弛现象 聚合物的力学性质随时间的变化统称为力学松弛。高分子材料在固定应力或应变作用下观察到的力学松弛现象称为静态力学松弛,最基本的有蠕变和应力松弛。 (一)蠕变 在一定温度、一定应力的作用下,聚合物的形变随时间的变化称为蠕变。 理想弹性体:σ=E·ε。 应力恒定,故应变恒定,如图7-1。 理想粘性体,如图7-2, 应力恒定,故应变速率为常数,应变以恒定速率增加。

图7-3 聚合物随时间变化图 聚合物:粘弹体,形变分为三个部分; ①理想弹性,即瞬时响应:则键长、键角提供; ②推迟弹性形变,即滞弹部分:链段运动 ③粘性流动:整链滑移 注:①、②是可逆的,③不可逆。 总的形变: (二)应力松弛 在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象称为应力松弛。 理想弹性体:,应力恒定,故应变恒定 聚合物: 由于交联聚合物分子链的质心不能位移,应力只能松弛到平衡值。

木材的粘弹性

得分:_______ 南京林业大学 研究生课程论文2013 ~2014 学年第一学期 课程号:43311 课程名称:高级木材学(含竹材) 论文题目:木材粘弹性 专业:材料学 学号:3130161 姓名:王礼建 任课教师:张耀丽(教授) 二0一三年十二月

木材的粘弹性 王礼建 (南京林业大学木材工业学院,江苏南京210037) 摘要:粘弹性是天然高分子材料固有的一种性质,本文通过对粘弹性过程的概述,分析了温度、含水率等对木材蠕变、应力松弛、滞后、内耗的影响。分析了木材粘弹性产生的原因和研究方法。 关键词:木材、粘弹性、蠕变、应力松弛、滞后、内耗 The study on the viscoelasticity of Wood WANG Li-jian (College of Wood Science and Technology, Nanjing Forestry University, 210037 Nanjing, China) Abstract:Viscoelasticity is a natural inherent nature of polymer materials, this paper outlines the process for viscoelasticity analysis of temperature, moisture content and any other factors of wood creep, stress relaxation, hysteresis, friction effects. The causes of wood viscoelasticity and research methods were analyzed. Key words: wood, viscoelasticity, creep, stress relaxation, hysteresis, friction 前言 木材作为一种生物质高分子材料同时具有弹性和粘性两种不同机理的变形,木材的这种性质称为粘弹性。粘弹性可分为静态粘弹性和动态粘弹性,静态粘弹性包括蠕变和应力松弛;动态粘弹性是指在交变的应力、应变作用下发生的滞后现象和力学损耗[1]。木材在加工或使用过程中往往受到交变应力或交变应变的作用,如木材作为结构件在枕木和桥梁的使用中、木材作为乐器的面板在弹奏中、木材作为减震阻尼材料在吸振中。木材的粘弹性影响着它的加工条件和使用条件,还可以用它来评价木材的减震特性。本文通过对粘弹性过程的概述,分析了温度、含水率等对木材蠕变、应力松弛、滞后、内耗的影响。分析了木材粘弹性产生的原因和研究方法。 1 粘弹性 粘弹性[2]材料在外力条件下将产生应变。理想弹性固体(虎克弹性体)的行为服从虎克定律,应力与应变呈线性关系。受外力时平衡应变瞬时到达,去除外

ANSYS中粘弹性材料的参数意义

ANSYS中粘弹性材料的参数意义: 我用的材料知道时温等效方程(W.L.F.方程),ANSYS 中的本构模型用MAXWELL模型表示。 1.活化能与理想气体常数的比值(Tool-Narayanaswamy Shift Function)或者时温方程的第一个常数。 2.一个常数当用Tool-Narayanaswamy Shift Function的方程描述,或者是时温方程第2个常数 3.定义体积衰减函数的MAXWELL单元数(在时温方程中用不到) 4.时温方程的参考温度 5.决定1、2、3、4参数的值 6-15定义体积衰减函数的系数, 16-25定义fictive temperature的松弛时间 这20个数最终用来定义fictive temperature(在理论手册中介绍,不用在时温方程中) 26-30和31-35分别定义了材料在不同物理状态时的热扩散系数 36-45用来定义fictive temperature的fictive temperature的一些插值一类的数值,时温方程也用不到 46剪切模量开始松弛的值 47松弛时间无穷大的剪切模量的值 48体积模量开始松弛的值 49松弛时间无穷大的体积模量的值 50描述剪切松弛模量的MAXWELL模型的单元数 51-60拟合剪切松弛模量的prony级数的系数值 61-70拟合剪切松弛模量的prony级数的指数系数值(形式参看理论手册) 71描述体积松弛模量的MAXWELL模型的单元数 76-85拟合体积松弛模量的prony级数的系数值 85-95拟合体积松弛模量的prony级数的指数系数值(形式参看理论手册) 进入ansys非线性粘弹性材料有两项:

相关主题