搜档网
当前位置:搜档网 › 温室大棚智能监控系统的研究方案(推荐文档)

温室大棚智能监控系统的研究方案(推荐文档)

温室大棚智能监控系统的研究方案(推荐文档)
温室大棚智能监控系统的研究方案(推荐文档)

温室大棚智能监控系统的研究方案

我国是一农业大国,农业是国家的重要经济命脉。提高单位面积的作物的产量、生产优质农产品是现阶段农业发展的迫切要求,而温室大棚是实现高产、优质农业的一个重要的组成部分。温室大棚是一种可以改变植物生长环境,根据作物生的最佳生长条件,调节温室气候使之一年四季满足植物生长需要,不受气候和土壤条件的影响,能够避免外界四变化和恶劣气候对其影响的场所,并且能在有限的土地上周年地生产各种不同的蔬菜、鲜花等反季节作物的一种温室设施。温室生产以达到调节作物生长过程中的产期,促进在不同时期作物的发育提高作物品质、产量等为目的。温室棚依照不同的屋架、采光材料又可分为很多种类,如玻璃温室、塑料温室等。温室结构的建造标准是既能密封保温,便于通风降温。但是作物要想现高产、优质、仅仅靠温室保温是不行的,需要对农作物的生长环境进行多方位多的精确采集和实时的控制。目前国家提出要狠抓农业科技革命的新型农业道路,实施数字化精准农业温室大棚是现代农业发展改革的一大措施。数字化精准农业温室大棚技术是从生产理念、经营主体、农业装备、先进科技成果转化、提高农业生产力等方面进行农业的改革,应用先进的技术调控差异,科学利用资源,采用信息化经营管理和组织方式进行农业生产,实现农业生产的目标管理。

与普通的温室大棚相比,数字化精准农业温室大棚不仅能够种植优质高产反季作物而且将电子、计算机、通信和自动控制等信息技术引入到本领域中,朝着精细农业、数字农业的方向发展。数字化精准农业温室大棚系统,可以定量获取和分析农业环境的多种参数 ,实现对环境的多点检测,其检测目标可以是温度、湿度、光照、振动、压力、水/土壤/空气成分等,能对大棚内个环境参数达到良好的检测,进而协调控制大棚内的环境参数,使大棚内的环境条件能够适宜作物的成长。对温室大棚内的内的环境因子进行多点多参数的采集,一般需要在土壤中铺设大量的线缆,使得对作物的耕作造成了一定的困难,采用无线的方式进行数据的采集可以解决上述问题;根据所采集的数据,需对温室大棚的环境进

行良好的控制,有效地控制大棚内作物在生长过程中需要的水分、通风以及温度等,高度有效地利用各种资源以求得到最大的产出。大棚内高温高湿的环境对控制系统的可靠性控制要求很高,常用的单片机系统难以满足要求,而采用可编程逻辑控制器(PLC)作为大棚的主控制器,可大大提高系统的可靠性。本文所设计的基于ZigBee的温室大棚智能监控系统可很好地满足大棚的控制要求。

托普物联网作为物联网推进研发的主体,致力于温室大棚智能监控系统的研发,并制定多种方案,根据实际的具体情况,根据不同的情况,将温室大棚的系统研发力尽做到最好。

国外研现状和发展趋势

温室大棚智能监控系统的国外研究现状

在15~ 16世纪,法国、荷兰、日本就开始建造简易温室大棚。栽培过时令蔬菜或小水果。17世纪开始采用炉和热气加热以玻璃为材料的温室大棚。19世纪在法国、英格兰、荷兰出现了双面玻璃材料的温室大棚,这个时期的温室大棚主要种植葡萄、黄瓜、草莓等。在19世纪后期,温室大棚种植技术从欧洲传到美洲及其世界各地。在1860年美国就建立了世界上第一个温室大棚试验站,到20世纪初美国已有1000多个温室大棚用于各季蔬菜种植。20世纪50年代,美国、加拿大的温室大棚生产达到高峰,荷兰、德国的温室大棚工业化生产业已兴起。温室调控技术至今经历了几十年的发展过程。初期是使用传感仪表对温室设施中的光照、温度等参数进行测量,再使用手动或电动执行机构(如幕帘、通风设备等)施行简单控制。欧美等国家在30年代就相继建立了人工气候室,这些气候室就是在人工的调解下进行的。在温室大棚中人工对农作物的环境参数的控制还不是太准确,大部分的控制属于经验控制。

随着传感仪器仪表及执行器技术的进步,温室大棚逐步可以实现分别对植物所需的环境参数如对温度、湿度、光照等几乎所有室内环境参数进行动控制的智能监控系统。从80年代开始,根据不同作物、不同生长阶段及外界环境变化对温室环境进行综合调节控制的技术得到了快速的发展。荷兰、日本、以色列、美

国、韩国、加拿大等国家是设施农业十分发达的国家,大棚以大型温室棚为主。这些高水平大型温室大棚的环境控制系统能够根据传感器采集室温、地湿、室内湿度、叶湿、二氧化碳浓度、溶液浓度、风速、风向、土壤含水量等植物生长状态所需的环境相关参数,结合作物生长环境所需的适宜条件,有效调节有关设备装置,将室内温、湿、光、水、肥、气等诸因素综合协调调节到最佳状态。

随后在温室大棚智能控制技术方面,借鉴了工业领域的先进成果,技术水平不断提高,除了对温室大棚进行监控外,计算机优化环境参数、节能、节水及设施装备的可靠性等很多方面都取得了不错的技术成果,根据传感器的检测可以实现对相应各个执行机构的自动控制,如湿帘与风扇配套的降温系统、由热水锅炉或热风机组成的加温系统、无级调节的天窗通风系统、二氧化碳自动施肥系统、定时喷灌或者滴灌的自动灌溉系统等。大棚智能监控系统方面,如美国开发的适宜冬天保温用的双层充气膜、高压雾化降温加湿系统以及适宜夏季降温用的湿帘降温系统处于世界领先水平;荷兰的顶面涂层隔热、加热系统、人工补光等方面有较高的水平;韩国的换气、灌溉、CO2 浓控制等方面比较先进。

温室大棚智能监控系统的国内研究现状

我国温室大棚智能监控系统研究领域起步较晚。20 世纪50年代末,我国在华北地区曾经建造过大型温室大棚,手动控制是在温室大棚技术发展初期所采取的控制手段。温室大棚的种植者既是温室大棚内的各种环境的传感器,又要作为对大棚作物进行管理控制的执行机构,他们成为了温室大棚环境控制的核心。通过对温室大棚内外的气候环境状况和对作物生长状况的观测,凭借长期积累的种植经验对大棚内的农作物需要的环境状况进行推测及判断,采用手动方式调节温室内环境,使其适宜农作物的生长。种植者采用的手动控制方式,这种方式的劳动生产率较低,不适合对农作物生产环境进行精确采集和控制,而且对种植者的素质要求较高。

随着我国单片机电子技术、自动化技术的进步,在80年代中后期,研究出了基于自动控制的温室大棚控制技术。这种控制系统需要种植者输入温室作物生长所需环境的

目标参数,单片机根据传感器的实际测量值与预先设定环境阈值进行比较,以决定对温室大棚内的的相应执行机构进行加热、降温和通风等控制操作。基于单片机的自动控制的温室控制技术实现生产自动化,劳动生产率得到提高。该系统以89C51为核心,能自动控制温室内100天的温湿度,用户以小时为单位设定温湿度值。每个下位机与上位机之间采用RS-485通信,上位机为PC机,程序用VB 开发,用户根据作物长要求,在PC机上输入温湿度试验数据。控制器对比室内温度、湿的测量值与设定值,调温室大棚的温湿度环境。通过改变温室大棚不同农作物的成长环境需要的目标值,实现环境气候的自动调节,但是这种控制方式对作物生长状况的改变难以及时做出反应,难以介入作物生长的内在规律,而且方便对控制机构加入相应的控制算法。

随着智能化控制的发展,温室大棚的控制系统向着越来越先进、功能越来越完备的方向发展。在1994年胡建东、肖建军等人运用模糊控制的原理设计了连栋温室控制系统,该系统结合了模糊控制技术使温室大棚环境达到最佳的生长状态。在温室自动控制技术和生产实践的基础上,通过总结、收集农业领域知识、技术和各种试验数据构造专家系统,以建立植物生长的数学模型为理论依据,研究开发出的一种适合不同作物生长基于ZigBee的温室大棚智能监控系统的研究的温室专家智能控制系统技术。在1996年江苏理工大学李萍萍等人研制的基于工控机温室自动控制系统,它可以利用各类传感器测量温室大棚的温度、湿度、光照强度等环境因子,并能对环境因进行控制,以基于作物和境信息的知识的专家决策系统为依托,实现利用智能化和信息化的温室大棚智能监控系统。

我国的温室大棚种类的蔬菜种类多,分布地域广,需要进行多点多参数测量,测控设施安装和维护工作量大,采用有线通信方式传输信号存在诸多不便。目前,随着国内信息化产业的展和国家领导人的大力扶持,将物联网产业加入了十二五规划,根据《规划》智能农业作为九大流域之一将作为战略性新型产业给予大力推进,使我国的农业走向了一个新型的智能化阶段中。因此实现无线通信和远程监控是现代农业的发展要求。在我国的很多地方,都在大力发展和建设智能化业。在我国南方城市无锡人多地少,人均耕地面积仅为0.4亩,在耕地有限的情况下,发展高效农业是无锡的选择。而无锡又是我国网联网信的发源地,无锡政府重点启动实施4万亩具有现代化设施的市属蔬菜大棚基地建设。比如在锡山

区鹅湖镇今年就依托江省现代物理农业技术与装备创新中心,实施了“水产养殖物联网智能控制管理系统”农业物联网实用项目。该物联网能控制管理系统具有水质监测、环境监测、视频监测、远程控制、短信通知等功能;在惠山区益家康无公害蔬菜基地,利用来自洋马农机的蔬菜移栽机和配套起垄覆膜设备,进行黄瓜苗移栽应用试验,效果良好,实现来高产、优质。

在温室大棚种植基地里,除了能种植农作物以外,种植稀有珍贵的经济型作物也是发展高效、经济农业的一大需求。在福建省闽侯县白沙镇上寨村鼎天连坪洋农场上建有一个现代农业物联网科技示范种植铁皮石斛的基地,铁皮石斛是现在石斛属植物中经济价值最高的种类,药用及保健效果极好,生产的产品有“铁皮枫斗”,国际市场价格为每公斤1300-3600 美元。农场各项数据用手机就能看到,从而实现工作人员对基地的远程无线遥控。鼎天连坪洋农场占地约230亩,一期投资550万元,部署了农业物联网技设备,将建成78个标准种植大棚及部分机械化耕种设备。在大棚里架设有一个农业多功能采集仪器,在这个仪器最顶端的太阳能设备是维持整个仪器的动力。而从仪器中间引出的一些分支仪器,插入培土或悬挂着,可实时监测大棚内温度、湿度、光照条件、

二氧化碳量、PH值等生长条件数据,最终通过仪器上的发射设备传输至在北京的终端服务器平台上,实时地对铁皮石斛进行监控。只要计算机、手机、iPad 等接入该物联网平台,均可接收到该监测点传输来的实时数据实现对农业基地的远程遥控。

目前,国外现代化温室棚的内部设施己经发展到比较完备的程,并形成了一定的标准。现代对温室大棚的控制己经不是独立的、简单的、静态的数字控制,而是基于环境模型上的智能控制,以及基于专家系统上的智能制,现在很多国家在实现自动化的基础上正朝着完全自动化、无人化的方向发展。如日本、韩国开发了瓜类、茄果类蔬菜嫁接机器人。日本开发了自动耕耘、育苗移栽、自动施肥移动机器人,可完成多项功能的多功能机器,能在温室大棚内完6 成各项作业的无人行走车,用于组织培养作用的机器人,柑橘、葡萄收获机器人等。

基于ZigBee技术的温室大棚智能监控系统总体设计系统方案的提出

某蔬菜基地共有8个蔬菜大棚,在设计中每个大棚无线数据监测面积大约为400m2,宽5m, 长80m。温室大棚的监测目标具有分散性、多样性、及环境偏僻甚至恶劣等特点。检测目标主要是温度、湿度、光照强度、CO2浓度这些环境参数,这些是农作物进行适宜生长的关键因素,对环境参数进行实时监测以后,要对相应的执行机构进行控制,参数控制执行机构可以通过地热发生器、湿帘湿帘泵、喷灌、补光等实现。温室大棚整体结构如图1.1所示。

图1.1温室大棚整体结构图

基于ZigBee的温室大棚智能监控系统的研究

(1 )IE EE 802.11x 无线局域网(WLAN)标准适用的是2.4G H z的IS M 频段,WLAN的应用平台是笔记本电脑和掌上电脑组成的无线以太网,是互联网的无线延伸。IEEE802.11在1997年提出无线高保真(Wi- Fi)无线通信协议,其目是提供WLAN接入。Wi- Fi采用IEEE 802.11b标准,最大传输速率11Mbit/s。但目前,IEEE802.11标准的复杂性为用户选择标准化无线平台增加了困难,虽然具有优越的带宽,可是功耗损耗较大,因此大多数的 Wi - F i 装置都需要常规充电。这些特点限制了它在工业场合的应用;

(2 )红外线数据协会(Infrared Data As socia tio n , IrDA )是一种利用红外线进行点

对点通信的技术。它具有功耗低、体积小、成本低廉的特点。但是I让DA智能

在两台设之间连接,只支持视距的直线传播;

(3 )ZigBee技术就是一种短距离、低复杂度、低功耗、与低传输速率、低成本的双向无线通信技术,主要用于自动控制和远程控制领域。这种技术主要有以下五个方面的特点:低功耗。发射功率近1mW,采用休眠的低耗电待机模式下,采用2节5号干电池可支持一个子设备工作半年到两年甚至更长时间,这是Zi g Bee的突出优势低成本。ZigB ee模块成本只有几美元;再通过大幅简化协议,降低了对通信控制器的要求,而且ZigBee免协议专利费。低近距离。传输范围一般在几十米到几百米,如果通过增大发射功率、路由和节点间通信的接力,传输距离将可以更远。短时延。ZigBee的响应速度较快,一般从睡眠模式转入工作状态只需15ms,节点连接加入网络只需30ms。高容量。Zi gBee可采用星状、树状和网状结构,由一个主节点可以管理若干子节点,最多一个主节点可管理254个子节点;同时主节点还可由路由节点管理,可以组成65000个节点的大网。如表格 1.1所示,可以更加直观的表述和比较这三种短距离无线通信技术的性能。

表 1.1三种短距离无线通信技术的比较

通过对上述三种短距离无线通信技术对比,显然ZigBee从功耗、传输距离、容量方面具有优势,也完全符合对温室大棚的环境参数进行监测和控制。大棚内的环境参数进行无线数据采集以后,不同的作物在不同的生长时期不同季节对温度、灌溉和补光量都有严格的要求,温室大棚的环境变化对农作物的生长和产量都有很影响,而且一般作物的成长环境都是在高温高湿下,这就对控制系统的抗干扰性提出了更高的要求。因此选择合适的控制器对大棚内的相应的执行机构进行控制也是系统需要解决的主要问题。

目前,市场上主要的控制器有单片机和PLC(可编程逻辑控制器)两种。单片机适用于微小型设备,具控制方便和灵活性大、价格便宜的优点,但自身的抗干扰性差;可编程逻辑控制器PLC构成灵活,扩展容易,使用方便,编程简单,抗干扰能力强,易于与上位机接口,并能构成网络控制系统。考虑到温室大棚环境中农作物的生长环境具有高温高湿并且要进行多参数控制的特点,选用PLC作为系统的控制器,非常适合高效温室的控制。有效地提高了系统的可靠性。另外对于多个大棚的控制,可进行组网实现分布式控制系统。

综上分析,本课题设计的温室大棚智能监控系统采用ZigBee的无线通信技术避免了繁琐的布线的问题;采用可编程逻辑控制器(PLC)作为大棚的主控制器,提高了系统的可靠性。基于ZigBee的无线数据采集节点,对温室内温度、湿度、CO2浓度以及光照强度的环境参的数据采集,通过构建的ZigBee星型网络,实现采集数据的无线传输;用PLC作为系统的主控机构,将主节点传输的数据通过一定的通信格式传输给PLC以后,PLC根据系统设置的环境阈值对相应的执行机构进行控制,启动增温降温、加湿除湿、遮阳补光等调控设备,从而使温室环境符合作物的生长规律;为了实现对多个大棚的分布式控制,组建了基于RS-485总线的PLC分布式控制系统;采用易控工业组态软件实现上位监控设计,对整个PLC 网络控制统进行监控;利用易控工业组态软件的Web发表功能,实现了温室大棚组的远程监控,使得管理人员不深入现场同样可以获得温室大棚的环境参数信息,实现远程监控。

基于ZigBee温室大棚智能监控系统总体设计实现方案

设计中以一个温室大棚中的智能监控系每一个大棚需要采集4组数据,每一组数据包括大棚内的温度、湿度、光照强度和

CO2浓度。温室大棚的数据采集是通过单片机来实现的,数据采集模块共有4组,每一组有4种不同的传感器,分别采集大棚内的温度、湿度、光照强度和CO2浓度数据。数据采集模块由单片机分时对各个测控点进行巡回检测首先将温度传感器、光照强度传感器和CO2浓度的传感器三种模拟感器通过A/D转换器转化为数字信号,再送单片机芯片进行数据采集,湿度传感器是数字传感器,因此可直接

传输到单片机上,主控芯片对数据进行滤波处理后打包送至无线网络中的子点。其数据采集结构如图1.2所示。

图1.2数据采集结构框图

单片机将大棚内的4种环境参数信息传输到无线网络中的子节点,子节点每隔一定的时间轮流向主节点发送信息。主节点组建了基于ZigBee技术的星型网络拓扑结构,主节点在星型网络中充当协调器的角色协调器主实现对整个网络的管理以及接受子节点转发来的数据等功能;各子节点具有数据采集和转发的功能,可以将大棚内温湿度数据,空气中光照含量,CO2浓度这些农作物生长的环境信息采集过来,该设备节点安装在温室大棚内。主节点收到数据之后通过串口将各点的数据传给PLC,PLC是智能监控系统的控制中心,负责对大棚内的各个执行机构进行控制。PLC接受从中心计算机传来的控制参数阈值从而启动控制增温降温、加湿除湿、遮阳补光等调控设备,按不同环要求调控与协调温室大棚的环境适应不同的作物的成长需求。

另外,为了对8个大棚进行集中监控,将8个大棚中的PLC通过RS- 485线构成分布式网络,PC机作为控制网络中主机,实现了上位机与8个PLC之间的通信。操作员即可以在某个大棚内单独控制每个P LC控制器,控制这个大棚的环境;也可在控制室内通过上位机对对每一个大棚进行监控。当某一个大棚的设备出现故障时,不影响其它大棚的控制设备。系统结构图如图1.3所示。

为了更方便清晰的掌握温室大棚作物的环境参数情况,选用易控工业组态软件作为上位组态开发平台,通过易控本身提供的各图形模板可方便地进行监控界面设计,过数据流连接和设置,可以实现易控上位界面和无线收发模块的实时

通信另外利用易控的程发表功能,还可以通过远程监控界面在IE浏览器上直接查看温室大棚作物的生长情况。

图1.3基于ZigBee技术的温室大棚智能监控系统结构图

农作物温室环境智能监控系统研究背景意义及国内外现状

农作物温室环境智能监控系统研究背景意义及国内外现状 1研究背景及其研究意义 (1) 研究背景概述 (1) 项目研究意义 (2) 2国内外研究现状 (3) 国外研究现状 (3) 国内研究现状 (4) 1研究背景及其研究意义 研究背景概述 农业是国家重要的支柱产业,我国作为世界第一农业大国,农业生产在我国经济建设和社会发展中占有举足轻重的地位。良好的气候与生态环境条件是农业生产的重要保障,而我国幅员辽阔,气候与生态环境条件相对恶劣,制约农业的发展。 我国作为世界第一农业大国,在农业也是积累的相当多的经验和知识,但我国大部分地区都存在山多土地少,土质不好,土壤资源匮乏,气候条件复杂多变等劣势,这些劣势对农作物的生长极其不利;况且随着社会的进步,从事农业生产的人也日趋减少,而社会的对农产品的需求却日益增高,原有农作种植方式已经不能满足社会发展的需要,必须对传统的农业进行技术更新和改造。因此,在我国发展现代化农业和生态农业是今后农业发展的必然趋势,推广高新技术在农业生产中的应用势在必行。而现代温室农业技术就能满足以上的要求。 温室控制技术主要针对湿度、温度、光照度等温室作物生长必须的外在物理要素进行调节,以达到作物生长的最佳条件。现代温室控制技术主要是能通过系统实时采集温室环境的温湿度和光照度,以达到温室植物生长环境实时监控的目的。近年来,我国在温室控制技术方面也做了很多的研究,并在温室栽培等方面取得了显着成果。但由于我国在这方面的研究时间不算长,在配套技术与设备上都比较匮乏,使得环境的监控能力不高,生产力有限。能够实现全年生产的大型现代化温室很少。而且需要进口温室设备,但投资又太大,需要的操作人员的素质要求也高。所以我国温室环境控制还有很多地方需要改善与提高。 温室环境智能监控系统的研究涉及到计算机技术、传感器技术、控制技术、通讯技

智能家居远程监控系统

一种基于SMS的智能家居远程监控系统(1) 关键字:SMS智能家居远程监控系统 1 引言 随着生活节奏的加快,生活水平的提高,人们对现代家居的安全性、智能性、舒适性和便捷 性提出了更高的要求。智能家居控制系统就是适应这种需求而出现的新事物,正朝着智能化、远程化、小型化、低成本等方向发展。如今手机已经十分普及,如何让普通百姓只需要 增加少量投入便可以通过手机远程遥控自己家中的电器设备,远程查看设备或安防系统状 况。同时,一旦家中发生煤气泄露、火灾、被盗等安全事故时能够立即获知警报,及时处理。为此本文提出了一种基于SMS和Atmega128 的智能家居远程监控系统。 2 系统结构及工作原理 本文所设计的智能家居远程监控系统由CP U 模块、短信收发模块、电源模块、时钟模块、LCD 显示模块、键盘模块、驱动模块、无线收发模块、检测模块等模块组成,如图 1 所示。系统的工作原理如下:用户通过手机将控制或查询命令以短信的形式通过GSM 网发送到短信收发模块,CPU 再通过串口将短信读入内存,然后对命令分析处理后作出响应,控制相 应电器的开通或关断,实现了家电的远程控制。CPU 定时检测烟感传感器、CO 传感器、门禁系统的信号,一旦家中发生煤气泄露、火灾、被盗等险情时,系统立即切断电源、蜂鸣 器警报并向指定的手机发送报警短信,实现了家居的远程监视。为了达到更人性化的设计, 当用户在家时可通过手持无线遥控器控制各个家电的通断,通过自带的小键盘设定授权手机 号码、权限和设定系统的精确时间等参数。LCD 用来实时显示各电器状态和各个传感器的 状态。 图1 系统结构框图 3 硬件系统设计

农业温室大棚智能监控系统

信息与电气工程学院 电子信息工程CDIO一级项目(2014/2015学年第一学期) 题目:农业温室大棚智能监控系统 专业班级:电子信息 学生姓名: 学号: 指导教师:马永强老师 设计周数:16周(分散) 设计成绩: 2014年12月26 日

1 项目设计目的及任务 基于嵌入式和zigbee的农业温室大棚智能监控系统,该系统可以实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度等,通过模型分析,可以自动控制温室湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备。同时,系统还可以通过手机、计算机等信息终端向管理者推送实时监测信息、报警信息,实现温室大棚信息化、智能化远程管理,充分发挥物联网技术在设施农业生产中的作用保证温室大棚内环境最适宜作物生长实现精细化的管理,为作物的高产、优质、高效、生态、安全创造条件,帮助客户提高效率、降低成本、增加收益。 2 项目设计背景 近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用,种植环境中的温度、湿度、光照度、 CO浓度等环境因子对作物的生产有很大的影响。 2 传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。 针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计,根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互联网或者手机信息了解区域大棚的实时状况。基于GPRS的智能大棚监控系统使这些成为可能。 3 项目设计思路 3.1 智能报警系统 (1) 系统可以灵活的设置各个温室不同环境参数的上下阀值。一旦超出阀值,系统可以根据配置,通过手机短信、系统消息等方式提醒相应管理者。 (2) 报警提醒内容可根据模板灵活设置,根据不同客户需求可以设置不同的提醒内容,最大程度满足客户个性化需求。 (3) 可以根据报警记录查看关联的温室设备,更加及时、快速远程控制温室设备,高效处理温室环境问题。 (4) 可及时发现不正常状态设备,通过短信或系统消息及时提醒管理者,保证系统稳定运行。 3.2 远程自动控制 (1) 系统通过先进的远程工业自动化控制技术,让用户足不出户远程控制温室设备。 (2) 可以自定义规则,让整个温室设备随环境参数变化自动控制,比如当土壤湿度过低

在校生2018年寒假“优秀学子回母校”社会实践活动方案

在校生2018年寒假“优秀学子回母校” 社会实践活动方案 各院(系)团委(团总支): 为了进一步提高长安大学的知名度和社会影响力,加强与生源中学的交流与联系,展示长大学子的良好精神风貌,为广大在校生提供更多社会实践机会,经教务处(招生办)和校团委研究决定面向全体在校学生开展2018年寒假“优秀学子回母校”社会实践活动,鼓励在校本科生和研究生利用节假日回乡之际,回中学母校开展以“感恩母校、回馈社会”为主题的社会实践活动。招募工作的有关事项如下: 一、活动主题 感恩母校,回馈社会 二、活动报名 1、报名形式: (1)团队报名:自由组合,二人以上,集体报名,集体筛选。 (2)个人报名:没有组队的同学加群(QQ群:xx)。加群后由工作人员将单独报名的同学基本信息(姓名、联系方式、宣讲地)公示,可自由组队;未成功组队者需单独参加活动或放弃参加。 2、报名途径 关注长安大学星辉协会微信公众平台(微信号:长安大

学星辉协会),进入公众号后可直接报名。 3、报名条件 长安大学全体在校本科生、研究生 三、活动安排进度 1、报名时间:11月7日—11月20日 2、培训时间:XX年12月中旬(具体时间、地点另行通知) 3、宣讲时间:2018年寒假回中学宣讲 4、成果展示及评优:2018年春季开学后 四、工作内容 1、宣讲工作:在中学开展形式多样的宣讲活动,例如以自身的成长经历介绍大学的人才培养和成长环境,向高中学弟学妹分享学习和报考经验,展示长大学子风采等。宣讲期间及时将活动照片及活动新闻稿等信息发送xx 2、后期工作:撰写活动报告,保存高中联系方式,整理上交活动材料(包括活动录制视频、宣讲时照片、问卷调查结果、主题照片、视频等),发送至xx 五、奖励办法 1、每个团队将得到相应活动资助金额,资助金额=走访学校数*100元。 2、参与学生将获得学校颁发的社会实践证明。 3、活动结束后表现优异者评选优秀团队以及优秀个人。

智能育苗大棚建设温室方案1

智能育苗温室建设工程 方 案 书 单位名称: 单位地址: 电话: 日期:2010年10月9日 目录 1、设计依据及主要技术指标 2、温室基础及排水沟、道路、门、基础 3、温室主体钢结构 4、温室开窗系统 5、温室覆盖材料 6、温室强制通风降温系统

7、温室电动内遮阳系统 8、温室加湿系统 9、温室加温系统 10、二氧化碳补气系统 11、温室补光系统 12、计算机控制系统 13、温室电控系统 14、温室移动苗床系统 1、温室设计依据及主要技术指标 1.1温室设计依据 a、《甲方技术要求》 b、温室标准《Q/JBALI-2000温室通用技术条件》 c、相关标准≤温室结构设计荷载GB/T 18622-2002≥、《钢结构设计 规范GBJ17-88》 ≤温室通风降温设计规范GB/T 18621-2002≥、《铝合金建筑型材GB/T5237-93》、《采暖通风与空调设计规范GBJ114-88》、《微灌工程技术规范SL103-95》、《工业与民用供电系统设计规范GBJ52-83》。 1.2温室主要技术指标 a、风载:0.5KN/m2 b、雪载:0.3KN/m2 c、吊挂载荷:15Kg/m2 d、最大排雨量:140mm/h e、电源参数:220V/380V,50Hz,PH1/PH3

1.3温室规格尺寸、基本结构及基本配臵 温室设计为4联跨(4×8m=32m),长度均为32米共,7栋。建筑总面积为7168米2 基本结构:温室设计为圆形拱顶,温室骨架为轻型钢结构,全部采用 热镀锌表面处理,构件之间的连接采用镀锌件连接。该骨架有较强 的耐腐蚀性,承重和抗风雪能力强,易于拆装等特点。 温室主要技术指标:跨度:8米, 开间:4米, 长度:32米, 肩高:3.5米, 总高:5.3米。 温室基本配臵:温室配臵有电动顶开窗系统、电动侧开窗系统、内遮阳系统、湿帘降温系统、加湿系统、加温系统、二氧化碳补气系统、补光系统、计算机控制系统、电控系统、移动苗床系统等。温室拱顶为专用双层冲气膜覆盖,顶开窗为1/2开窗通风;侧墙、山墙覆盖8MMPC板。 1.4温室排列方式 温室山墙4x8m=32m,侧墙32m 。 2.温室基础及排水沟、道路、门、施工图(详附图) 2.1温室基础 1、温室基础设计: 在未获得详细项目地质勘探报告前,我们暂时按照持力层容许承载力标准80Kpa设计和作预算,温室内部为点式基础钢筋钢板预埋件,深0.7m,宽24cm。设计计算按照国家标准《建筑地基基础设计规范(GBJ7-1989)》。如用户提供的地质勘探报告与设计依据不符,将对基础图纸做相应调整。 2.2温室室内道路 两端山墙为2米宽砼道,路面为C15砼地坪,厚度为100mm。

农业温室大棚智能环境监控系统解决方案

智能温室大棚环境监控系统 1、系统简介 该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。本系统适用于各种类型的日光温室、连栋温室、智能温室。 2、系统组成 该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。 (1)传感终端 温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。 (2)通信终端及传感网络建设 温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。 (3)控制终端 温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。 (4)视频监控系统

永乐镇丰收小学2018年研学课堂旅行社会实践活动方案(参考模板)

丰收小学2018年春季研学课堂 旅行社会实践活动方案 为全面提升学生综合素质,开阔全校学生视野,结合我校实际情况,我校决定于2018年3月底组织全校学生开展研学旅行活动,现制定如下方案。 一、活动目的 开展研学旅行工作,是有效落实德育为先的重要手段,是实施快乐教育的有效途径。能让学生在旅行过程中陶冶情操, 拓展视野,增长见识,丰富知识,体验不同的自然和人文环境,加深与自然和文化的亲近感,培养学生的自理能力、创新能力、团队协作和实践能力,从而全面提升学生的综合素质。 二、活动主题内容及宗旨 内容:“走进白帝城,领略家乡美”、 “走进博物馆—探索?发现之旅”。 宗旨:安全、快乐、实效。 三、参加对象: 丰收小学、三义村小全体师生及家长委员会代表共125人,其中学生93人,老师21人,家长委员会11人,大巴车3辆。 四、行程安排:

2018年3月28日星期三 7:10—7:15各班班主任集合本班学生,清点人数并分别按男女从低到高排成2行; 7:15—7:30安排学生依次上大巴车,7:30准时出发,前往白帝城景区(约1.5小时), 9:00—11:00到达白帝城,畅游白帝城景区。在景区大门口按照班级排队进入景区,由班主任带领本班学生游览白帝城,并 根据景点人流量合理安排参观景的先后顺序。(游览时间 约2小时) 11:00—11:30 全体师生在白帝城大门口集合,清点人数,前往博物馆。 11:30 —13:30观赏博物馆。(游览时间约2小时) 13:30—14:00在博物馆大门前清点人数,准备用餐。(用餐时间约0.5小时) 14:00全校师生准时在景区大门口集合清点人数后留影。班主任带领本班学生乘坐原车返校。 五、领导机构 组长:熊万明 副组长:丁国东张洪山李冀杨金鑫张佐燕 成员:李晓平翟鹏程刘茜陈芬谭发清 胡春林邵雪梅杨文艳向兰修沈小 陈丹丹李燕谭瑾谢敏冉应双

智能温室大棚整体控制设计方案

目录 一、智能温室大棚简介 (2) 二、智能温室大棚结构设计 (2) 一、温室结构设计 (2) 1.温室结构布局 (2) 2.温室覆盖材料 (2) 3.温室的通风 (3) 二、温室运行机构 (3) 1.电力系统 (3) 2.降温增湿系统 (3) 3.遮阳系统 (3) 4.增温系统 (3) 5.浇灌系统 (3) 三、智能温室大棚控制系统 (4) 一、控制系统的主要构成 (4) 1、传感器 (4) 2、控制器 (5) 3、执行器件 (5) 4、上位机 (5) 二、具体控制过程 (6)

一、智能温室大棚简介 智能温室也称作自动化温室,是指由计算机控制温室内的执行器件来改善温室内的环境,营造适合农作物生长的环境。温室内的主要系统有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、浇灌系统等自动化设施系统。 智能温室的控制一般有信号采集系统、中心计算机和控制系统三大部分组成。 二、智能温室大棚结构设计 一、温室结构设计 首先应进行温室建筑布局、形式、尺寸等方面设计,应考虑结构、机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设备等多种因素,同时还应该考虑本地的地理气候条件,充分利用自然资源,力图降低制造成本和运行费用。 其结构框架设计的基本特点 1.温室结构布局尽量采用南北栋方式建筑可使太阳直射光 平均日总量透过率最高。 2.温室覆盖材料温室材料透光率对温室的光照总量有着重 要影响,可采用浮法玻璃其透光率可达90%以上。亦可采用超

长塑料薄膜(阳光穿透率85%)为覆盖材料。但其耐用性不高。 PC塑料板在造价、使用年限、透光率等方面是一个不错的选 择。 3.温室的通风应充分利用自然条件,确定温室开窗的朝向十分 重要,如地区全年平均主导风向为东南,则天窗的位置应设在北 侧。同时还可安装自然风收集装置增加温室内循环,冬天还可 在自然风收集装置上安装空气增温系统,增加内循环的时候还 可以增肌温室内的温度。 二、温室运行机构 1.电力系统可采用工业电网与自发电结合方式充分节省能 源与成本。自发电可采取风力发电,风力发电占地少,转化率高。成本相比太阳能发电低 2.降温增湿系统可采取湿帘降温增湿系统,或者高压喷雾 降温系统。降温还应配合风机降温。 3.遮阳系统采用移动遮阳慕,进行遮阳。 4.增温系统可采取水电共同增温,或单一增温系统。水电增温 这是在用热水增温与电力增温结合方式,增加增温效率,水力增温则是采用太阳能方式将水升温,再通过管道进入温室内增温。电力增温则是采用电热器增温。 5.浇灌系统可采用滴灌或雾化浇灌,可充分节省水资源,节省 成本,浇灌效率高。具体浇灌方式还应结合农作物特点,具体

农业大棚远程智能监控与PLC自动化控制系统解决方案

农业大棚远程智能监控与P L C自动化控制系统解决方案 目录

1前言 1.1 智能农业远程智能监控系统的概念 智能农业是采用比较先进、系统的人工设施,改善农作物生产环境,进行优质高效生产的一种农业生产方式,20世纪80年代以来,智能农业发展很快,特别是欧美、日本等一些发达国家,目前已经普遍采用计算机控制的大型工厂化设施,进行恒定条件下全年候生产,效益大为提高;在社会主义市场经济条件下,我国的智能农业以其较高的科技含量、市场取向的新机制、短平快的产销特点、效益显着的竞争力,取得了快速发展,改善了传统农业的生产方式、组织方式和运行机制,提高了农业科技含量和物质装备水平,成为现代农业重要的生产方式。 深圳市信立科技有限公司智能农业远程智能监控系统是指利用现代电子技术、移动网络通信技术、计算机及网络技术相结合,将农业生产最密切相关的空气的温度、湿度及土壤水分等数据通过各种传感器以无线ZigBee技术动态采集,并利用中国电信的4G,4G CDMA网络通讯技术,将数据及时传送到智能专家平台,使智能农业管理人员、农业专家通过手机或手持终端就可以及时掌握农作物的生长环境,及时发现农作物生长症结,及时采取控制措施,及时调度指挥,及时操作,达到最大限度的提高农作物生长环境,

降低运营成本,提高生产产量,降低劳动量,增加收益。 1.2 实施农业远程智能监控系统的必要性 江苏智能农业发展,已经初步形成了政府引导、社会支持、市场推动和农民投入的良性运行机制,当前,全省发展智能农业,有丰富的资源、成熟的技术和广阔的市场,具备了进一步发展的基础,也蕴藏着巨大的潜力。 智能农业远程监控管理系统融合先进的信息技术、自动化控制、无线通讯技术等高新技术和农业科技专家为一体的综合平台,实现资金、技术、人才和信息的有效调配,改善农民的传统作业和手工操作,将产生巨大的经济和社会效益,推动农业和农村经济发展,成为江苏统筹城乡经济发展,建设现代化农业的重要内容和全面建设小康社会的强势产业。 2背景分析 江苏省在“十二五”期间加大智慧城市建设,将智能农业纳入六大智慧产业之一,突出显示了农业信息化在智慧城市建设中的重要地位。智慧农业建设较好地适应了市场经济发展要求和农业增效、农民增收的需要,取得了突破性进展,生产规模稳步扩大,突破了光热水气资源的限制,基本实现了淡季不淡、全年生产、保障供应;科技含量较快提高,无立柱日光温室、二氧化碳气肥、病虫害生物防治、无公害栽培、组织培养、工厂化育苗等先进技术得到推广应用,科技进步贡献率达到65%以上,成为种植业中科技含量较高的产业;智能农业以其病虫害相对较轻、用药量少、标准化程度高的优势,成为全省无公害蔬菜的骨干,质量安全水平明显提高。 随着自动化农业、精准农业、绿色农业的发展需求,迫切需要在农业领域引入物联网、4G等技术,进一步深化农业各环节的信息化水平,结合ZigBee技术、CDMA网络数据传输和传感器技术组成无线传感网络,通过ZigBee无线网络实时采集温室内温度、湿度信号以及光照、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数,自动开启或者关闭指定设备。可以根据用户需求,随时进行处理,为智能农业综合生态信息自动监测、对环境进行自动控制和智能化管理提供科学依

学前教育部社会实践活动方案

灞桥区职业教育中心 学前教育部社会实践活动方案 活动目的: 为增进学校与社会的密切联系,构建学校、社会联动育人的新格局,不断 提升学生的精神境界和道德意识,不断完善学生的人格。我部特组织学生外出进行春季社会实践活动。 活动安排: 时间:年月日 地点:牛背梁国家森林公园 组织者:贾少睿 参与领导:杨小平校长唐利国主任 参与老师:学前教育部各班班主任及下班教师 班级班主任下班老师 幼一、班张燕王红梅、徐旭、刘传福 幼一、班张璐贾晓红、王育新 幼二、班马军峰苗峰、黄华君 幼二、班张伦娜李丹、王淼 幼二、班屈彩萍秦环、李亚玲(各班主任根据本班学生人数将本班学生分成一到三组,由下班老师及班主 任每人负责一组学生。每组有组长,留联系电话,统一行动,注意安全。) 活动要求及注意事项: 、班主任鼓励并做好学生思想工作,要求全体学生都参与。(除个别特殊情况)

、下班老师配合班主任做好学生的安全工作。 ⑴、乘车安全。在抵达目的地前,中途任何人不得下车,同学在车上找位置就坐,讲文明相互礼让;严守上下车时间,活动过程中学生不得换乘其他车辆。在行车时,严禁同学在车上乱走动,严禁同学将头伸出车窗外,如有乘车不舒服,请向带队老师或导游说明;上、下车时严禁拥挤,有序上下车;车上文明休息,吃零食、果壳要放垃圾袋,不乱抛;如有集体唱歌等娱乐活动,不能妨碍司机驾驶,车上服从指挥。 ⑵、到达目的地,按带队老师要求,分组行动;游览景区严禁在游览期间嬉戏、攀爬、下水、拥挤等,遵守景区规定文明游玩。不得到禁止区域游玩。 ⑶、注意保管好随身贵重物品。不要把相机、、手机、现金等随便放在车上,以防丢失。 ⑷、注意食品安全和消防安全。不购买路边流动摊点无安全保障食品;自己合理安排好早餐、中餐时间,不准喝酒,如有身体不适请向带队老师报告。严禁在景区和车上用火,不准携带打火机等。 ⑸、同学们在到校离校回家路上,要特别注意交通安全,遵守交通规则。 西安市灞桥职教中心 年月日

水泵远程智能监测系统

水泵远程智能监测系统一.公司简介 深圳市天地网电子有限公司致力于电力领域产品的开发,生产和技术性服务。公司聚集了一批在电力和通讯领域有着丰富经验的专家以及研发精英,为电力设备、输配电线路的运行状态监测、故障检测定位等提供产品以及技术性服务。公司本着以人为本、科技创新、团结协作、顾客至上的理念,为电力用户提供了诸多可靠的解决方案,并得到业内企业的认可。深圳市天地网电子有限公司成立于2011年,注册资金为500万元。公司位于深圳南山区,属于高新技术企业。 水泵站远程监测和控制系统的实现,首先依赖于各个环节重要运行参数的在线监测和实时信息掌控,基于此,物联网作为“智能信息感知末梢”,可成为推动智能电网发展的重要技术手段。未来智能电网的建设将融合物联网技术,物联网应用于智能水泵站最有可能实现原创性突破、占据世界制高点的领域。 二.概述 我公司自主研发的TDW-008水泵站自动化远程监控系统是集传感技术、自动化控制技术、无线通信技术、网络技术为一体的自动化网络式监控管理系统。 泵站管理人员可以在泵站监控中心远程监测站内水泵的工作电压、电流、多路无线检测温度、水位等参数;支持泵启动设备手动控制、自动控制、远程控制泵组

的启停,实现泵站无人值守。该系统适用于城市供水系统、电厂、工厂、排水泵 站的远程监控及管理。 1)系统组成 TDW-008主要包括:值班室污水泵站自动化远程监控系统人值守集中控制管理系统中心主站监控平台和现场泵房控制分站: ◇中心主站监控平台由工控机、系统监控软件、网络接入设备共同构成,能够实现监测、查询、遥调、运算、统计、控制、存储、分析、报警等多项功能。 ◇现场泵房控制分站主要由数据采集模块:电压、电流、功耗、功率因数,无线可以接多路温度、水位传感器、电源控制器、继电器单元、配电控制机柜及安装附件组成。它与中心主站监控平台通过GPRS/3G网络方式连接到一起。水源地各井位泵房为分站,中心泵房统领各分站,通过中国移动的无线数据传输设备,实现点到多点的通讯,从而最终实现对各井位泵的远程集中监视和控制。 2)控制功能 (1)监测采集功能 ---监测采集泵站水位、各种在线温度;监测泵组的启停状态、电流、电压、保护状态以及深井泵电机的实际温度等数据。

温室大棚智能监控系统安装方案

温室大棚智能监控系统安装方案 我国是农业大国,为了给农作物创造合适的生长环境,农业生产人员需实时关注各项环境指标是否正常,传统的人工现场监测已经无法满足现代农业的需求,托莱斯的温室大棚环境智能监控系统有效的解决了这一难题,本文就对此系统的设计进行深度解析。 温室大棚环境智能监控系统通过在传统农业的基础上融合了物联网、信息化、自动化等技术,利用部署在大棚内的各类传感器节点采集土壤水分、温度、湿度、光照、CO2等环境信息,实现无线采集、无线传输、视频监控、异地监控等功能,不仅解放了劳动力,降低了生产成本,还能调节农作物产期,提高生产率。 环境采集节点主要由信立环境传感器、控制器和WIFI模块所组成,其中常用的环境传感器包括光照度传感器、空气温湿度传感器及土壤温湿度传感器。控制器通过IIC协议与485协议等实现对数字传感器的数据采集,并通过UART口将数据转送给WIFI模块。WIFI模块、无线摄像头、移动终端等与WIFI基站建立连接,并由基站通过光纤将数据传输至监控中心的服务器,实现远程PC和移动终端的实时监测温室大棚内环境数据。 无线网络覆盖及接入设计 WIFI技术是近年出现的基于以太网的无线局域网技术,WIFI网络传输速率快,传播距离远,最大可以达到300米左右,在移动状态下,WIFI网络也能保持很好的传输特性,且十分易于系统后期扩展。智能WIFI基站配备了高功率天线,可以有效覆盖方圆200米内的范围,之内的环境采集节点、PC及移动终端可与其连接。同时基站具有Ping Watchdog功能,即通过设置一定时间内Ping 1至2个IP地址的方式来检测当前连接状态,当远程IP地址均Ping失败的时候,基站会执行失败动作,失败动作可配置为重启基站或重新建立WIFI连接,这一机制,有效保证了智能基站长期稳定工作。 环境采集节点设计 环境采集节点由数据处理模块、数据采集模块及稳压电源模块组成。 数据处理模块通常采用STM32F来实现,STM32F具有外围接口广、功耗低、串口资源丰富,抗干扰能力强及价格低廉的优势。STM32F工作频率可达72MHz,MHZ下的功耗仅为uA级别,有效保证了数据采集及处理的时效性,也方便SP706设计硬件看门狗电路。 数据采集模块主要用于感知温室大棚内的环境信息,包括光照度传感器、空气温湿度传感器及土壤温湿度等传感器。我们对传感器的筛选建议是在满足精度的前提下,尽量选择低功耗的复合型传感器。

农业智能大棚控制溯源系统设计方案

农业智能大棚控制溯源系统设计方案

生态农业智能温室大棚监测、溯源及控制系统 设 计 方 案xxxxxxxx有限公司

目录 背景......................................................................错误!未定义书签。一:客户需求 ......................................................错误!未定义书签。二:系统结构及控制模式 ..................................错误!未定义书签。三:现场数据采集与控制功能...........................错误!未定义书签。四:监测软件数据平台 ......................................错误!未定义书签。五:功能应用 ......................................................错误!未定义书签。六:农产品溯源系统 ..........................................错误!未定义书签。 七、条码仓储管理系统(WMS) ...........................错误!未定义书签。 八、商品盘点 ......................................................错误!未定义书签。

背景 温室智能控制系统是利用环境数据与作物信息,指导用户进行正确的栽培管理。物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。 近年来,随着温室大棚化种植、工厂化育秧和设施栽培等农业生产技术的广泛应用,快速准确地环境参数的收集和分析就成为现实的需求,利用计算机技术对相应的农业气象参数进行采集,则一方面可及时了解作物生长的环境参数,另一方面也可根据采集的参数控制大棚环境的调节从而为农作物的生长提供适宜的生长环境。由于温室内的湿度、温度等环境条件不适合于普通PC 机工作,故这里选用单片机进行数据采集,而采集的数据可经过串口发射接收设备传送给上位PC 机进行分析处理。 一:客户需求 (1)智能温室大棚控制系统 随着国民经济的迅速发展,现代农业得到了长足的进步,全国各地根据需要普遍建设了日光温室、塑料大棚等为农作物创造出良好的生长环境。温室工程成为高效农业的重要组成。

远程视频智能化监控系统设计方案

视频监控系统设计方案二〇一七年十月十四日

目录 1.方案概述 (4) 1.1 设计原则 (4) 1.2 设计要求及技术指标 (5) 2.基本要求与配置 (6) 2.1 基本要求 (6) 2.2 交通监控类型原理 (6) 2.2.1 DDN远程监控方案 (7) 2.2.2 WLAN无限连接监控方案 (8) 2.3设备配置 (10) 3.系统结构组成 (10) 3.1方案结构图 (10) 3.2工程描述 (12) 4.产品说明 (12) 4.1摄像产品介绍 (13) 4.1.1技术特点 (14) 4.1.2技术参数 (15) 4.2网络视频编/解码器(DSN-M4T/R) (16) 4.2.1主要特点 (16) 4.2.2技术指标: (17) 4.3传输设备介绍(XQ-54M- 5.8 5.8G 无线室外网桥) (18)

4.3.1产品特点: (18) 4.3.2应用方式 (18) 4.3.3技术指标 (19) 4.4、有讯网络DWL-2000AP+A 无线AP (21) 4.4.1产品特性和优势: (21) 4.4.2参数 (21) 4.5、系统管理平台 (23) 4.5.1、功能概述 (25) 4.5.2、系统构成 (25) 5.系统主要指标 (31) 5.1视频系统 (31) 5.2录像存储 (31) 5.3系统维护 (31) 6.方案特点 (32) 7.配置清单 (33)

1.方案概述 网络视频监控系统以综合管理软件为核心,结合嵌入式视频服务器,实现了基于网络的点对点、点对多点、多点对多点的远程实时现场监视、远程遥控摄像机以及录像、报警处理等,通过兼容模拟视频设备实现模拟视频系统与数字视频系统的数字化统一管理。 众所周知,采用无线网络技术给我们带来了极大的方便,采用无线网络技术可省去布线的麻烦,可以让信号覆盖到有线网络不能延伸到的地方,可以节约维护成本等。 本方案中设计使用DSN-M4T编码器将前端摄像机输出的模拟视频信号、音频信号和告警信号转化为数字信号,通过前端的无线传输设备(5.8G无线网桥)与监控中心进行传输,在监控中心的视频服务器(PC机)上通过CC SERVER软件解码,实时显示在计算机显示器上或通过视频解码器连接到监视屏幕实现多画面监控。录像由客户端PC机通过软件实时完成。并且告警信号经过软件处理在监控中心有声光显示或直接进行告警后录像存储。 1.1 设计原则 在此方案设计中,以下原则贯穿于设计工作中的全部过程: 1、可靠性原则: 监控系统的可靠性是监控系统具有实用性的前提,是监控系统应急、防范及事后举证的保证。 2、实时准确的原则: 监控系统的基本功能就是将被监控对象发生的事件在有限的时间内准确及时地反映上来。因此实时性与准确性的原则贯穿在系统设计的各个方面。 3、先进性与实用性相结合的原则: 既要保证系统设计的先进性,又要保证系统设计的实用性。选用的设备是经过实践检验的成熟产品,同时考虑系统的总体成本以及实际的气候、地理条件,比较模拟监控、有线网络、无线网络、数字存储等诸方面的特点,为用户提供最

温室大棚智能监控系统的研究方案(推荐文档)

温室大棚智能监控系统的研究方案 我国是一农业大国,农业是国家的重要经济命脉。提高单位面积的作物的产量、生产优质农产品是现阶段农业发展的迫切要求,而温室大棚是实现高产、优质农业的一个重要的组成部分。温室大棚是一种可以改变植物生长环境,根据作物生的最佳生长条件,调节温室气候使之一年四季满足植物生长需要,不受气候和土壤条件的影响,能够避免外界四变化和恶劣气候对其影响的场所,并且能在有限的土地上周年地生产各种不同的蔬菜、鲜花等反季节作物的一种温室设施。温室生产以达到调节作物生长过程中的产期,促进在不同时期作物的发育提高作物品质、产量等为目的。温室棚依照不同的屋架、采光材料又可分为很多种类,如玻璃温室、塑料温室等。温室结构的建造标准是既能密封保温,便于通风降温。但是作物要想现高产、优质、仅仅靠温室保温是不行的,需要对农作物的生长环境进行多方位多的精确采集和实时的控制。目前国家提出要狠抓农业科技革命的新型农业道路,实施数字化精准农业温室大棚是现代农业发展改革的一大措施。数字化精准农业温室大棚技术是从生产理念、经营主体、农业装备、先进科技成果转化、提高农业生产力等方面进行农业的改革,应用先进的技术调控差异,科学利用资源,采用信息化经营管理和组织方式进行农业生产,实现农业生产的目标管理。 与普通的温室大棚相比,数字化精准农业温室大棚不仅能够种植优质高产反季作物而且将电子、计算机、通信和自动控制等信息技术引入到本领域中,朝着精细农业、数字农业的方向发展。数字化精准农业温室大棚系统,可以定量获取和分析农业环境的多种参数 ,实现对环境的多点检测,其检测目标可以是温度、湿度、光照、振动、压力、水/土壤/空气成分等,能对大棚内个环境参数达到良好的检测,进而协调控制大棚内的环境参数,使大棚内的环境条件能够适宜作物的成长。对温室大棚内的内的环境因子进行多点多参数的采集,一般需要在土壤中铺设大量的线缆,使得对作物的耕作造成了一定的困难,采用无线的方式进行数据的采集可以解决上述问题;根据所采集的数据,需对温室大棚的环境进

智能温室建设方案

智能温室建设方案 1、智能温室建设的必要性 随着科技的进步,原有农业种植方式已经不能满足社会发展的需要,必须对传统的农业进行技术更新和改造。经过多年的实践,人们总结出一种新的种植方法——温室农业,即“用人工设施控制环境因素,使作物获得最适宜的生长条件,从而延长生产季节,获得最佳的产出”。这种农业生产方式最大的特点是不受环境的限制,可以在任何条件下按照人们事先设计的方式生产,从而可以取得高产、高效的效果。温室农业主要用于瓜果、蔬菜、花卉等农产品的超季节培育,使冬春两季也能生产供应,尤其在寒冷的北方地区,该技术已成为农业发展的一项必需的必然选择。 在北方寒冷地区,温室大棚作为温室农业发展的重要组成部分,它可以在不适宜植物生长的季节为其提供生育期和增加产量,多用于低温季节喜温蔬菜、花卉、林木等植物栽培或育苗等,在农业农村经济发展中也发挥着日趋重要的作用。但是随着经济的发展,过去的传统温室大棚往往只是起到保温的效果,并不能完全满足温室作物对温室环境的需要,因此其产生的产量和品质还是会受到一定的制约。而随着互联网技术的发展,人们将物联网技术应用于传统温室大棚,实现温室种植的高效和精准化管理,智能温室大棚应运而生。 顺应当前农业产业快速发展的需要,智能温室配备了由计算机控制的可移动天窗、遮阳系统、保温系统、升温系统、湿窗帘/风扇降温系统、喷滴灌系统或滴灌系统、移动苗床等自动化设施,采用计算机集散网络控制结构对温室内的空气温度、土壤温度、相对湿度、CO2浓度、土壤水份、光照强度、水流量以及PH值、EC值等参数进行实时自动调节检测,创造植物生长的最佳环境,使温室内的环境接近人工设想的理想值,以满足温室作物生长发育的需求。智能温室适用于种苗繁育、高产种植、名贵珍稀花卉培养等场地,以增加温室产品产量,提高劳动生产率。可以说智能温室大棚通过智能化控制系统可以实现对温室内的环境精确控制,不仅推动了我国现代设施农业的改造升级,同时对于农业生产效益的提升也

智能温室大棚控制系统解决方案

智能温室大棚控制系统解决方案 智能温室大棚控制系统充分应用现代信息技术,集成软件、智能控制、物联网技术、音视频技术、3S技术、无线通信技术及专家智慧与知识,实现大棚控制各关键环节的信息化、标准化,是云计算、物联网、地理信息系统等多种信息技术在大棚控制中综合、全面的应用,实现更完备的信息化基础支撑、更透彻的农业信息感知、更集中的数据资源、更广泛的互联互通、更深入的智能控制、更贴心的公众服务。 图:传统农业向现代农业转变的过程 云飞智能温室大棚控制系统可以实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像、通过模型分析,自动控制温室湿帘风机、喷淋灌溉、内外遮阳、顶窗侧窗、加温补光等设备。同时,系统还可以通过手机、计算机等信息终端向管理者发送实时监测信息、报警信息,以实现温室大棚智能化远成管理,充分发挥物联网技术在设施农业生产中的作用,保证温室大棚内环境最适宜作物生长,实现精细化的管理,为作物的高产、优质、高效、生态、安全创造条件,帮助客户提高效率、降低成本、增加收益。 系统架构

一、温室环境监测 温室大棚智能化远程管理,通过温室环境监测对种植环境的空气温湿度、土壤温湿度、光照度、二氧化碳浓度等信息进行采集,对采集的数据进行分析,根据参数的变化实施调控或自动控制温控系统、灌溉系统等现场生产设备,保证农作物最优质的生长环境、促进农业生产的优质、高效、高产!

监测站点数据总览、分站点设备运行状态、记录时间、详细数据实时显示

二、视频监控 通过在农业生产区域内安装全方位高清摄像机置,对包括种植作物的生长情况、投入品使用情况、病虫害状况情况进行实时视频监控,实现现场无人职守情况下,种植者对作物生长状况的远程在线监控,农业专家远程在线病虫害作物图像信息获取,质量监督检验检疫部门及上级主管部门对生产过程的有效监督和及时干预,以及信息技术管理人员对现场数据信息和图像信息的获取、备份和分析处理。 三、智能预警 通过将监测点上环境传感器采集到的数据与作物适宜生长的环境数据相比较,当实时监测到的环境数据超出预警值时,系统自动进行预警提示,包括环境

远程监控系统设计方案

远程监控系统设计方案一、概述 家庭监控的网络化、智能化、高清化已经是安防行业自我追求的另一高度。由于家庭监控的智能化依赖于网络技术与高清技术的发展,网络低速曾经阻碍了家庭安防的发展。但4G 网络的到来,为监控行业打开了新的局面,也为家庭安防实现一个阶段性发展,必然也将推动家庭网络监控的全面覆盖。 各地虐童案例、非法入侵、入室盗窃等事故的频频发生,自身安全和家庭财产成为民众关心的社会话题。这些恶性事件提高了民众对安全的防范意识。在众多智能家居系统中,家庭监控已经成为其中的一员了。看孩子、看父母、防保姆、防小偷…… 家庭监控俨然成为了家庭安全保障的得力智能助手。网络技术的普及也让众多不懂监控技术的大众能够安装和使用监控设备。技术人员不必亲自到场解决各种问题,只需要在网络进行指导就行。通过安装一套远程视频监控系统,就可以解除您的后顾之忧。在上班或出差时,您可以随时通过电脑或手机查看家中即时的实时影像,及时与家人面对面地沟通,了解家庭情况。 家庭安防监控系统主要是通过远程安防监控器,实现对家庭智能化系统中各种与信息相关的通讯设备、家用电器和家庭保安装置等进行集中的或异地的控制和家庭事务管理,实现对家庭中重要设备进行远程信息查询、安防报警、远程监控等功能。 二、系统设计目标 在进行家庭监控系统设计时,根据用户的实际需求,从架构合理、安全可靠、产品主流、低成本、安装简便为出发点,注重用户体验并为用户提供先进、安全、高效的系统解决方案。 三、系统设计原则与依据 1、设计原则 本系统是以孩子、老人的安全和财产安全为主,本着美观大方的理念,在孩子的卧室、老人的卧室、主要活动场所(客厅、阳台)、门口等安装监控摄像机,摄像机的图像通过视频线缆传送到监控主机上,设置好路由器将视频图像通过ADSL传送出去。在此方案设计中,以下原则贯穿于设计工作中的全部过程: (1)可靠性原则 (2)实时准确的原则 (3)先进性与实用性相结合的原则 (4)灵活扩展原则 (5)便于维护原则 (6)安全性原则 四、总体设计 1、需求分析 大部分家庭的监控面积在70㎡至200㎡之间,在视频监控方面投入不会太多,因此家庭网络视频监控系统还是以经济性为主,实现现场监视、记录、查询、报警等功能即可。要求价格实惠、功能适中,性能稳定可靠、无需专人管理、安装方便、使用简单、图像清晰,而且占用带宽低。

一年级“找春天、画春天”社会实践活动方案.doc

“找春天、画春天”社会实践活动方案 ——余庆县实验小学一年级 活动时间: 2016 年4 月1 日(五周星期五) 活动地点:余庆都市第三地 活动目的: 1、春天是一年中最美的季节,通过“找春天、画春天”活动,在欣赏春天美景,拓展学生的视野的同时,进一步感受春天的美景,锻炼学生的意志,培养学生的审美能力和动手能力。 2、教育学生爱护公物,保护环境和绿化,严禁学生攀摘花草树木,乱丢垃圾,每生自带保洁袋,返回时清理好环境卫生. 为强化找春天、画春天活动安全管理,增强带队老师、活动学生的安全及环境保护意识。 3、确保师生的人身安全和活动的顺利进行,在活动过程中,应急措施必须落到实处,以利于及时应变。 活动准备: 1、年级组长黄天静在学校少大队安排和带领下周一采好点,定好活动路径和场地。 2、六个中队各中队旗1 面,照相机 1 台、垃圾袋、学生每人一张A4白纸、一盒彩色笔、文具袋等。 活动路径: 一年级全体师生在校园整队出发—→余庆新华书店—→求是书屋对面—→下里场口—→都市第三地—→原路返回学校 活动参与人员:一年级六个中队全体队员、班主任和科任跟班老师 活动计划: (一)安全教育: 1、排队行走安全:一切行动听从老师指挥,紧跟队伍,不掉队,在队伍中行走不喧哗,不拥挤,不吃东西。 2、游玩安全: (1)不玩水,不去小溪边玩耍,不攀爬石头,树木; (2)不钻草丛、树丛,不做危险游戏; (3)不触摸电线。 (4)在老师视线范围内活动,不得随意离开,有事离队要向老师请假并结伴而行。 3、画春天安全: (1)绘画时不准高声喧哗,追逐打闹。 (2)不准照抄别人的作品,不能用画笔打人,不能乱扔垃圾。 (二)文明教育: 1、在来回路途中要注意交通文明,不乱穿马路,走人行道和斑马线。 2、在游玩过程中要注意卫生文明:不乱丢废弃物,扔在自己带的塑料袋里,离开休息地,要搞好卫生。 3、在游玩过程中要注意语言文明:不讲脏话,不大声喧哗;如有游客询问要热情地回答。 4、在游玩过程中要注意行为文明:不追跑打闹、不损坏公共财物,在游玩过程中做到文明、安全。

相关主题