搜档网
当前位置:搜档网 › 力学性能检测规程

力学性能检测规程

力学性能检测规程
力学性能检测规程

钢筋力学性能检测作业指导(可编辑修改word版)

建筑用钢筋检验指导书 1、试验目的 为了规范土建试验室对钢筋混凝土用钢钢材的屈服点、屈服强度、抗拉强度和伸长率、弯曲变形性能、平面反向弯曲变形性能及钢筋的耐反复弯曲性能检验的工作程序,实现标准化操作,特制定此作业指导书。 2、适用范围: 本指导书适用于混凝土结构中的钢筋与焊接钢筋。 3、引用标准: GB/T228-2002 《金属材料室温拉伸试验方法》 GB/T232-1999 《金属材料弯曲试验方法》 GB238-2002 《金属线材反复弯曲试验方法》 GB13013-91 《钢筋混凝土热轧光园钢筋》 GB13014-91 《钢筋混凝土余热处理钢筋》 GB1499-1998 《钢筋混凝土热轧带肋钢筋》 GB/T701-1997 《低碳钢热轧园盘条》 GB13788-92 《冷轧带肋钢筋》 JGJ18-2003 《钢筋焊接及验收规程》 JGJ/T27-2001 《钢筋焊接接头试验方法》 4、检测的环境要求 试验室的温度应在10℃-35℃范围内。 5、试验项目和质量要求

5.1实验项目 钢筋拉伸试验:屈服点、抗拉强度、伸长率 钢筋冷弯试验 钢筋焊接接头试验 5.2质量要求 5.2.1钢筋的力学性能和工艺性能应符合表一、表二、表三、表四,冷弯试验时受弯曲部位外表面不得产生裂纹。 热轧直条光圆钢筋力学性能和工艺性能(GB13013-91) 表一 表面形状钢筋 级别 强度等 级代号 公称 直径 mm 屈服点σs Mpa 抗拉强度σ b Mpa 伸长率σ5 % 冷弯 d-弯芯直径 α-钢筋公称直径 不小于 光圆I R235 8~20 235 370 25 180o d=α低碳钢热轧圆盘条力学性能和工艺性能(GB/T701-1997) 表二 牌号 力学性能 冷弯试验180? d-弯芯直径 α-试样直径屈服点σs,Mpa 抗拉强度σb,Mpa 伸长率δ10,% 不小于 Q215 215 375 27 d=0 Q235 235 410 23 d=0.5α 热轧带肋钢筋力学性能和工艺性能(GB1499-1998) 表三

最新金属的力学性能测试题及答案

第一章金属的力学性能 一、填空题 1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。 2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性, 另一类叫__________,反映材料在加工过程中表现出来的特性。 3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。 4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。 5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。 6、常用的硬度表示方法有__________、___________和维氏硬度。 二、单项选择题 7、下列不是金属力学性能的是() A、强度 B、硬度 C、韧性 D、压力加工性能 8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金 属的() A、强度和硬度 B、强度和塑性 C、强度和韧性 D、塑性和韧性 9、试样拉断前所承受的最大标称拉应力为() A、抗压强度 B、屈服强度 C、疲劳强度 D、抗拉强度 10、拉伸实验中,试样所受的力为() A、冲击 B、多次冲击 C、交变载荷 D、静态力 11、属于材料物理性能的是() A、强度 B、硬度 C、热膨胀性 D、耐腐蚀性 12、常用的塑性判断依据是() A、断后伸长率和断面收缩率 B、塑性和韧性 C、断面收缩率和塑性 D、断后伸长率和塑性 13、工程上所用的材料,一般要求其屈强比() A、越大越好 B、越小越好 C、大些,但不可过大 D、小些,但不可过小 14、工程上一般规定,塑性材料的δ为() A、≥1% B、≥5% C、≥10% D、≥15% 15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都可以 16、不宜用于成品与表面薄层硬度测试方法() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都不宜 17、用金刚石圆锥体作为压头可以用来测试() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上都可以 18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而() A、变好 B、变差 C、无影响 D、难以判断 19、判断韧性的依据是() A、强度和塑性 B、冲击韧度和塑性 C、冲击韧度和多冲抗力 D、冲击韧度和强度 20、金属疲劳的判断依据是() A、强度 B、塑性 C、抗拉强度 D、疲劳强度 21、材料的冲击韧度越大,其韧性就() A、越好 B、越差 C、无影响 D、难以确定 三、简答题 22、什么叫金属的力学性能?常用的金属力学性能有哪些?

钢筋力学性能检测复习题

质量检测人员钢筋力学性能检验部分复习题(仅供参考) 一、名词解释 1、比例试样:试样原始标距与原始横截面积有L0=k(S0)-1关系者称为比例试样。 2、平行长度:试样两头部或两夹持部分(不带头试样)之间平行部分的长度。 3、机械连接:通过钢筋与连接件的机械咬合作用或钢筋端面的承压作用,将一根钢筋中的力传递至另 一根钢筋的连接方法。 4、热影响区:焊接或热切割过程中,钢筋母材因受热的影响(但未熔化),使金属组织和力学性能发 生变化的区域。 5、最大力伸长率:最大力时原始标距的伸长与原始标距之比的百分率。 二、填空 1、按化学成分分类,钢可分为碳素钢和合金钢两类。低碳钢的含碳量小于0.25%。 2、钢筋混凝土结构用钢筋主要有热轧带肋、热轧光圆、低碳钢圆盘条、冷轧带肋、冷轧扭钢筋等。 3、HRB335为 II 级钢,标准规定,该牌号的钢R el应不小于335(MPa),σb应不小于455(MPa)。A应 不小于17%。 4、低碳钢热轧圆盘条取样数量为拉伸 1 根,弯曲 2 根。试件应从2 根钢筋中截取,距钢筋端头应不 小于 500 mm。 5、钢材的力学性能试件取样长度,拉伸试样应≥标称标距+ 200mm ,弯曲试样应≥标称标距+ 150mm 。两支辊之间的距离为(d+3a)±0.5a (d为弯心直径a 为钢筋公称直径)。 6、对钢材复验的规定是,如某试验结果不符合规定的要求,则从同一批钢材中再取双倍数量 的试样再进行该不合格项目的检验,复验结果即使有一项指标不合格,则整批不予验收。 7、对试验机的要求,除要求应为1级或优于1级的准确度外,还有加载同轴度的要求。 8、钢筋机械连接当 3 个接头试件中有 1 个试件的强度不符合要求,应再取 6 个试件进行复检。复检中 如仍有 1 个试件的强度不符合要求,则该验收批评为不合格。 9、应用小标记、细划线或细墨线标记原始标距,但不得用引起过早断裂的缺口作标记。应精确至 ± 1% 。对于比例试样,应将原始标距的计算值修约至最接近 5 mm的倍数。 10、对焊接接头的弯曲试验,当试件外侧横向裂纹宽度达到 0.5 mm时,应认定已经破裂。 三、单项选择 1、牌号为HRB335,公称直径(a)为28mm的钢筋做弯曲试验时其弯心直径应是( b )。 a、3a b、4a c、5a 2、钢筋混凝土用热轧带肋钢筋、光圆钢筋及热轧圆盘条按批进行进行检查和验收,每批质量为(c) a、≤30t b、≤50t c、≤60t 3、对于钢筋的机械连接接头,I级接头的抗拉强度应满足以下要求(a) a、不小于被连接钢筋实际抗拉强度或1.10倍钢筋抗拉强度标准值 b、不小于被连接钢筋抗 拉强度标准值c、不小于被连接钢筋屈服强度标准值的1.35倍。 4、在做拉伸试验时,试样采用10倍直径的标距的钢筋是(a ) a、低碳钢热轧圆盘条 b、热轧光圆钢筋 c、热轧带肋钢筋 5、下列图形中,(b)为CRB650的标志。 a、b、c、 6、公称直径(a)为28mm闪光对焊试件,冷弯检验时其弯心直径应为( c ) a、3a b、4a c、5a 7、钢材拉伸试验在出现下列情况之一时,试验结果无效( b )

钢筋力学性能检测试题答案

质量检测人员考核试题(钢筋力学性能检验部分)答案 一、名词解释(20分) 1、比例试样:试样原始标距与原始横截面积有L0=k(S0)-1关系者称为比例试样。 2、平行长度:试样两头部或两夹持部分(不带头试样)之间平行部分的长度。 3、机械连接:通过钢筋与连接件的机械咬合作用或钢筋端面的承压作用,将一根钢筋中的力传递至另 一根钢筋的连接方法。 4、热影响区:焊接或热切割过程中,钢筋母材因受热的影响(但未熔化),使金属组织和力学性能发 生变化的区域。 5、最大力伸长率:最大力时原始标距的伸长与原始标距之比的百分率。 二、填空(20分) 1、按化学成分分类,钢可分为碳素钢和合金钢两类。低碳钢的含碳量小于0.25%。 2、钢筋混凝土结构用钢筋主要有热轧带肋、热轧光圆、低碳钢圆盘条、冷轧带肋、冷轧扭钢筋等。 3、HRB335为II 级钢,标准规定,该牌号的钢σs应不小于335(MPa),σb应不小于490(MPa)。 δ5应不小于16%。 4、低碳钢热轧圆盘条取样数量为拉伸1 根,弯曲 2 根。试件应从2 根钢筋中截取,距钢筋端头应 不小于500 mm。 5、钢材的力学性能试件取样长度,拉伸试样应≥标称标距+ 200mm ,弯曲试样应≥标称标距+ 150mm。两支辊之间的距离为(d+3a)±0.5a (d为弯心直径a 为钢筋公称直径)。 6、对钢材复验的规定是,如某试验结果不符合规定的要求,则从同一批钢材中再取双倍数量 的试样再进行该不合格项目的检验,复验结果即使有一项指标不合格,则整批不予验收。 7、对试验机的要求,除要求应为1级或优于1级的准确度外,还有加载同轴度的要求。 8、钢筋机械连接当3 个接头试件中有 1 个试件的强度不符合要求,应再取6 个试件进行复检。复 检中如仍有 1 个试件的强度不符合要求,则该验收批评为不合格。 9、应用小标记、细划线或细墨线标记原始标距,但不得用引起过早断裂的缺口作标记。应精确至 ±1% 。对于比例试样,应将原始标距的计算值修约至最接近5 mm的倍数。 10、对焊接接头的弯曲试验,当试件外侧横向裂纹宽度达到0.5 mm时,应认定已经破裂。 三、单项选择(20分) 1、牌号为HRB335,公称直径(a)为28mm的钢筋做弯曲试验时其弯心直径应是( b )。 a、3a b、4a c、5a 2、钢筋混凝土用热轧带肋钢筋、光圆钢筋及热轧圆盘条按批进行进行检查和验收,每批质量为(c) a、≤30t b、≤50t c、≤60t 3、对于钢筋的机械连接接头,I级接头的抗拉强度应满足以下要求(a) a、不小于被连接钢筋实际抗拉强度或1.10倍钢筋抗拉强度标准值 b、不小于被连接钢筋抗 拉强度标准值c、不小于被连接钢筋屈服强度标准值的1.35倍。 4、在做拉伸试验时,试样采用10倍直径的标距的钢筋是(a ) a、低碳钢热轧圆盘条 b、热轧光圆钢筋 c、热轧带肋钢筋 5、下列图形中,( b )为CRB650的标志。 a、b、c、 6、公称直径(a)为28mm闪光对焊试件,冷弯检验时其弯心直径应为(c ) a、3a b、4a c、5a

钢筋力学性能检测报告

00000000000R 有效期限至:2016-04-05 xxx建设工程质量安全监督站 钢筋力学性能检验报告 工程名称:/ 报告编号:BRZ11500092 (第2页共2页) 委托单位/ 委托编号15000697-2 委托日期2015-04-27 施工单位/ 钢材种类热轧带肋钢筋检测日期2015-04-28 结构部位/ 牌号HRB400 报告日期2015-04-29 见证单位/ 见证人/ 证书编号/ 检验性质委托检验 样品编号 公称 直径 (mm) 技术指标要求 序 号 屈服 强度 Re(MPa) 极限 强度Rm (MPa) 伸长 率 A(%) 最大力 下总伸 长率(%) 冷弯实测强度比值 重量 偏差 (%) 生产 厂别 炉号 出产合 格证编 号 代表 数量 (t) 弯心直 径d (mm) 弯曲 角度 a() 结果Rm/Re Re/Re K 屈服 强度 (MPa) 极限 强度 (MPa) 伸 长 率 (%) 最大力 下总伸 长率(%) 重量 偏差 (%) BZ11500392 18 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 475 600 27.0 / 72.0 180 合格 1.26 1.19 -4 三钢/ / 60 2 470 595 27.0 / 72.0 180 合格 1.27 1.18 BZ11500393 20 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 470 600 26.5 / 80.0 180 合格 1.29 1.18 -4 三钢/ / 60 2 475 605 26.0 / 80.0 180 合格 1.27 1.19 BZ11500394 16 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 460 595 27.0 / 64.0 180 合格 1.29 1.15 -4 三钢/ / 60 2 465 590 27.5 / 64.0 180 合格 1.27 1.16 检验依据GB1499.2-2007《钢筋混凝土用热轧带肋钢筋》GB/T228.1-2010《金属材料室温拉伸试验方法》 主要仪 器设备仪器名称:油压万能材料试验机管理编号:YQ-03 规格型号: WI-100 有效期至:2016-01-14 结论样品编号:BZ11500392 样品编号:BZ11500393 样品编号:BZ11500394 试样依据标准所检验项目符合指标要求 试样依据标准所检验项目符合指标要求 试样依据标准所检验项目符合指标要求备注 声明1、报告未盖检测单位“检测报告专用章”无效。 2、复制报告未重新加盖检测单位“检测报告专用章”无效。 3、对报告若有异议,应及时向检测单位提出。 地址 地址:xxxxxxxxxxxxxxxxx(xxx建设工程质量安全监督 站) 邮编:000000 电话:0000-00000000 传真:0000-00000000 批准:审核:校核:检验:

力学性能检测试验仪器

力学性能检测试验仪器 一、力学性能检测试验仪器技术参数:最大试验力:5KN负荷传感器容量:0.5T(5KN)(能加配1个或多个其他容量的负荷传感器) ?精度等级:0.5级试验力测量范围:0.4%~100%FS(满量程)试验力分辨率:最大试验力的±1/300000,全程不分档,且分辨率不变。力控制:力控控制速度范围:0.001%~5%FS/s。力控速度控制精度:0.001%~1%FS/s 时,±0.2%;1%~5%FS/s时,±0.5力控保持精度: ±0.002%FS。变形控制:变形控控制速度范围:0.001%~5%FS/s。变形控速度控制精度:0.001%~1%FS/s时,±0.2%;1%~5%FS/s时,±0.5%。变形控保持精度:±0.002%FS。位移控制:位移控控制速度范围:0.0001~1000mm/min。位移控速度控制精度:±0.2%;位移控保持精度:无误差。有效试验宽度:120mm、360mm、410mm三种规格有效拉伸空间:800mm有效压缩行程:800mm控制系统:全微机自动控制。单位选择:g/Kg/N/KN/Lb多重保护:系统具有过流、过压、欠流、欠压等保护;行程具有程控限位、极限限位、软件限位三重保护。出现紧急情况可进行紧急制动。主机结构:门式,结构新颖,美观大方,运行平稳电源:220V 50Hz功率:0.4Kw主机重量:95,130Kg主机外型尺寸:650*360*1600,800*410*1600 ?二、力学性能检测试验仪器使用范围及技术说明:1、适用范围QX-W400 微机控制电子万能试验机为材料力学性能测量的试验设备,可进行金属线材与非金属、高分子材料等的拉伸、剥离、压缩、弯曲、剪切、顶破、戳穿、疲劳等项目的检测。可根据客户产品要求按GB、ISO、ASTM、JIS、EN等标准编制,能自动求取最大试验力,断裂力,屈服力,抗拉强度,抗压强度,弯曲强

钢筋力学性能和工艺性能试验检验技术措施

钢筋力学性能和工艺性能试验检验技术措施1.工程概况: 1.1.为了保证河津热电厂使用热轧带肋钢筋的质量和为施工提供可靠的技术参数,根据中华人民共和国钢筋砼用热轧带肋钢筋检验标准GB1499-1998,特制定本检验技术措施。 1.2.本检验技术措施适用于钢筋砼热轧带肋钢筋。 2.作业前条件准备: 2.1.作业人员技术要求: 2.1.1.作业人员应工作认真负责,经过技术培训,并取得合格证书。 2.1.2.作业人员应熟知钢筋力学性能试验的取样,试验结果评定等规定。 2.2.试验所需设备仪器 万能试验机1台 游标卡尺或测微仪1把 3.技术要求 热轧带肋钢筋的牌号由HRB和牌号的屈服点最小值构成。H、R、B 分别为热轧(Hotrolled)、带肋(Ribbed)、钢筋(Bars)三个词的英文手写字母。热轧带肋钢筋分为HRB335、HRB400、HRB500、三个牌号。 钢筋的力学性能、工艺性能应符合下表:

钢筋公称直径范围为8-50mm,当钢筋进行冷弯或反向弯曲试验时,受弯部位外表不得产生裂缝。 钢筋表面不得有裂缝、结疤和折叠,钢筋表面允许有凸块,但不得超过横肋的高度,钢筋表面上其他缺陷的深度和高度不得所在部位尺寸的允许偏差。 3.1.每批钢筋的检验项目,取样方法和试验方法应符合表2的规定。表2 3.2.拉伸冷弯,反向弯曲试验不允许进行车削加工,计算钢筋强度用截面面积 采用表3公称横截面积。 表3钢筋公称横截面积与公称重量

3.3.测量钢筋重量偏差时,试样数量不小于10支,试样总长度不小于60cm,长度应逐支测量,精确到10mm,试样总重量不大于100kg时,应精确到0.5kg,试样总重量大于100kg时,应精确到1kg。 当供方能保证钢筋重量偏差符合规定时,试样的数量和长度可不受制上述限制。 3.4.钢筋实际重量与理论重量的偏差按下式计算: (试样实际总重量-(试样总长度×理论重量) 重量偏差(%)= ×100% 试样总长度×理论重量 4.检验规则 4.1.钢筋的检查和验收,按GB/T17505的规定进行。 4.2.组批规则 4.2.1. 钢筋应按批进行检查和验收,每批重量不大于60t。 4.2.2. 每批应由同一牌号、同一规格的钢筋组成,允许由同一牌号、同一冶炼方法、同一浇注方法的不同炉罐号组成混合批,但各炉罐号含碳量之差不大于0.02%,含锰量之差不大于0.15%。 4.3.取样数量 4.3.1. 钢筋各检查项目的取样数量应符合表2的规定

材料力学性能拉伸试验报告

材料力学性能拉伸试验报告 材化08 李文迪 40860044

[试验目的] 1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。 2. 测定低碳钢的应变硬化指数和应变硬化系数。 [试验材料] 通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法: 1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。 1.2热处理状态及组织性能特点简述: 1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀 的冷却称为退火。 特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正 火。 特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。 1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此 温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。 特点:硬度大,适合对硬度有特殊要求的部件。 1.3试样规格尺寸:采用R4试样。 参数如下:

1.4公差要求 [试验原理] 1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段 卸荷后,试样变形立即消失,这种变形是弹性变形。当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。此时可记录下屈服强度R 。当屈服到一定 eL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。但是断裂后的残余变形比原来降低了。这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。当荷载达到最大值Rm后,试样的某一部位截面开始急剧缩小致使载荷下降,至到断裂。 [试验设备与仪器] 1.1试验中需要测得: (1)连续测量加载过程中的载荷R和试样上某段的伸长量(Lu-Lo)数据。(有万能材料试验机给出应力-应变曲线) (2)两个个直接测量量:试样标距的长度 L o;直径 d。 1.2试样标距长度与直径精度:由于两者为直接测量量,工具为游标卡尺,最高精度为 0.02mm。 1.3检测工具:万能材料试验机 WDW-200D。载荷传感器,0.5级。引伸计,0.5级。 注1:应力值并非试验机直接给出,由载荷传感器直接测量施加的载荷值,进而转化成工程应力,0.5级,即精确至载荷传感器满量程的1/500。 注2:连续测试试样上某段的伸长量由引伸计完成,0.5级,即至引伸计满量程的1/50。

钢筋力学性能检测依据

钢筋力学性能检测依据 钢筋力学性能检测依据: 钢筋原材料检测指标分为两类:必试:拉伸试验(屈服点、抗拉强度、伸长率)、弯曲试验; 其它:反向弯曲、化学成分。 依据:依据GB50204-2002 《混凝土结构工程施工质量验收规范》5.2.1条规定:钢筋进场时,应按现行国家标准《钢筋混凝土用热轧带肋钢筋》GB 1499 等的规定抽取试件作力学性能检验,其质量必须符合有关标准的规定。 抽样数量及代表批量按《钢筋混凝土用热轧带肋钢筋》GB1499 规定,检测项目为:拉伸试验(包括屈服强度、抗拉强度和断后伸长率或最大力总伸长率)和弯曲试验。 钢筋的力学性能检测指标包括:屈服强度、抗性强度、伸长率及冷弯性能。据专业从事钢筋力学性能检测等金属力学性能检测机构中船重工七二五研究所介绍说钢筋的力学性能指标应符合相应的国家标准: 1、屈服点:又称为屈服强度,在钢筋混凝土结构设计中所用的钢筋标准强度就是以钢筋屈服点为取值依据的。 2、抗拉强度:指钢筋抵抗拉力破坏作用的最大能力。 3、伸长率:义称延伸率,是指钢筋受拉力作用至断裂时被拉长的那部分长度与原长度的百分比,一般用“6”表示。它是一个衡量钢筋塑性的指标,它的数值越大,表示钢筋的塑性越好, 4、冷弯:是将钢筋试样在规定直径的弯心上弯到90或180度,然后检查试样有无裂缝、鳞落、断裂等现象。它是检验钢筋原材料质量和钢筋焊接接头质量的重要项目之一。 5、反复弯曲:是一种对钢丝进行冷弯试验的方法。它是在专用的曲折试验机上进行的。 钢筋力学性能即是在钢筋受到力的作用时,发生的反应与变化的规律,包括钢筋屈服强度、钢筋抗拉强度、钢筋的延伸率与冷弯性能。钢筋的屈服强度即是钢筋为对抗变形产生的应力,拉抗强度即是钢筋的最大承受力,延伸率为钢筋拉断时延长部分与原长的百分比,而冷弯性能则是钢筋常温下所能承受弯曲而不发生断裂的性能。对钢筋力学性能进行检验是建筑工程检验人员的主要工作之一,通过钢筋力学性能检验能够有效的保证工程质量,防止安全事故的发生。

钢筋力学性能检测报告

xxx建设工程质量安全监督站 钢筋力学性能检验报告 工程名称:/ 报告编号:BRZ11500092 (第2页共2页)

00000000000R 有效期限至:2016-04-05 批准: 审核: 校核: 检验: xxx 建设工程质量安全监督站 钢筋力学性能检验报告 工程名称:/ 报告编号:BRZ11500092 (第1页 共2页) 委托单位 / 委托编号 15000697-2 委托日期 2015-04-27 施工单位 / 钢材种类 热轧带肋钢筋 检测日期 2015-04-28 结构部位 / 牌 号 HRB400 报告日期 2015-04-29 见证单位 / 见证人 / 证书编号 / 检验性质 委托检验 样品编号 公称 直径 (mm ) 技术指标要求 序号 屈服 强度 Re(MPa) 极限 强度Rm (MPa ) 伸长率A(%) 最大力下总伸长率(%) 冷弯 实测强度比值 重量 偏差 (%) 生产厂别 炉号 出产合 格证编 号 代表数量(t ) 弯心直径d (mm ) 弯曲角度a () 结果 Rm/Re Re/Re K 屈服 强度 (MPa) 极限 强度 (MPa) 伸长率(%) 最大力下总伸 长率(%) 重量偏差 (%) BZ11500389 10 ≥ 400 ≥ 540 ≥16 ≥ 7.5 ± 7 1 445 580 29.5 / 40.0 180 合格 1.30 1.11 -7 三钢 / / 60 2 450 585 29.0 / 40.0 180 合格 1.30 1.1 3 BZ11500390 12 ≥ 400 ≥ 540 ≥16 ≥ 7.5 ± 7 1 470 590 27.5 / 48.0 180 合格 1.25 1.18 -6 三钢 / / 60 2 465 595 27.5 / 48.0 180 合格 1.28 1.16 BZ11500391 14 ≥ 400 ≥ 540 ≥16 ≥ 7.5 ± 5 1 450 585 27.0 / 56.0 180 合格 1.30 1.13 -4 三钢 / / 60 2 450 580 27.0 / 56.0 180 合格 1.29 1.13 检验依据 GB1499.2-2007《钢筋混凝土用热轧带肋钢筋》GB/T228.1-2010《金属材料室温拉伸试验方法》 主要仪器设备 仪器名称:电液式万能试验机 管理编号:YQ-061 规格型号:WA-100B 有效期至:2016-01-14 结论 样品编号:BZ11500389 样品编号:BZ11500390 样品编号:BZ11500391 试样 依据标准所检验项目符合指标要求 试样 依据标准所检验项目符合指标要求 试样 依据标准所检验项目符合指标要求 备 注

陶瓷力学性能检测之断裂韧性检测

陶瓷力学性能检测之断裂韧性检测 一、概述 陶瓷材料及制品在人们的生产生活中发挥着重要的作用,因其重要性,陶瓷检测也显得重要。下面就陶瓷的化学性能、力学性能等方面做一下简单介绍,供企业个人做为参考。 陶瓷材料的检测性能包括物理性能、化学性能、热学性能、电学性能等方面,其中物理性能、化学性能和力学性能是其主要的检测重点。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,下文主要以科标检测为例来介绍下陶瓷力学性能中弯曲强度检测的相关原理,科标检测专业提供相应的陶瓷材料检测,检测结果精准,出具报告,因此有一定的参考价值!二、断裂韧性 应力集中是导致材料脆性断裂的主要原因之一,而反映材料抵抗应力集中而发生断裂的指标是断裂韧性,用应力强度因子(K)表示。尖端呈张开型(I型)的裂纹最危险,其应力强度因子用K I表示,恰好使材料产生脆性断裂的K I称为临界应力强度因子,用K IC表示。金属材料的K IC一般用带边裂纹的三点弯曲实验测定,但在陶瓷材料中由于试样中预制裂纹比较困难,因此人们通常用维氏硬度法来测量陶瓷材料的断裂韧性。

陶瓷等脆性材料在断裂前几乎不产生塑性变形,因此当外界的压力达到断裂应力时,就会产生裂纹。以维氏硬度压头压入这些材料时,在足够大的外力下,压痕的对角线的方向上就会产生裂纹,如图2-1所示。裂纹的扩展长度与材料的断裂韧性K IC 存在一定的关系,因此 可以通过测量裂纹的长度来测定K IC 。其突出的优点在于快速、简单、 可使用非常小的试样。如果以P C 作为可使压痕产生雷文的临界负荷, 那么图中显示了不同负荷下的裂纹情况。 由于硬度法突出的优点,人们对它进行了大量的理论和实验研究。推导出了各种半经验的理论公式。其中Blendell 结合理论分析和实验数据拟合,给出下列方程: ??? ???=???? ??????? ??c a E H Ha K IC 4.8lg 055.052 21φφ 图2-1 P <P C (左)和P >P C (右)时压痕 K IC 是I 型应力强度因子,也就是断裂韧性;φ为一常数,约等于 3;HV 是维氏硬度;a 为压痕对角线长度的一半;c 为表面裂纹长度的一半,见图2-1。经过大量的研究表明,该公式至少在下列范围内是使用的:硬度(HV )=1~30GPa ,断裂韧性(K IC )=0.9~16MPa ·m 1/22a 2c

金属力学性能测试及复习答案

金属力学性能复习 一、填空题 1.静载荷下边的力学性能试验方法主要有拉伸试验、弯曲试验、扭转试验和压缩试验等。 2. 一般的拉伸曲线可以分为四个阶段:弹性变形阶段、屈服阶段、均匀塑性变形阶段和非均匀塑性变形阶段。 3. 屈服现象标志着金属材料屈服阶段的开始,屈服强度则标志着金属材料对开始塑性变形或小量塑性变形能力的抵抗。 4. 屈强比:是指屈服强度和抗拉强度的比值,提高屈强比可提高金属材料抵抗开始塑性变形的能力,有利于减轻机件和重量,但是屈强比过高又极易导致脆性断裂。 5. 一般常用的的塑性指标有屈服点延伸率、最大力下的总延伸率、最大力下的非比例延伸率、断后伸长率、断面收缩率等,其中最为常用的是断后伸长率和断面收缩率 。 6. 金属材料在断裂前吸收塑性变形功和断裂功的能力称为金属材料的韧性。一般来说,韧性包括静力韧性、冲击韧性和断裂韧性。 7. 硬度测试的方法很多,最常用的有三种方法:布氏硬度测试方法、络氏硬度的试验方法和维氏硬度实验法。 8. 金属材料制成机件后,机件对弹性变形的抗力称为刚度。它的大小和机件的截面积及其弹性模量成正比,机件刚度=E 〃S. 9. 金属强化的方式主要有:单晶体强化、晶界强化、固溶强化、以及有序强化、位错强化、分散强化等(写出任意3种强化方式即可)。 10. 于光滑的圆柱试样,在静拉伸下的韧性端口的典型断口,它由三个区域组成:纤维区、放射区、剪切唇区。 11. 变形速率可以分为位移速度和应变速度。 二、判断题 1.在弹性变形阶段,拉力F 与绝对变形量之间成正比例线性关系;(√) 若不成比例原因,写虎克定律。 2.在有屈服现象的金属材料中,其试样在拉伸试验过程中力不断增加(保持恒定)仍能继续伸长的应力,也称为抗服强度。(×) 不增加,称为屈服强度。 3.一般来讲,随着温度升高,强度降低,塑性减小。(×) 金属内部原子间结合力减小,所以强度降低塑性增大。 4.络氏硬度试验采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后卸除主实验力,以测量压痕的深度来计算络氏硬度。压入深度越深,硬度越大,反之,硬度越小。(×) 络氏硬度公式 5.金属抗拉强度b σ与布氏硬度HB 之间有以下关系式:b σ=K ?HB ,这说明布氏硬度越大,其抗拉强度也越大。(√) 6.弹性模量E 是一个比例常数,对于某种金属来说,它是一种固有的特性。(√) 7.使用含碳量高(含碳量为0.5-0.7%)的钢,不能提高机件吸收弹性变形功。(×) 8.脆性断裂前不产生明显的塑性变形,即断裂产生在弹性变形阶段,吸收的能量很小,这种断裂是可预见的。(×)

材料力学性能测试实验报告

材料力学性能测试实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

材料基本力学性能试验—拉伸和弯曲一、实验原理 拉伸实验原理 拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉 至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。 对于均匀横截面样品的拉伸过程,如图 1 所示, 图 1 金属试样拉伸示意图 则样品中的应力为 其中A 为样品横截面的面积。应变定义为 其中△l 是试样拉伸变形的长度。 典型的金属拉伸实验曲线见图 2 所示。 图3 金属拉伸的四个阶段 典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。直线部分的斜率E 就是杨氏模量、σs 点是屈服点。金属拉伸达到屈服点后,开始出现颈缩 现象,接着产生强化后最终断裂。 弯曲实验原理 可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实 验结果测定材料弯曲力学性能。为方便分析,样品的横截面一般为圆形或矩形。 三点弯曲的示意图如图 4 所示。 图4 三点弯曲试验示意图 据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是 其中I 为试样截面的惯性矩,E 为杨氏模量。 弯曲弹性模量的测定 将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲, 对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。 对试样施加相当于σpb0.01。 (或σrb0.01)的10%以下的预弯应力F。并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为 对于矩形横截面试样,横截面的惯性矩I 为 其中b、h 分别是试样横截面的宽度和高度。 也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。然后利用式(4)计算弯曲弹性模量。 二、试样要求

钢筋力学性能检测

目录 1 总则 2 术语、符号 2.1术语 2.2符号 3 仪器设备 4 操作规程 4.1 一般规定 4.2 钢筋力学性能检测 4.3 钢筋焊接力学性能检测 4.4 钢筋机械连接力学性能检测 1 总则 1.1 为贯彻建设部颁发的建设工程质量检测管理办法,结合我省实际情况,进一步提高和统一全省建筑工程材料见证取样检测中钢筋(含机械连接)的检测项目和试验操作程序,特制定本规程。 1.2 本规程适用于建筑工程材料见证取样检测中钢筋原材(如钢筋混凝土用热轧带肋钢筋、混凝土用热轧光圆钢筋、低碳钢热轧圆盘条、冷轧带肋钢筋、冷轧扭钢筋、冷拔螺旋钢筋等)、钢筋焊接(包括电阻点焊、闪光对焊、电渣压力焊、埋弧压力焊、电弧焊、气压焊等)以及钢筋机械连接的常规力学性能试验规程。 1.3 本规程涉及的钢筋(含机械连接)取样需由监理单位或建设单位认可,并采取切实有效的封样措施或同委托单位共同送至检测机构。 1.4 本规程规定的抽样数量应不小于该种产品应检测数量总和的30%,并至少不小于1组。 1.5 承担见证取样检测的机构必须同时具备以下条件: A.必须是取得省级以上技术监督部门计量认证的独立机构; B.检测机构应与所检工程的设计单位、监理单位、施工单位无隶属关系或其他利害关系; C. 必须具有健全、有效的管理体系和质量保证体系; D.必须有足够并且满足标准要求的仪器设备; E.必须有足够的并且持有山东省建设工程质量检测试验员上岗证书的人员。 1.6 钢筋(含机械连接)检测操作时,除遵守本规程外尚应符合国家和地方的现行有关技术标准的规定。 2.术语、符号 2.1 术语 2.1.1 标距:测量伸长用的试样圆柱或棱柱部分的长度。 2.1.2 原始标距(L0):施力前的试样标距。 2.1.3 断后标距(Lu):试样断裂后的标距。 2.1.4 平行长度(Lc):试样两头部或两夹持部分(部带头试样)之 间平行部分的长度。 2.1.5 伸长:试验期间任一时刻原始标距(L0)的增量。 2.1.6 伸长率:原始标距的伸长与原始标距(L0)之比的百分率。 2.1.7 断后伸长率:断后标距的残余伸长(Lu - L0)与原始标距(L0)之比的百分率(见图1)。对于比例试样,若原始标距不为5.65 (S0为平行长度的原始横截面积),符号A应附以下脚注说明所使用的比例系数,例如,A11.3表示原始标距11.3 的断后伸长率。对于非

建设部钢筋检测新要求

《混凝土结构工程施工质量验收规范》GB50204-2002局部修订 5.2 原材料 主控项目 5.2.1钢筋进场时,应按国家现行相关标准的规定抽取试件作力学性能和重量偏差检验,检验结果必须符合有关标准的规定。 检查数量:按进场的批次和产品的抽样检验方案确定。 检验方法:检查产品合格证、出厂检验报告和进场复验报告。 【说明】钢筋对混凝土结构的承载能力至关重要,对其质量应从严要求。本次局部修订根据建筑钢筋市场的实际情况,增加了重量偏差作为钢筋进场验收的要求。 与热轧光圆钢筋、热轧带肋钢筋、余热处理钢筋、钢筋焊接网性能及检验相关的国家现行标准有:《钢筋混凝土用钢第1部分:热轧光圆钢筋》GB 1499.1、《钢筋混凝土用钢第2部分:热轧带肋钢筋》GB 1499.2、《钢筋混凝土用余热处理钢筋》GB 13014、《钢筋混凝土用钢第3部分:钢筋焊接网》GB 1499.3。与冷加工钢筋性能及检验相关的国家现行标准有:《冷轧带肋钢筋》GB 13788、《冷轧扭钢筋》JG 190及《冷轧带肋钢筋混凝土结构技术规程》JGJ 95、《冷轧扭钢筋混凝土构件技术规程》JGJ 115、《冷拔低碳钢丝应用技术规程》JGJ 19等。 钢筋进场时,应检查产品合格证和出厂检验报告,并按相关标准的规定进行抽样检验。由于工程量、运输条件和各种钢筋的用量等的差异,很难对钢筋进场的批量大小作出统一规定。实际检查时,若有关标准中对进场检验作了具体规定,应遵照执行;若有关标准中只有对产品出厂检验的规定,则在进场检验时,批量应按下列情况确定: 1 对同一厂家、同一牌号、同一规格的钢筋,当一次进场的数量大于该产品的出厂检验批量时,应划分为若干个出厂检验批量,按出厂检验的抽样方案执行; 2 对同一厂家、同一牌号、同一规格的钢筋,当一次进场的数量小于或等于该产品的出厂检验批量时,应作为一个检验批量,然后按出厂检验的抽样方案执行。 3 对不同时间进场的同批钢筋,当确有可靠依据时,可按一次进场的钢筋处理。 本条的检验方法中,产品合格证、出厂检验报告是对产品质量的证明资料,应列出产品的主要性能指标;当用户有特别要求时,还应列出某些专门检验数据。有时,产品合格证、出厂检验报告可以合并。进场复验报告是进场抽样检验的结果,并作为材料能否在工程中应用的判断依据。

陶瓷力学性能检测之弯曲强度检测

陶瓷力学性能检测之弯曲强度检测 一、概述 陶瓷材料及制品在人们的生产生活中发挥着重要的作用,因其重要性,陶瓷检测也显得重要。下面就陶瓷的化学性能、力学性能等方面做一下简单介绍,供企业个人做为参考。 陶瓷材料的检测性能包括物理性能、化学性能、热学性能、电学性能等方面,其中物理性能、化学性能和力学性能是其主要的检测重点。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,下文主要以科标检测为例来介绍下陶瓷力学性能中弯曲强度检测的相关原理,科标检测专业提供相应的陶瓷材料检测,检测结果精准,出具报告,因此有一定的参考价值!二、弯曲强度检测介绍 弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。

图1-1 三点弯曲和四点弯曲示意图 由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对中性轴的惯性矩为I z ,那么距中性轴距离为y 点 的应力大小为: z I My =σ 在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为: =???? ???=z I y a P max max 21σ?????圆形截面 16矩形截面 332D Pa bh Pa π 其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。 而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为: =???? ???=z I y a P l max max 4σ?????圆形截面 8矩形截面 2332D Pl bh Pl π

力学性能检验规范

力学性能检验规范 编制: 审核: 批准: 日期:

1、目的 本规程指在为公司质量检测部力学性能试验的操作和判定做出指导,规范其操作,保证力学性能试验能够快速、准确的完成。 2、依据标准 2.1 ASTM A370-2014 钢制品力学性能试验的标准试验方法和定义 ASTM_E23-2012C 金属材料切口试棒冲击试验的试验方法 GB2975-1998 钢及钢产品力学性能试验取样位置及试样制备 GB/T228.1-2010 金属材料_室温拉伸试验方法 GB/T 229-2007 金属材料夏比摆锤冲击试验方法 3、拉伸试验 3.1、取样 3.1.1试样尺寸执行相关技术文件或标准取样。 3.1.2试样在机加工过程中要防止冷变形或受热而影响其力学性能。通常以切削加工为宜,进刀深度要适当,并充分冷却。特别是最后一道切削或磨削的深度不宜过大,以免影响性能。 3.2、方法 拉伸试验应按产品的技术要求,选择GB/T228或ASTM A370的方法进行。 3.3、设备 微机屏显式液压万能试验机 主要性能参数最大试验力300KN、试验力准确度优于示值±1%,变形测量准确度在引伸计满量程的2%~100%范围内优于±1% 电子引伸计 主要参数级别 1.0 ;标距Le(mm) 50 ;计算方法端点法; 最大变形(mm)10.0 ; 灵敏度(mV/V) 2 3.4、实验设备的校准 3.3.1效准依据:ISO 7500-1或ASTM E4 3.3.2效准频率:每年 4、夏比V型缺口冲击试验 4.1、取样 4.1.1试样尺寸执行相关技术文件或标准取样。

4.1.2由于冲击试样缺口深度、缺口根部曲率半径及缺口角度决定着缺口附近的应力集中程度,从而影响该试样的吸收能量,因此对缺口的制备应特别仔细,以保证缺口根部处没有影响吸收的加工痕迹。缺口对称面应垂直于试样纵向轴线。另外,加工时,除端部外,试样表面粗糙度值应优于5μm。 4.2.、方法 夏比V型冲击试验应按照按产品的技术要求,选择ASTM A370和ASTM E23或GB/T229的方法执行。 只要能达到规定温度下的吸收能要求,在低于规定温度的温度下进行的试验是合格的。 4.3.、设备 冲击试验机 最大试验力300J,冲击能量30/15公斤每米 冲击试验低温槽 主要参数控温范围 -60℃;控温精度<±0.5℃; 保温时间 8min ;冷却介质乙醇或其他不冻液 4.4、实验设备的校准 3.3.1效准依据:ISO 7500-1或ASTM E4 3.3.2效准频率:每年

相关主题