搜档网
当前位置:搜档网 › 解析几何-2020年高考数学十年真题精解(全国Ⅰ卷)抛物线(含解析)

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷)抛物线(含解析)

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷)抛物线(含解析)
解析几何-2020年高考数学十年真题精解(全国Ⅰ卷)抛物线(含解析)

专题09 解析几何

第二十四讲 抛物线

2019年

1.(2019全国II 文9)若抛物线y 2

=2px (p >0)的焦点是椭圆

22

13x y p p

+=的一个焦点,则p = A .2 B .3

C .4

D .8

2.(2019浙江21)如图,已知点(10)F ,为抛物线2

2(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S . (1)求p 的值及抛物线的准线方程; (2)求

1

2

S S 的最小值及此时点G 的坐标.

3.(2019全国III 文21)已知曲线C :y =2

2

x ,D 为直线y =12-上的动点,过D 作C 的两条

切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,5

2

)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.

2015-2018年

一、选择题

1.(2017新课标Ⅱ)过抛物线C :2

4y x =的焦点F ,3的直线交C 于点M (M

在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为

A B . C . D .2.(2016年全国II 卷)设F 为抛物线C :y 2=4x 的焦点,曲线y =

k

x

(k >0)与C 交于点P ,PF ⊥x 轴,则k = A .

12 B .1 C .3

2

D .2

3.(2015陕西)已知抛物线2

2y px =(0p >)的准线经过点(1,1)-,则该抛物线的焦点坐

标为

A .(-1,0)

B .(1,0)

C .(0,-1)

D .(0,1)

4.(2015四川)设直线l 与抛物线2

4y x =相交于,A B 两点,与圆2

2

2

(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24, 二、填空题

5.(2018北京)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线2

4y ax =截得的线段长为

4,则抛物线的焦点坐标为_________.

6.(2015陕西)若抛物线2

2(0)y px p =>的准线经过双曲线2

2

1x y -=的一个焦点,则p = 三、解答题

7.(2018全国卷Ⅱ)设抛物线2

4=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l 与

C 交于A ,B 两点,||8=AB .

(1)求l 的方程;

(2)求过点A ,B 且与C 的准线相切的圆的方程.

8.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :2

4y x =上存在

不同的两点A ,B 满足PA ,PB 的中点均在C 上.

(1)设AB 中点为M ,证明:PM 垂直于y 轴;

(2)若P 是半椭圆2

2

14

y x +=(0x <)上的动点,求PAB ?面积的取值范围. 9.(2017新课标Ⅰ)设A ,B 为曲线C :2

4

x y =上两点,A 与B 的横坐标之和为4.

(1)求直线AB 的斜率;

(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线

AB 的方程.

10.(2017浙江)如图,已知抛物线2

x y =.点11

(,)24A -,39(,)24

B ,抛物线上的点

(,)P x y 13

()22

x -<<,过点B 作直线AP 的垂线,垂足为Q .

x

(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PA PQ ?的最大值.

11.(2016年全国I 卷)在直角坐标系xOy 中,直线l :(0)y t t =≠交y 轴于点M ,交抛

物线C :2

2(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C

于点H . (I )求

||

||

OH ON ; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.

12.(2016年全国III 卷)已知抛物线C :2

2y x =的焦点为F ,平行于x 轴的两条直线12

,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.

(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ P ;

(II )若PQF ?的面积是ABF ?的面积的两倍,求AB 中点的轨迹方程.

13.(2016年浙江)如图,设抛物线2

2(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴

的距离等于||1AF -. (I )求p 的值;

(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直

线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.

14.(2015浙江)如图,已知抛物线1C :2

14

y x =

圆2C :22(1)1x y +-=,过点(,0)(>0)P t t 作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,,A B 为切点.

(Ⅰ)求点,A B 的坐标; (Ⅱ)求PAB ?的面积.

注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛

物线相切,称该公共点为切点.

15.(2015福建)已知点F 为抛物线:E 2

2y px =(0p >)的焦点,点()2,m A 在抛物线

E 上,且3Α

F =.

(Ⅰ)求抛物线E 的方程;

(Ⅱ)已知点()1,0G -,延长ΑF 交抛物线E 于点Β,证明:以点F 为圆心且与直线

G Α相切的圆,必与直线G Β相切.

专题09 解析几何

第二十四讲 抛物线答案部分

2019年

1.【解析】由题意可得:2

32p p p ??-= ???

,解得8p =.故选D .

2.【解析】(I )由题意得

12

p

=,即p =2. 所以,抛物线的准线方程为x =?1.

(Ⅱ)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2

A x t =.

由于直线AB 过F ,故直线AB 方程为21

12t x y t

-=+,代入24y x =,得 ()222140t y y t

--

-=,

故24B ty =-,即2B y t =-,所以212,B t

t ??- ???.

又由于()()11,33G A B c G A B c x x x x y y y y =

++=++及重心G 在x 轴上,故2

20c t y t

-+=,

得242211222,2,,03t t C t t G t t t ????-+????-- ? ? ? ? ?????????

. 所以,直线AC 方程为()

222y t t x t -=-,得()

21,0Q t -. 由于Q 在焦点F 的右侧,故2

2t >.从而

42242212

44

242222211|2|||322

221222211|||1||2|23A

c t t t FG y t S t t t t t S t t QG y t t t t

-+-??--====--+--?--?-. 令2

2m t =-,则m >0,

1221222134324S m S m m m m =-=-=+

++++….

当m =

1

2

S S

取得最小值1+,此时G (2,0).

3.【解析】(1)设()111,,,2D t A x y ?

?-

??

?

,则2112x y =.

由于y'x =,所以切线DA 的斜率为1x ,故11

11

2y x x t

+

=- ,整理得112 2 +1=0. tx y -

设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2

.

(2)由(1)得直线AB 的方程为12

y tx =+

. 由2

122

y tx x y ?

=+????=??,可得2210x tx --=. 于是()2

1212122,121x x t y y t x x t +=+=++=+.

设M 为线段AB 的中点,则2

1,2M t t ??+

??

?

. 由于EM AB ⊥u u u u r u u u r ,而()2

,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()

220t t t +-=.解得

t =0或1t =±.

当t =0时,||EM u u u u r =2,所求圆的方程为2

2542x y ??+-= ???;

当1t =±

时,||EM =u u u u r 2

2522x y ??+-= ??

?.

2015-2018年

1.C 【解析】由题意可知,如图60MFx ∠=o

,又抛物线的定义得MF MN =,所以MNF ?

为等边三角形,在三角形NFH 中,2FH =,

cos 60FH

NF

=o ,得4NF =,所以M 到NF 的距离为等边三角形MNF ?中NF

NF =C .

x

2.D 【解析】易知抛物线的焦点为(1,0)F ,设(,)P P P x y ,由PF x ⊥轴得1P x =,代入

抛物线方程得2P y =(2-舍去),把(1,2)P 代入曲线(0)k

y k x

=>的2k =,故选D . 3.B 【解析】因为抛物线的准线方程为12

p

x =-

=-,∴2p =,∴焦点坐标为(1,0). 4.D 【解析】当直线l 的斜率不存在时,这样的直线l 恰好有2条,即5x r =±,所以

05r <<;所以当直线l 的斜率存在时,这样的直线l 有2条即可.设11(,)A x y ,

22(,)B x y ,

00(,)M x y ,则120

12022x x x y y y +=??+=?.又211222

44y x y x ?=?=?,

两式相减得121212()()4()y y y y x x +-=-,1212120

42

AB y y k x x y y y -=

==-+.

设圆心为(5,0)C ,则0

05

CM y k x =

-,因为直线l 与圆相切, 所以

000215

y y x ?=--,解得03x =,于是220

4y r =-,2r >,又2

004y x <, 即2412r -<,所以04r <<,又05r <<,2r >所以24r <<,选D .

5.(1,0)【解析】由题意知0a >,对于2

4y ax =,当1x =

时,y =±l 被抛物

线2

4y ax =截得的线段长为4

,所以4=,所以1a =,所以抛物线的焦点坐标为

(1.0).

6

.2

2y px =的准线方程为2p x =-

,又0p >,所以2

p

x =-必经过双曲线221x y -=

的左焦点(

,所以2

p

-

=

,p = 7.【解析】(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.

设1221(,),(,)A y x y x B ,

由2(1),4y k x y x

=-??=?得2222(24)0k x k x k -++=. 2

16160k ?=+>,故1222

24

k x k x ++=.

所以122244

||||||(1)(1)x k AB AF BF k x +=+=+++=.

由题设知22

44

8k k

+=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.

(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--, 即5y x =-+.

设所求圆的圆心坐标为00(,)x y ,则

0022

0005,

(1)(1)16.2

y x y x x =-+???-++=

+??解得003,2x y =??=?或0011,6.x y =??=-? 因此所求圆的方程为2

2

(3)(2)16x y -+-=或2

2

(11)(6)144x y -++=.

8.【解析】(1)设00(,)P x y ,211(,)4y A y ,2

2

2(,)4

y B y .

因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程

2

21014()422

y x y y ++=?即2210100280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.

(2)由(1)可知1202

12

0028y y y y y x y +=??=-? 所以22

21200013||()384

PM y y x y x =

+-=-

,12||y y -= 因此,PAB ?

的面积3

2212001||||4)24

PAB

S PM y y y x ?=?-=-. 因为2

200

14

y x +

=0(0)x <,所以22

00004444[4,5]y x x x -=--+∈. 因此,PAB ?

面积的取值范围是. 9.【解析】(1)设11(,)A x y ,22(,)B x y ,则12x x ≠,2114x y =,2

224

x y =,x 1+x 2=4,

于是直线AB 的斜率1

212

1214

y y x x k x x -+===-. (2)由24x y =,得2

x

y'=.

设33(,)M x y ,由题设知

3

12

x =,解得32x =,于是(2,1)M . 设直线AB 的方程为y x m =+,故线段AB 的中点为(2,2)N m +,|||1|MN m =+.

将y x m =+代入2

4

x y =得2440x x m --=.

当16(1)0m ?=+>,即1m >-

时,1,22x =±

从而12||AB x x -=.

由题设知||2||AB MN =

,即2(1)m =+,解得7m =. 所以直线AB 的方程为7y x =+. 10.【解析】(Ⅰ)设直线AP 的斜率为k ,

21

14122x k x x -

=

=-+, 因为13

22

x -<<,所以直线AP 斜率的取值范围是(1,1)-。

(Ⅱ)联立直线AP 与BQ 的方程

110,24

930,

42

kx y k x ky k ?

-++=???

?+--=?? 解得点Q 的横坐标是

22

43

2(1)

Q k k x k -++=+ 因为

||PA

1

)2

x +

=1)k +

||PQ

= )Q x x -

=2

所以

||||PA PQ =3(1)(1)k k --+

令()f k =3

(1)(1)k k --+,

因为

2()(42)(1)f k k k '=--+,

所以()f k 在区间1(1,)2

-上单调递增,1(,1)2

上单调递减,

因此当12k =时,||||PA PQ 取得最大值27

16

11.【解析】(Ⅰ)由已知得),0(t M ,),2(2

t p

t P . 又N 为M 关于点P 的对称点,故),(2

t p t N ,ON 的方程为x t

p y =,

代入px y 22

=整理得022

2

=-x t px ,解得01=x ,p

t x 2

22=,

因此)2,2(2t p t H .所以N 为OH 的中点,即2|

|||=ON OH . (Ⅱ)直线MH 与C 除H 以外没有其它公共点.理由如下: 直线MH 的方程为x t

p t y 2=

-,即)(2t y p t

x -=.

代入px y 22

=得0442

2=+-t ty y ,解得t y y 221==,即直线MH 与C 只有一个

公共点,所以除H 以外直线MH 与C 没有其它公共点.

12.【解析】(Ⅰ)由题设)0,2

1

(F .设b y l a y l ==:,:21,则0≠ab ,且

22111(,),(,),(,),(,),(,)222222

a b a b A a B b P a Q b R +---. 记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . (Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则

22

2111k b a

ab

a a

b a b a a b a k =-=-==--=+-=

. 所以FQ AR ∥.

(Ⅱ)设l 与x 轴的交点为)0,(1x D ,

则2

,21

21211b a S x a b FD a b S PQF ABF

-=--=-=??. 由题设可得1112222

a b

b a x -?

--=,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(1

2≠-=+x x y

b a . 而

y b

a =+2

,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为12

-=x y .

13.【解析】(Ⅰ)由题意得抛物线上点A 到焦点F 的距离等于点A 到直线1x =-的距离.

由抛物线的第一得

12

p

=,即2p =. (Ⅱ)由(Ⅰ)得抛物线的方程为2

4,(1,0)y x F =,可设2(,2),0,1A t t t t ≠≠±.

因为AF 不垂直于y 轴,可设直线AF :1x sy =+,()0s ≠,由241y x

x sy ?=?=+?

消去x 得

2440y sy --=,故124y y =-,所以212,B t

t ??

- ???.

又直线AB 的斜率为212t

t -,故直线FN 的斜率为212t t --,

从而的直线FN :()2112t y x t -=--,直线BN :2

y t

=-,

所以22

32,1t N t t ??

+- ?-?

?, 设M (m ,0),由A ,M ,N 三点共线得:2

222

2

223

1

t t t t t m t t +

=+---, 于是2

221

t m t =-,经检验,0m <或2m >满足题意.

综上,点M 的横坐标的取值范围是()(),02,-∞+∞U .

14.【解析】(Ⅰ)由题意可知,直线PA 的斜率存在,故可设直线PA 的方程为()y k x t =-.

所以()2

14

y k x t y x ?=-??=??消去y .整理得:2

440x kx kt -+=. 因为直线PA 与抛物线相切,所以2

Δ16160k kt =-=,解得k t =. 所以2x t =,即点2

(2,)A t t .设圆2C 的圆心为(0,1)D , 点B 的坐标为00(,)x y ,由题意知,点,B O 关于直线PD 对称,

故有0

0001

220

y x t x t y ?=-+???-=?,解得2002222,11t t x y t t ==++.即点222

22(,)11t t B t t ++.

(Ⅱ)由(Ⅰ)知,AP =, 直线AP 的方程为2

0tx y t --=, 所以点B 到直线PA

的距离为2d =

所以PAB ?的面积为3

122

t S AP d =?=.

15.【解析】(Ⅰ)由抛物线的定义得||22

p

AF =+

. 因为||3AF =,即232

p

+

=,解得2p =, 所以抛物线E 的方程为2

4y x =.

(Ⅱ)因为点()2,m A 在抛物线:E 2

4y x =上,

所以m =±

(2,A .

由(2,A ,()F 1,0可得直线F A

的方程为)1y x =-.

由)214y x y x

?=-??=??,得22520x x -+=,

解得2x =

或12x =,从而1,2?B ?. 又(

)G 1,0-,

所以()G 0213k

A =

=

--

,()G 01312

k B ==---, 所以G G 0k k A B +=,从而AGF BGF ∠=∠,这表明点F 到直线,GA GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高三数学解析几何训练试题(含答案)

高三数学解析几何训练试题(含答案) 2013届高三数学章末综合测试题(15)平面解析几何(1)一、选 择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知圆x2+y2+Dx+Ey =0的圆心在直线x+y=1上,则D与E的关系是( ) A.D+E=2 B.D+E=1 C.D+E=-1 D.D+E=-2[来X k b 1 . c o m 解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2. 2.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( ) A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2 C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 解析 B 直径的两端点为(0,2),(2,0),∴圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2. 3.已知F1、F2是椭圆x24+y2 =1的两个焦点,P为椭圆上一动点,则使|PF1|?|PF2|取最大值的点P为( ) A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1) 解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,∴|PF1|?|PF2|≤|PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”. 4.已知椭圆x216 +y225=1的焦点分别是F1、F2,P 是椭圆上一点,若连接F1、F2、P三点恰好能构成直角三角形,则点P到y轴的距离是( ) A.165 B.3 C.163 D.253 解析 A 椭 圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得 ∠F1PF2<π2,∴∠PF1F2=π2或∠PF2F1=π2,点P到y轴的距离d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,故选A. 5.若曲线y=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为( ) A.4x+y+4=0 B.x-4y-4=0 C.4x-y-12=0 D.4x -y-4=0 解析 D 设切点为(x0,y0),则y′|x=x0=2x0, ∴2x0=4,即x0=2,∴切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0. 6.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+ y21n=1,若焦点在y轴上,则1n>1m>0,即m>n>0. 7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双

最新-解析几何全国卷高考真题

2015-2017解析几何全国卷高考真题 1、(2015年1卷5题)已知M (00,x y )是双曲线C :2 212 x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF ?<,则0y 的取值范围是( ) (A )(- 3,3) (B )(-6,6 (C )(3- ,3) (D )() 【答案】A 【解析】由题知12(F F ,2 2 0012 x y -=,所以12MF MF ?= 0000(,),)x y x y -?- =2220 003310x y y +-=-<,解得033 y -<<,故选A. 考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 2、(2015年1卷14题)一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 【答案】22325()24 x y -+= 【解析】设圆心为(a ,0),则半径为4a -,则2 2 2 (4)2a a -=+,解得3 2 a =,故圆的方程为22325()24 x y -+= . 考点:椭圆的几何性质;圆的标准方程 3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=2 4 x 与直线y kx a =+(a >0) 交与M,N 两点, (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程; (Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 【答案】0y a --=0y a ++=(Ⅱ)存在 【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

全国高考数学试题汇编——解析几何

7. 2004年全国高考数学试题汇编一一解析几何(一) 1. [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第7题,文科数学第7题] 2 椭圆—? y 2 =1的两个焦点为F i 、F 2,过F i 作垂直于x 轴的直线与椭圆相交,一个交 4 点为P ,则| PF 2 | = ,3 A . 2 2. [2004年全国高考(山东山西河南河北江西安徽) I 的斜率的取值范围是 的轨迹方程为 [2004年全国高考(四川云南吉林黑龙江)? 已知点A (1, 2)、B( 3, 1),则线段AB 的垂直平分线的方程是 A . 4x 2y=5 B . 4x-2y=5 C . x 2y=5 别是O '和A ',则O A "=囂£,其中?= B . .3 ?理科数学第8题,文科数学第8题] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点 Q 的直线I 与抛物线有公共点,则直线 3. 1 1 A . [ — 2, 2] B . [—2, 2] C . [-1, 1] D . [ — 4, 4] [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第14题,文科数学第15题] 由动点P 向圆x 2+y 2=1引两条切线PA 、PB , 切点分别为A 、 B ,Z APB=60 ° , 则动点 4. [2004年全国高考(四川云南吉林黑龙江)? 理科数学第4题, 文科数学第 已知圆C 与圆(x -1)2 y 2 =1关于直线 y = -x 对称,则圆 C 的方程为 A . (x 1)2 y 2 =1 B . x 2 - y 2 =1 2 2 C . x (y 1) =1 2亠/ 八2 D . x (y -1) =1 5. 文科数学第8题] 6. [2004年全国高考(四川云南吉林黑龙江)?理科数学第8题] 在坐标平面内,与点A (1,2)距离为1 ,且与点B (3, 1)距离为2 A . 1条 [2004年全国高考 的直线共有 ( D . 4条 已知平面上直线 B . 2条 C . 3条 (四川云南吉林黑龙江)?理科数学第9题] 4 3 l 的方向向量e =(,—),点0(0, 0)和A (1, — 2)在I 上的射影分 5 5

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

高考数学分类汇编 解析几何

2011高考数学分类汇编-解析几何 1、(湖北文)将两个顶点在抛物线()022>=p px y 上,另一个顶点是此抛物线焦点的正三角形的个数记为n ,则( ) A. 0=n B. 1=n C. 2=n D. 3≥n 2、(江西理) 若曲线1C :0222=-+x y x 与曲线2C :0)(=--m mx y y 有4个不同的交点,则实数m 的取值范围是( ) A. )3 3 ,33(- B. )33,0()0,33(Y - C. ]33,33[- D. ),3 3()33,(+∞--∞Y 3、(江西理)若椭圆12222=+b y a x 的焦点在x 轴上,过点)21 ,1(作圆122=+y x 的 切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭 圆方程是 . 4、(湖南文)在直角坐标系xOy 中,曲线1C 的参数方程为 2cos (x y α αα =??? =??为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为 (cos sin )10,ρθθ-+=则1C 与2C 的交点个数为 . 5、(湖南理)在直角坐标系xoy 中,曲线C 1的参数方程为cos ,1sin x y αα=??=+?(α为参 数)在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为 。 6、(湖南文)已知圆22:12,C x y +=直线:4325.l x y += (1)圆C 的圆心到直线l 的距离为 . (2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 . 7、(江苏)设集合},,)2(2 |),{(222R y x m y x m y x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠?B A 则实数m 的取值范围___.

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷)抛物线(含解析)

专题09 解析几何 第二十四讲 抛物线 2019年 1.(2019全国II 文9)若抛物线y 2 =2px (p >0)的焦点是椭圆 22 13x y p p +=的一个焦点,则p = A .2 B .3 C .4 D .8 2.(2019浙江21)如图,已知点(10)F ,为抛物线2 2(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S . (1)求p 的值及抛物线的准线方程; (2)求 1 2 S S 的最小值及此时点G 的坐标. 3.(2019全国III 文21)已知曲线C :y =2 2 x ,D 为直线y =12-上的动点,过D 作C 的两条 切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,5 2 )为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 2015-2018年 一、选择题 1.(2017新课标Ⅱ)过抛物线C :2 4y x =的焦点F ,3的直线交C 于点M (M

在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为 A B . C . D .2.(2016年全国II 卷)设F 为抛物线C :y 2=4x 的焦点,曲线y = k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = A . 12 B .1 C .3 2 D .2 3.(2015陕西)已知抛物线2 2y px =(0p >)的准线经过点(1,1)-,则该抛物线的焦点坐 标为 A .(-1,0) B .(1,0) C .(0,-1) D .(0,1) 4.(2015四川)设直线l 与抛物线2 4y x =相交于,A B 两点,与圆2 2 2 (5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24, 二、填空题 5.(2018北京)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线2 4y ax =截得的线段长为 4,则抛物线的焦点坐标为_________. 6.(2015陕西)若抛物线2 2(0)y px p =>的准线经过双曲线2 2 1x y -=的一个焦点,则p = 三、解答题 7.(2018全国卷Ⅱ)设抛物线2 4=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l 与 C 交于A ,B 两点,||8=AB . (1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程. 8.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :2 4y x =上存在 不同的两点A ,B 满足PA ,PB 的中点均在C 上.

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

2020高考数学(理)专项复习《解析几何》含答案解析

解析几何 平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题. 在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题. §8-1 直角坐标系 【知识要点】 1.数轴上的基本公式 设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是 d (A ,B )=|AB |=|x 2-x 1|. 2.平面直角坐标系中的基本公式 设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-== A , B 两点的中点M (x ,y )的坐标公式是?+=+=2 ,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是 .)()()(||),(212212212z z y y x x AB B A d -+-+-== 【复习要求】 1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题. 2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式. 【例题分析】 例1 解下列方程或不等式: (1)|x -3|=1;(2)|x -3|≤4;(3)1<|x -3|≤4. 略解:(1)设直线坐标系上点A ,B 的坐标分别为x ,3, 则|x -3|=1表示点A 到点B 的距离等于1,如图8-1-1所示, 图8-1-1 所以,原方程的解为x =4或x =2. (2)与(1)类似,如图8-1-2,

理科数学2010-2019高考真题分类训练专题九解析几何第二十七讲双曲线

专题九 解析几何 第二十七讲 双曲线 2019年 1.(2019全国III 理10)双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐进线 上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A B C . D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2 2 21(0)y x b b -=>经过点(3,4), 则该双曲线的渐近线方程是 . 3.(2019全国I 理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1, F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ?=uuu r uuu r ,则 C 的离心率为____________. 4.(2019年全国II 理11)设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为坐标 原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率 为 A B C .2 D 5.(2019浙江2)渐近线方程为±y =0的双曲线的离心率是 A B .1 C D .2 6.(2019天津理5)已知抛物线2 4y x =的焦点为F ,准线为l ,若l 与双曲线 22 221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 C.2

2010-2018年 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C . D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .2=± y x D .2 =±y x 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为 A B .2 C D 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和 2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

2020年高考数学(理)大题分解专题05--解析几何(含答案)

(2019年全国卷I )已知抛物线C :x y 32=的焦点为F ,斜率为 32 的直线l 与 C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【肢解2】若3AP PB =,求||AB . 【肢解1】若4||||=+BF AF ,求l 的方程; 【解析】设直线l 方程为 m x y += 23 ,()11,A x y ,()22,B x y , 由抛物线焦半径公式可知 12342AF BF x x +=++ =,所以125 2 x x +=, 大题肢解一 直线与抛物线

联立2323y x m y x ? =+???=?得0 4)12(12922=+-+m x m x , 由0144)1212(22>--=?m m 得1 2 m <, 所以12121259 2 m x x -+=-=,解得78 m =-, 所以直线l 的方程为372 8 y x =-,即12870x y --=. 【肢解2】若3AP PB =,求||AB . 【解析】设直线l 方程为23 x y t =+, 联立2233x y t y x ? =+???=? 得0322=--t y y ,由4120t ?=+>得31->t , 由韦达定理知221=+y y , 因为PB AP 3=,所以213y y -=,所以12-=y ,31=y ,所以1=t ,321-=y y . 则=-+?+=212214)(9 4 1||y y y y AB = -?-?+)3(429 4123 13 4. 设抛物线)0(22>=p px y 的焦点为F ,过点F 的而直线交抛物线于A (x 1,y 1), B (x 2,y 2),则|AB |=x 1+x 2+p.

(完整)十年真题_解析几何_全国高考理科数学.doc

十年真题 _解析几何 _全国高考理科数学 真题 2008-21 .(12 分) 双曲线的中心为原点 O ,焦点在 x 轴上,两条渐近线分别为 l 1, l 2 ,经过右焦点 F 垂直于 l 1 uuur uuur uuur uuur uuur 的直线分别交 l 1, l 2 于 A , B 两点.已知 OA 、 、 成等差数列,且 BF 与 FA 同向. AB OB (Ⅰ)求双曲线的离心率; (Ⅱ)设 AB 被双曲线所截得的线段的长为 4 ,求双曲线的方程. 2009-21 .(12 分) 如图,已知抛物线 E : y 2 x 与圆 M : ( x 4)2 y 2 r 2 (r > 0)相交于 A 、B 、C 、D 四个 点。 (I )求 r 的取值范围: (II)当四边形 ABCD 的面积最大时,求对角线 A 、 B 、 C 、 D 的交点 p 的坐标。 2010-21 (12 分 ) 已知抛物线 C : y 2 4x 的焦点为 F ,过点 K ( 1,0) 的直线 l 与 C 相交于 A 、 B 两点, 点 A 关于 x 轴的对称点为 D . (Ⅰ)证明:点 F 在直线 BD 上; uuur uuur 8 (Ⅱ)设 FAgFB BDK 的内切圆 M 的方程 . ,求 9 1 / 13

2011-20 (12 分) 在平面直角坐标系 xOy 中,已知点 A(0,-1) , B 点在直线 y = -3 上, M 点满 足 MB//OA , MA?AB = MB?BA , M 点的轨迹为曲线 C 。 (Ⅰ)求 C 的方程; (Ⅱ) P 为 C 上的动点, l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值。 2012-20 (12 分) 设抛物线 C : x 2 2 py( p 0) 的焦点为 F ,准 线为 l , A C , 已知以 F 为圆心, FA 为半径的圆 F 交 l 于 B, D 两点; (1)若 BFD 90 0 , ABD 的面积为 4 2 ;求 p 的值及圆 F 的方程; (2)若 A, B, F 三点在同一直线 m 上,直线 n 与 m 平行,且 n 与 C 只有一个公共点, 求坐标原点到 m, n 距离的比值。 2013-21 (12 分 ) 2 2 已知双曲线 C : x 2 y 2 =1 (a > 0, b >0)的左、右焦点分别为 F 1, F 2,离心率为 3,直线 y a b =2 与 C 的两个交点间的距离为6 . (1)求 a , b ; (2)设过 F 的直线 l 与 C 的左、右两支分别交于 A , B 两点,且 | AF | =| BF | ,证明: | AF | , 2 1 1 2 | AB| , | BF 2| 成等比数列. 2014-20 已知点 A(0,- 2),椭圆 E : x 2 2 3 , F 是椭圆 E 的右焦点, 2 y 2 =1 (a>b>0) 的离心率为 a b 2 直线 AF 的斜率为 2 3 , O 为坐标原点 . 3 2 / 13

相关主题