搜档网
当前位置:搜档网 › 中微子介绍

中微子介绍

中微子又译作微中子,是轻子的一种,是组成自然界的最基本的粒子之一,常用符号ν表示。中微子不带电,自旋为1/2,质量非常轻(小于电子的百万分之一),以接近光速运动。2011年11月20日,科学家再次证明中微子速度超越光速。但欧洲核子研究中心表示在中微子速度超越光速这一结论被驳倒或者被证实前,还需要进行更多的实验观察和独立测试。

中微子的发现
粒子物理的研究结果表明,构成物质世界的最基本的粒子有12种,包括了6种夸克(上、下、奇、粲、底、顶,每种夸克有三种色,还有以上所述夸克的反夸克),3种带电轻子(电子、μ子和τ子)和3种中微子(电子中微 中微子
子,μ中微子和τ中微子)而每一种中微子都有与其相对应的反物质。中微子是1930年奥地利物理学家泡利为了解释β衰变中能量似乎不守恒而提出的,1933年正式命名为中微子,1956年才被观测到。 中微子是一种基本粒子,不带电,质量极小,几乎不与其他物质作用,在自然界广泛存在。太阳内部核反应产生大量中微子,每秒钟通过我们眼睛的中微子数以十亿计。


中微子的作用
在恒星演化的晚期﹐中微子的作用有﹕发射中微子﹐带走了大量的能量﹐加快了恒星演化的进程和缩短了恒星演化的时标﹔对超新星爆发和中子星形成可能起关键作用。例如﹐有一种看法认为﹕在一个高度演化的恒星内部﹐通过逐级热核反应﹐一直进行到合成铁。进一步的引力坍缩,将使恒星核心部分产生强烈的中子化﹐而放射出大量中微子。由于中性流弱作用的相干性﹐铁原子核对中微子有较大的散射截面。因此﹐强大的中微子束会对富含铁原子核的外壳产生足够大的压力﹐将外壳吹散而形成猛烈的超新星爆发。被吹散的外壳形成星云状的超新星遗迹﹐中子化的核心留下来形成中子星。 恒星离我们十分遥远﹐以目前的探测技术还无法接收到它们发射的中微子流。只在超新星爆发使中微子发射剧增时﹐才有可能探测到。除了恒星以外﹐在类星体﹑激扰星系以及宇宙学研究对象中﹐也存在许多有关中微子过程的问题。
未来研究方向
从19世纪末的三大发现至今,已经过去了100年。在这一个世纪,科学技术飞速发展,人类对自然有了进一步的认识。但是仍有许多自然之谜等着人们去解决。其中牵动全局的问题是粒子物理的标准模型能否突破?如何突破?中微子正是有希望的突破口之一。 中微子是一门与粒子物理、核物理以及天体物理的基本问题息息相关的新兴分支科学,人类已经认识了中微子的许多性质及运动、变化规律,但是仍有许多谜团尚

未解开。中微子的质量问题到底是怎么回事?中微子有没有磁矩?有没有右旋的中微子与左旋的反中微子?有没有重中微子?太阳中微子有没有失踪?太阳中微子的强度有没有周期性变化?太阳中微子失踪的原因是什么?有没有中微子振荡?宇宙背景中微子怎样探测?它在暗物质中占什么地位?有没有中微子星?恒星内部、银河系核心、超新星爆发过程、类星体、极远处和极早期宇宙有什么奥秘? 这些谜正点是将微观世界与宇观世界联系起来的重要环节。对中微子的研究不仅在高能物理和天体物理中具有重要意义,在我的日常生活中也有现实意义。人类认识客观世界的目的是为了更自觉地改造世界。我们应充分利用在研究中微子物理的过程中发展起来的实验技术和中间成果,使其转化成生产力造福人类,而中微子本身也有可能在21世纪得到应用。
中微子研究的新进展
根据物理学的传统理论,稳定、不带电的基本粒子中微子的静止质量应为零,然而美国科学家的研究从另一个角度有可能推翻这一结论。 据俄《知识就是力量》月刊报道,美国斯坦福大学的科研人员对最近24年来人类探测中微子所获数据进行分析后发现,从太阳飞向地球的中微子流运动具有某种周期性,每28天为一个循环,这几乎与太阳绕自己的轴心自转的周期相重合。 美国科学家认为,这种周期性是由于太阳不均等的磁场作用造成的。磁场强度的变化,使部分中微子流严重偏移,致使探测器难以捕捉到。对此似可得出结论:中微子流有着自己的磁矩,既然有磁矩,就应有静止质量。 在微观世界中,中微子一直是一个无所不在、而又不可捉摸的过客。中微子产生的途径很多, 如恒星内部的核反应,超新星的爆发,宇宙射线与地球大气层的撞击,以至于地球上岩石等各种物质的衰变等。尽管大多数科学家承认它可能是构成我们所在宇宙中最常见的粒子之一,但由于它穿透力极强,而且几乎不与其它物质发生相互作用,因此它是基本粒子中人类所知最少的一种。被誉为中微子之父的泡利与费密曾假设它没有静止质量。 1998年6月12日,东京大学的一个国际研究小组在美国《科学》杂志上发表报告说,他们利用一个巨大的地下水槽,证实了中微子有静止质量。这一论断在世界科学界引起广泛关注。由日、美、韩三国科学家组成的科研小组日前在此间宣布,他们在实验中观测到了250公里远处的质子加速器发出的中微子。这是人类首次在如此远的距离内观测到人造粒子。 日本文部省的高能加速器机构位于筑波科学城,东京大学宇宙射线研究所设在岐阜县

的神冈,两地相距250公里。6月19日下午,科学家在高能加速器研究机构使用质子加速器向宇宙射线研究所的神冈地下检测槽发射中微子,并通过检测槽检测到了中微子。由于这批中微子来自筑波科学城方向,并且是在发射之后大约0.00083秒时检测到的,科学家因而断定,它们就是质子加速器发出的那批中微子。 这项实验是为了证实中微子有静止质量而设计的。1998年6月,日、美两国科学家宣布探测到中微子有静止质量。如果这一点被证实,现有的理论物理体系将受到巨大冲击。为了验证这一发现,科学家计划人工发射和接收中微子,观察中微子经过远距离传输后发生的变化,推断中微子是否有质量。 为了研究宇宙中的中微子,各种新型望远镜不断出现并投入使用。今年9月,一台专门研究中微子的特殊望远镜在地中海中开始安装。它不像普通望远镜那样直指天空,而是“反其道行之”面朝海底。这台“面海观天”的中微子望远镜名为“安塔雷斯”。它由英国、法国、俄罗斯、西班牙和荷兰等国科学家联合设计,安装地点位于距法国马赛东南海岸40公里处。望远镜在海面2.4公里以下,由13根垂入海中的缆状物组成,每个缆状物上将带有20个足球大小的探测器。 参与该国际合作项目的英国谢菲尔德大学科研人员介绍说,来自宇宙的中微子能畅行无碍地穿越包括地球在内的很多物体。虽然中微子无法直接探测到,但它在穿透地球过程中,偶尔会产生少量的高能量缪子中微子,并发散出特殊辐射光——切伦科夫光。“安塔雷斯”主要通过高灵敏度探测器检测该辐射来研究中微子。由于“安塔雷斯”面向海底,绝大部分宇宙射线会被厚厚的地层屏蔽掉,大大减少了观测过程中的本底噪音。专家说,这台望远镜的安装有可能为更深入揭示伽马射线爆发以及暗物质等宇宙奥秘提供重要线索。
电子中微子 电子与原子相互作用,将能量一下子释放出来,会照亮一个接近球形的区域。 μ中微子 μ子不像电子那样擅长相互作用,它会在冰中穿行至少1千米,产生一个光锥。 τ中微子 τ子会迅速衰变,它的出现和消失会产生两个光球,被称为“双爆”。
中微 中微子
子个头小,不带电,可自由穿过地球,几乎不与任何物质发生作用,号称宇宙间的“隐身人”。科学家观测它颇费周折,从预言它的存在到发现它,用了10多年的时间。
 粒子物理的研究结果表明,构成物质世界的最基本的粒子有42种,包括了6种夸克(上、下、奇、粲、底、顶、每种夸克有三种色,还有以上所述夸克的反夸克),3种带电轻子(电子、μ子和τ

子)和3种中微子(电子中微 中微子
子,μ中微子和τ中微子)。中微子是1930年奥地利物理学家泡利为了解释β衰变中能量似乎不守恒而提出的,五十年代才被实验观测到。

相关主题