搜档网
当前位置:搜档网 › 混凝土碳化研究现状_武俊曦

混凝土碳化研究现状_武俊曦

混凝土碳化研究现状_武俊曦
混凝土碳化研究现状_武俊曦

四川建筑科学研究Sichuan Building Science 第37卷第6期2011年12月

收稿日期:2010-06-10作者简介:武俊曦(1977-),男,陕西西安人,工程师,主要从事建筑施工工作。

E -mail :wujunxi1977@126.com

混凝土碳化研究现状

武俊曦1

,王

2

(1.陕西建工集团第三建筑工程有限公司,陕西西安710054;2.西安建筑科技大学土木工程学院,陕西西安710055)

摘要:混凝土碳化是一个非常复杂的物理化学过程,国内外众多学者分别从碳化机理、影响碳化的因素、碳化深度预测模型

等方面,

对这个问题进行了深入研究。本文对这些成果进行了总结与分类,在此基础上提出了尚存在的问题,并对混凝土碳化研究发展方向进行了展望。

关键词:混凝土;碳化;碳化速度;碳化深度中图分类号:TU528文献标识码:B 文章编号:1008-1933(2011)06-202-03

0前言

Mahta 教授在题为《混凝土耐久性———50年进

展》的主旨报告中指出:“当今世界,混凝土破坏原

因,按重要性递减顺序排列是钢筋腐蚀、寒冷气候下

的冻害、侵蚀环境的物理化学作用”。因此,钢筋锈

蚀是影响混凝土耐久性的主要因素之一。而混凝土碳化又是引起钢筋锈蚀最主要的原因。20世纪60年代,国际上一些发达国家就开始重视混凝土结构的耐久性问题,对混凝土碳化进行了大量的试验研究及理论分析。国内从20世纪80年代开始研究混凝土碳化与钢筋锈蚀问题,通过快速碳化实验、长期暴露实验及实际工程调查,研究混凝土碳化的影响因素与碳化深度预测模型。经过40多年的研究,国内外对混凝土碳化机理与影响因素已经有了深刻的

认识,

并提出了很多种碳化深度的计算模型。1混凝土碳化机理的研究

混凝土碳化是一个非常复杂的物理化学过程,

国内外很多学者从不同的角度对这个问题进行了深入研究。

普通水泥混凝土水泥熟料的主要矿物成分是硅酸三钙C 3S (3CaO ·SiO 2)、硅酸二钙C 2S (2CaO ·SiO 2)、铁铝酸四钙C 4AF (4CaO ·Al 2O 3·Fe 2O 3)和

铝酸三钙C 3A (3CaO ·Al 2O 3),

另外,还有少量的石膏C SH 2(CaSO 4·2H 2O )等。其水化产物为氢氧化钙(约占25%)、水化硅酸钙(约占60%)、水化铝酸钙、水化硫铝酸钙等,充分水化后,混凝土孔隙水溶液为氢氧化钙饱和溶液,其pH 值约为12 13,呈强碱性。在水泥水化过程中,由于化学收缩、自由水蒸发等多种原因,在混凝土内部存在大小不同的毛细

管、

孔隙、气泡等,大气中的二氧化碳通过这些孔隙向混凝土内部扩散,并溶解于孔隙内的液相,在孔隙溶液中与水泥水化过程中产生的可碳化物质发生碳

化反应,

生成碳酸钙。混凝土碳化的主要化学反应式如下[1]

:Ca (OH )2+CO 2→CaCO 3+H 2O

3CaO ·2SiO 2·3H 2O +3CO 2→3CaCO 3·2SiO 2

·3H 2O

3CaO ·SiO 2+3CO 2+γH 2O →SiO 2·γH 2O +3CaCO 3

2CaO ·SiO 2+2CO 2+γH 2O →SiO 2·γH 2O +2CaCO 3

文献[2]研究表明,混凝土孔溶液中绝大多数组分为Na +

K +和与其保持电性平衡的OH –,Ca 2+含量微乎其微,

Ca (OH )2大部分是以晶体存在的。当CO 2扩散到混凝土孔溶液,并分别与Na +

K +,Ca 2+反应生成Na 2CO 3,K 2CO 3,CaCO 3。由于Na 2CO 3,K 2CO 3溶解度大,孔溶液中的Na +

,K +浓度不会发生变化,除非这些溶液干燥时达到过饱和析

出晶体;而孔溶液中的Ca 2+与CO 2-

3发生反应生成溶解度极低的CaCO 3,并沉积在孔壁表面,导致孔溶

液中Ca 2+

浓度降低,因此Ca (OH )2晶体继续溶解,并补充孔溶液中失去的Ca 2+

浓度。Ca (OH )2晶体逐渐溶解而碳化反应过程中CaCO 3晶体逐渐增多,这种循环反应一直进行到Ca (OH )2晶体完全溶解和消耗为止,此时混凝土pH 值降低,混凝土发生中性化现象。

混凝土孔溶液的pH 值越高,CaCO 3溶解度越小,孔溶液中发生中性化反应之后Ca 2+

的浓度减少

得也越多,

Ca (OH )2晶体的溶解速度也越快。随着中性化过程的继续,孔溶液的pH 不断降低,

Ca (OH )2晶体的溶解速度也会减慢,碳化速度相应会有一些降低。

另外,由于碳化反应的主要产物碳酸钙属非溶

解性钙盐,比原反应物的体积膨胀约11.6%[3]

,因

2

02

此,混凝土的毛细孔隙将被碳化产物堵塞,使混凝土的密实度和强度有所提高,一定程度上阻碍了二氧化碳和氧气向混凝土内部扩散。另一方面,混凝土碳化使混凝土的pH值降低,完全碳化混凝土的pH 值约为8.5 9.0,使混凝土中的钢筋脱钝。

2影响碳化的主要因素研究

混凝土碳化是一个非常复杂的过程,影响混凝土碳化的因素非常多,这方面的研究主要是围绕环境因素(包括环境相对湿度、温度、空气中CO

2

的浓度等)、混凝土品质(包括水胶比、水泥品种、水泥用量、骨料品种与粒径、外加剂、混凝土强度、施工因素等)两方面来开展的。

对碳化速度产生影响的环境条件主要是环境相

对湿度、温度、空气中CO

2

的浓度。日本学者给出

了CO

2

浓度对碳化速度的影响曲线,并通过快速试

验方法回归给出了CO

2

浓度影响系数。Pa-padakis[4-5]曾通过试验研究得到相对湿度对扩散系数的影响。李果[6]和徐道富[7]对环境温度、相对湿度对混凝土碳化速度的影响进行了试验研究,并建立了考虑环境温、湿度气候条件的混凝土碳化速度预测模型。蒋清野在分析了1981 1996年间国内外碳化资料后认为,碳化速度与相对湿度的关系呈抛物线状。朱安民[8]通过试验研究得出不同相对湿度下混凝土碳化速度的平均比率。

水灰比是影响碳化速度的主要因素之一,很多学者研究了水灰比对混凝土碳化的影响。日本学者岸谷[9]提出了以水灰比为主要参数确定碳化速度的计算公式。Skijolsvold[10],Ho D.W.S.[11],Dhir R.K.[12],方暻等[13]通过试验研究了水灰比对碳化深度(速度)的影响。朱安民[8]、颜承越[14]等通过长期暴露试验研究了混凝土碳化速度与水灰比的关系。

水泥品种与用量是影响混凝土碳化速度的另一个主要因素。Dhir R.K.[12]、岸谷[9]、方暻[13]、颜承越[14]等人做过不同水泥品种的混凝土碳化对比试验。Ho D.W.S.[11],Thomas M.D.A.[15],Hobbs D.W.[16],牛建刚[17]等人专门研究过粉煤灰(火山灰)水泥混凝土的碳化问题。Ceukelaire L.D.[18]研究过矿渣水泥混凝土的碳化问题。Sakai E.等人[19]也比较过膨胀水泥混凝土与普通水泥混凝土碳化的异同。龚洛书[1]、Meyer[20]、马文海[21]、张誉等[22]研究过不同水泥用量对碳化深度的影响。

混凝土抗压强度是混凝土最基本的性能指标,Lewis,Smolczyk[23]及前苏联学者[20]通过研究得出碳化深度与抗压强度平方根的倒数成正比的结论。日本学者和泉、中国建筑科学研究院的邸小坛、颜承越[14]得出混凝土碳化深度与抗压强度的倒数成正比。

混凝土施工质量对混凝土的品质有很大影响,混凝土浇筑、振捣不仅影响混凝土的强度,而且直接影响混凝土的密实性,因此,施工质量对混凝土碳化有很大影响。Dhir[24],Fattuhi[25]的研究结果表明,养护时间对混凝土碳化速度的影响很大。Na-gatakis[26],Ewertson[27]等研究了养护方法对混凝土碳化的影响。邸小坛对养护时间对混凝土碳化速度的影响进行了研究并给出修正系数。刘亚芹[28]研究了覆盖层对混凝土碳化速度的影响。

3碳化深度预测模型研究

混凝土碳化深度预测模型一直是结构工程领域研究的热点问题,国内外学者已提出了很多碳化深度预测模型,基本上可以归纳为三种类型。

3.1基于扩散理论的理论模型

前苏联的学者阿列克谢耶夫等人[20]深入研究了混凝土碳化这个多相物理化学过程,得到碳化过程由CO

2

在混凝土孔隙中扩散控制的结论,并由Fick第一扩散定律推导得到了混凝土碳化理论模

型。希腊学者Papadakis等人[5]根据CO

2

及各可碳化物质在碳化过程中的质量平衡条件建立偏微分方程组,经简化求解给出另一种理论模型。两者所用方法不同,但模型最后形式均表明混凝土碳化深度与碳化时间的平方根成正比。理论模型的优点在于模型的物理意义明确,有理论基础,但其不足之处是模型参数不易确定,不便于工程应用。

3.2基于碳化试验的经验模型

由于理论模型中许多参数很难确定,不便与实际工程应用,因此出现了基于试验和工程实测的经验模型。经验模型大多数是以混凝土碳化深度与碳化时间的平方根成正比的基础上,对碳化系数进行研究。由于不同学者考虑的影响因素不同,因此往往得到的计算模型形式是不同的。比较有代表的是日本学者岸谷孝一[9]基于水灰比提出的经验模型,黄士元等[29]考虑水灰比和水泥用量回归给出的碳化深度计算公式,牛荻涛[30]考虑混凝土碳化的随机性,建立的基于混凝土抗压强度的碳化深度预测模型,山东建科院的朱安民[8]给出的考虑水泥品种、粉煤灰、气象条件影响的混凝土碳化深度经验公式,中国建筑科学研究院的邸小坛[31]提出的以混凝土抗压强度标准值为主要参数,考虑环境修正、养护条件修正和水泥品种修正的碳化计算公式等。

3.3基于扩散理论和碳化试验的碳化模型

同济大学张誉等[32]在全面分析混凝土碳化机理和影响因素之后,基于碳化理论分析与试验结果建立了混凝土碳化实用数学模型。蒋利学[33]在数值计算的基础上,提出了混凝土部分碳化区的概念,分析了影响部分碳化区长度的因素,并给出了部分碳化区长度的计算模型。西安建筑科技大学牛建刚等[17]在阿列克谢耶夫模型基础上,考虑粉煤灰对碳化的影响,建立了粉煤灰混凝土碳化深度预测模型。

302

2011No.6武俊曦,等:混凝土碳化研究现状

4荷载作用下混凝土碳化研究

由于泌水、收缩、温度梯度以及冻融等原因,浇

筑后的混凝土在使用前就已经存在微裂缝,这些微裂缝可以形成潜在的传输通道,使侵蚀性介质更容易进入混凝土内部。在外部荷载作用下混凝土内部会产生更多的微裂缝并使混凝土中的原始微裂缝扩展和相互连通,因此,混凝土结构所受荷载的形式和大小必然影响混凝土的碳化速率。现实中混凝土结构不可能不受荷载的作用,近年来,众多学者对荷载作用下混凝土碳化研究给予了更多的关注。

Castel,袁承斌通过实验发现,拉应力的存在会加速混凝土的碳化速度。金祖权对不同荷载下混凝土中CO

2

的扩散系数进行了研究,并建立了加载与

非加载下混凝土中CO

2

扩散系数的关系。牛建刚对不同弯曲荷载下粉煤灰混凝土碳化深度进行了试验研究,并得出应力影响系数计算公式。刘亚芹[34]研究了单轴拉压状态下混凝土的抗碳化性能。对于预应力混凝土试件,东南大学进行了碳化耐久性试验研究[35]。

5结论与展望

国内外学者经过40多年的研究与探索,在混凝土碳化机理、碳化深度影响因素、碳化深度的计算模型方面取得了丰硕的成果。混凝土碳化深度与碳化时间的平方根成正比已被大家广泛接受,但是由于影响混凝土碳化速度的因素多而复杂,对碳化系数的计算模型并没有统一。对结构进行耐久性设计是建筑结构设计发展的方向与趋势,一个便于实际工程应用的、统一而又被大家广泛接受的碳化深度计算模型是耐久性设计的基础,因此,混凝土碳化模型仍然是工程界研究的热点及难点问题。

参考文献:

[1]龚洛书,柳春圃.混凝土的耐久性及其防护修补[M].北京:中国建筑工业出版社,1990.

[2]柳俊哲.混凝土碳化研究与进展(1)———碳化机理及碳化程度评价[J].混凝土,2005(11):10-13.

[3]Taylor H F W.Cement Chemistry[M].2nd.ed.London:Thomas Telford Publishing,1997.

[4]Papadakis V G,Vayenas C G,Fardis M N.Physical and chemical characteristics affecting the durabiliy of concrete[J].ACI Materi-als Journal,1991,88:186.

[5]Papadakis V G,Vayenas C G,Fardis M N.Fundamental modeling and experimental investigation of concrete carbonation[J].ACI

Materials Journal,1991,88:363-373.

[6]李果,袁迎曙,耿欧.气候条件对混凝土碳化速度的影响[J].混凝土,2004(11):49-51.

[7]徐道富.环境气候条件下混凝土碳化速度研究[J].西部探矿工程,2005(10):147-149.

[8]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992(6):18-22.[9]岸谷孝一.铁筋コンクリ一トの耐久性[M].日本:鹿岛建設技術研究所出版部,1963.

[10]Skijolsvold O.ACISP-91Madrid Proc[M].1986(2):1031-1048.

[11]Ho D W S,Lewis R L.The carbonation of concrete and its predic-tion[J].Cement and Concrete Research,1987,17:489-504.[12]Dhir R K,Hewlett P C,Chan Y N.Near surface characteristics of concrete:prediction of carbonation resistance[J].Magazine of Con-

crete Research,1989,41:137-143.

[13]方暻,梅国兴,陆采荣.影响混凝土碳化主要因素及钢筋锈蚀因素试验研究[J].混凝土,1993(2):23-26.

[14]颜承越.水灰比—碳化方程与抗压强度—碳化方程的比较[J].混凝土,1994(3):46-49.

[15]Thomas M D A,Matthews J D.Carbonation of fly ash concrete[J].Magazine of Concrete Research,1992,44:217-228.

[16]Hobbs D W.Carbonation of concrete containing PFA[J].Magazine of Concrete Research,1994,46:35-38.

[17]牛建刚.一般大气环境多因素作用混凝土中性化性能研究[D].西安:西安建筑科技大学,2008.

[18]Ceukelaire L D,Nieuwenbeg D V.Accelerated carbonation of a blast-furnace cement concrete[J].Cement and Concrete Research,1993,3:442-452.

[19]Sakai E,Kosuge K,Teramura S,et al.Durability of concrete,1991,ACI SP-126:989-1000.

[20]阿列克谢耶夫.钢筋混凝土结构中钢筋腐蚀与保护[M].黄可信,吴兴祖,等译.北京:中国建筑工业出版社,1983.

[21]马文海.水泥用量对碳化深度的影响[J].低温建筑技术,1986(1):27-32.

[22]张誉,蒋利学,等.混凝土碳化深度的计算与实验研究[J].混凝土,1996(4):12-17.

[23]Smolczyk H G.Proc.RILEM Symp.Testing of Concrete,1962:485-489.

[24]Dhir R K,Hewlett P C,Chan Y N.Near surface characteristics of concrete:prediction of carbonation resistance[J].Magazine of

Concrete Research,1989,41:137-143.

[25]Fattuhi N I.Carbonation and concrete as affected by mix consti-tutents and initial water uring period[J].Materiaux Etconstruc-

tions,1986,19:131-136.

[26]Nagatakis.Effect of curing conditions on the carbonation of con-crete with fiy ash and the corrosion of reinforcement in long-term

test[J].ACISP-91,1986,1:521-540.

[27]Ewertson C.The influence of curing conditions on the permeability and durability of concrete,result from a field exposure test[J].Ce-

ment and concrete Research,1993,23:683.

[28]刘亚芹,等.表面覆盖层对混凝土碳化的影响与计算[J].工业建筑,1997,27(8):41-45.

[29]许丽萍,黄士元.预测混凝土中碳化深度的数学模型[J].上海建材学院学报,1991,4(4):347-356.

[30]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.

[31]邸小坛,周燕.旧建筑物的检测加固与维修[M].北京:地震出版社,1992.

[32]张誉,蒋利学,张伟平,等.混凝土结构耐久性概论[M].上海:上海科学技术版社,2003.

[33]蒋利学,张誉.混凝土部分碳化区长度的分析与计算[J].工业建筑,1999,29(1):4-7.

[34]刘亚芹.混凝土碳化引起的钢筋锈蚀实用计算模式[D].上海:同济大学,1997.

[35]涂永明,吕志涛.应力状态下混凝土的碳化试验研究[J].东南大学学报,2003,33(5):573-576.

402四川建筑科学研究第37卷

对混凝土裂缝的研究

专业: 建筑工程技术班级: 08级建工5 学号: 0801010530 姓名: 2011年 06月

摘要 混凝土是一种非均质脆性材料,由骨料、水泥石以及其中的气体和水组成。在温度和湿度变化的条件下,硬化并产生体积变形,由于各种材料变形不一致,互相约束而产生初始应力,造成在混凝土内出现微裂缝。这种微细裂缝的分布不规则且不连贯,在荷载或应力作用下,裂缝开始扩展,并逐渐互相贯通,从而出现较大的肉眼可见的裂缝,称为宏观裂缝,即通常所说的裂缝。 开裂发生的原因可能是原材料的选取与配合比的选择不当、施工方法和措施有误、建筑物所处的条件影响以及结构不合理等。混凝土所产生的温度收缩、干燥收缩、不均匀沉降、结构应力集中等都可能会导致混凝土开裂。在实际工程中, 往往是各种因素多重作用引起混凝土开裂。宽度小于或等于0.05mm的裂缝通常对使用无大的危害, 叫做无害裂缝, 而结构物的有害裂缝不仅会降低力学性能和承载力, 而且直接影响结构耐久性, 缩短使用寿命。施工中应采取措施使结构尽量不出现裂缝, 或减少裂缝的数量和宽度, 特别是避免出现有害裂缝。国内外对裂缝宽度都有相应的规定, 如我国的CCES 01-2004《混凝土结构耐久性设计与施工指南》, 对钢筋混凝土结构的最大允许裂缝宽度就明确规定干湿交替和冻融环境下的一般构件为0.2mm;水中和土中环境下为0.3mm。混凝土由于各种收缩引起的开裂问题一直是混凝土结构物裂缝控制的重点和难点。 关键词:混凝土裂缝;温度裂缝;收缩裂缝;混凝土结构受力裂缝;

目录 摘要......................................................................................................... I 一、混凝土裂缝的类型及成因.. (1) (一)混凝土因自身特性产生裂缝........................... 错误!未定义书签。(二)化学反应引起的裂缝.. (4) (三)混凝土结构受力裂缝 (4) (四)施工工艺及流程造成的裂缝 (5) 二、混凝土裂缝的预防措施 (6) (一)严格控制混凝土施工配合比 (6) (二)严格控制混凝土的温度应力 (6) (三)做好裂缝计算 (6) (四)做好混凝土的浇筑和振捣 (6) (五)做好后浇带的施工 (7) 三、混凝土裂缝的处理措施 (7) (一)表面修补法 (7) (二)灌浆、嵌缝封堵法 (7) (三)结构加固法 (7) (四)混凝土置换法 (7) (五)电化学护法 (7) (六)仿生自愈合法 (8) 四、结束语 (8) 致谢 (9) 参考文献 (10)

混凝土碳化机理及处理措施

混凝土碳化机理及处理措施 朱茂根田芝龙李建民 1 前言 混凝土的强度和耐久性是混凝土结构的两个重要指标。现行规范对强度指标有详细的计算和试验方法,达不到指标的即为不合格产品,而对耐久性,却没有严格的衡量参数,同一强度指标的混凝土其实际耐久性可能相差很大。混凝土抗碳化能力是衡量混凝土结构耐久性非常重要的一个指标。过去由于在设计和施工时对混凝土碳化问题重视不够,导致混凝土抗碳化能力较低,造成不少建筑物的耐久性差,被迫提前加固。本文通过对混凝土碳化和钢筋去钝化物理化学反应的分析,揭示了混凝土碳化对结构破坏的机理和规律,提出了在设计和施工时对混凝土防碳化处理的建议,并提供了一些在除险加固工程中实用的防碳化处理方案。 2 混凝土碳化机理 拌和混凝土时,硅酸盐水泥的主要成份CaO水化作用后生成Ca(OH)2,它在水中的溶解度低,除少量溶于孔隙液中,使孔隙液成为饱和碱性溶液外,大部分以结晶状态存在,成为孔隙液保持高碱性的储备,它的PH值为12.5~13.5。空气中的CO2气体不断地透过混凝土中未完全充水的粗毛细孔道,气相扩散到混凝土中部分充水的毛细孔中,与其中的孔隙液所溶解的Ca(OH)2进行中和反应。反应产物为CaCO3和H2O,CaCO3溶解度低,沉积于毛细孔中。该反应式为: Ca(OH)2+CO2→CaCO3↓+H2O 反应后,毛细孔周围水泥石中的羟钙石补充溶解为Ca2+和OH-,反向扩散到孔隙液中,与继续扩散进来的CO2反应,一直到孔隙液的PH值降为8.5~9.0时,这层混凝土的毛细孔中才不再进行这种中和反应,此时即所谓“已碳化”。确切地说,碳化应称为碳酸盐化。另外,凡是能与Ca(OH)2进行中和反应的一切酸性气体,如SO2、SO3、H2S以至于气相HCI 等,均能进行上述中和反应,使混凝土碱度降低,故混凝土碳化应广义地称为“中性化”。混凝土表层碳化后,大气中的CO2继续沿混凝土中未完全充水的毛细孔道向混凝土深处气相扩散,更深入地进行碳化反应。 碳化后的混凝土质地疏松,强度降低。 3 混凝土中钢筋锈蚀机理 最初的混凝土孔隙中充满了饱和Ca(OH)2溶液,它使钢筋表层发生初始的电化学腐蚀,该腐蚀物在钢筋表面形成一层致密的覆盖物,即Fe2O3和Fe3O4,这层覆盖物称为钝化膜,在高碱性环境中,即PH≥11.5时,它可以阻止钢筋被进一步腐蚀。 当混凝土碳化深度超过保护层达到钢筋表面时,钢筋周围孔隙液的PH值降低到8.5~9.0,钝化膜被破坏,钢筋将完成电化学腐蚀,导致钢筋锈蚀。

混凝土损伤的研究现状

混凝土结构损伤的研究现状 一、混凝土结构的损伤机制及分类 混凝土是由粗骨料、细骨料和水泥浆组成的非均质混合物,其表现出来的力学性能并不仅仅是这几种材料性能的简单叠加,而是与其内部的组成结构紧密相关。这一特点决定了混凝土材料的非均质性和物理性态的复杂性。这使得混凝土在承受外载之前,由于干缩、泌水等原因,已存在大量的微孔隙和界面裂缝,且这些缺陷的分布完全是随机的。当混凝土受到外界作用以后,弥散在材料内部的微裂缝开始逐渐长大,并随着荷载的变化,在部分区域出现贯通,直至形成宏观大裂缝。混凝土的破坏是结合缝的产生、成核、扩展、分叉、和失稳的过程。 混凝土具有微观、细观、宏观等不同的层次结构,以往对于混凝土的研究大多基于宏观层次,把混凝土均匀化为宏观均质连续材料,不考虑混凝土内部的细观结构及其演化。这种均匀化的处理方法对于研究混凝土结构的宏观力学性能无疑是行之有效的,但是要想深入研究混凝土的工作机理还应从混凝土的细观组成结构入手,抓住材料非均质性的特点,揭示混凝土结构宏观表现的内在机制。现在通常先在细观层次建立了混凝土的数值模型,分析混凝土损伤破坏机理,并以此为基础在宏观层次提出了混凝土损伤断裂理论分析模型,通过宏、细观两个层次的相互联系与补充对混凝的破坏行为进行研究。 从细观角度看,混凝土材料的力学特性是由其内部的细观结构及其变化决定的。作为一种典型的非均质材料,混凝土在多种尺度下都表现出了非均质性。根据复合材料的观点,将混凝土结构分为三级。第一级,即混凝土。可将砂浆视为基相,骨料视为分散相。骨料和砂浆的结合面为薄弱面,该处常因各种原因产生结合缝。混凝土的破坏首先从这里开始。第二级,即砂浆」将水泥视为基相,砂视为分散相。砂和水泥的结合面也是薄弱面,也产生结合缝,但其尺寸笔砂浆和骨料之间的结合缝至少小一个量级。第三级,即硬_ 化水泥浆。硬化水泥浆也不是匀质材料,其中包裹着一些未被水化的水泥颗粒及孔隙,他- 们就是缺陷。因此可将硬化水泥浆胶体视为基相,将这些缺陷视为分散相。水泥浆体的破坏可能从这些缺陷开始,裂纹由于克服硬化水泥浆分子间的引力而扩展。未被水化的水泥颗粒尺寸通常比砂和水泥浆的结合缝至少小几个量级。 从损伤力学的观点来看,如果混凝土体受到外界因素的作用,则混凝土体中原有损伤将会有所发展并会导致出现新的损伤,当损伤积累到一定程度时,混凝土体中将会出现宏观裂缝,而宏观裂缝的端部又将会发生新的损伤及产生新的损伤区,再经积累而引起裂缝的扩展,直至混凝土体的破坏,由上可见,混凝土的破坏过程实际上是损伤、损伤积累、宏观裂纹出现、宏观裂纹扩展交织发生的过程。 二、混凝土结构的破坏机理 在上述损伤机制下,混凝土的裂纹扩展存在四个阶段: (1)预存微裂纹阶段。即在混凝土成形过程中,由于水泥浆硬化干缩,水分蒸发留下裂隙等原因,使构件中预存原始微裂纹。它们大都为界面裂纹,极少量为砂浆裂纹,这些裂纹是稳定的。这些裂纹的存在是混凝土具有初始损伤的原因之一。 (2)裂纹的起裂和稳定扩展阶段。在较低的工作应力下,构件内部的某些点会产生拉应力集中,致使相应的预存微裂纹延伸或扩展,应力集中则随之缓解,如果荷载不再增加,

混凝土回弹与碳化深度

应该是“混凝土碳化作用”,是指碳酸气或含碳酸的水与混凝土中氢氧化钙作用生成碳酸钙的反应,正确地说,应是“碳酸化作用”,可是在国内已有通称“碳化作用”的习惯。碳化作用通常是指C02气体的作用,它不会直接引起混凝土性能的劣化,经过碳化的水泥混凝土,表面强度、硬度、密度还能有所提高。混凝土碳化作用的机理,即:碳化过程乃是外界环境中的C02通过混凝土表层的孔隙和毛细孔,不断地向内部扩散的过程。混凝土的碳化一定要有水分存在。若在毛细孔的孔壁上附着一层含有Ca(OH)2的水膜,则碳化就从带水膜的毛细孔壁开始。当环境的相对湿度为50--60%时,碳化的反应最快,可是当孔隙全部为水分所充满时,也会妨碍CO 2的扩散。CO2扩散的深度,通常用来作为评价混凝土抗碳化性能的技术参数,因为表面暴露在大气之中的混凝土,无论如何都免不了被碳化,只是碳化速度和抑制碳化进展的能力不同而已。 碳化对混凝土的不利影响:混凝土碳化后强度硬度有所提高,但由于碳化一般均在结构表面,深度不大,故对整体结构强度影响不大。但是混凝土碳化后会产生体积收缩,当收缩应力超过混凝土表面抗拉强度时,会在表面产生裂缝。潮湿空气进入裂缝使裂缝处的混凝土碳化收缩,继而使裂缝向混凝土内部发展。当裂缝穿透混凝土保护层到达钢筋时,由于混凝土碱性降低,湿气锈蚀钢筋,锈蚀严重时会胀裂保护层,加速锈蚀进程,最终有可能影响结构安全。耐久性良好的混凝土应该具有一定的抗拉强度、良好的抗渗透性能及良好的体积稳定性。 砼碳化指砼中的Ca(OH)2与空气中CO2或水中溶的CO2或其它酸性物质反应变成CaCO3而失去碱性的过程。砼的碳化值指砼自表面的碳化深度。它是钢筋保层厚度的依据。当砼失去碱性环境,钢筋就易锈蚀膨胀并胀裂砼,最终削弱砼对钢筋的握裹力,导至钢筋砼构件的破坏。

再生混凝土的研究现状及其基本性能

再生混凝土的研究现状及其基本性能 言 随着科技的进步,社会的发展,中心城市的建筑业也在不断发展。几乎每天都有旧的建筑物要拆除,每天都有新的建筑要兴建。无论是从废旧建筑物上拆下的废弃混凝土,还是新建筑物兴建过程中所产生的废渣,都属于建筑垃圾。这些垃圾影响了城市生活环境,造成了环境污染。把它们运送到郊外进行掩埋,不仅要花费大量的运费,会给城市郊区造成二次污染。其次,堆放掩埋这些建筑垃圾又要占用大量宝贵的土地资源。将建筑垃圾(此处主要包括废弃混凝土块、碎砖块等)进行资源化利用,变的越来越重要了。 另一方面,在人类发展的过程中,随着建筑业的不断发展,建筑材料也发生着很多变化,从最早的木材、石块到现在的各种合成材料。在这些材料中,最重要且使用量最大的当数混凝土了。在现在建筑物中,几乎找不到没有使用混凝土的。目前,全世界混凝土的年产量约28亿立方米,我国的混凝土年产量约占世界总量的45%,约13~14亿立方米。混凝土原材料中其骨料占混凝土总量的75%(1),由此可推断,其骨料的使用量有多大。总有一天地球上的骨料回消耗殆尽。为了能够解决这些问题,各国开始了再生混凝土的研究开发与应用。 二、再生混凝土的研究现状 二次世界大战之后,苏联、日本、德国等国家重建家园,就注意到了废弃混凝土的问题并开始了再生混凝土的研究开发与利用,且已召开

过三次有关废弃混凝土再生利用的专题国际会议(2)。如今,再生混凝土已经成为发达国家共同的研究课题了,有些国家还以立法的形式来保证和促进其研究的进行。随着我国政府对资源环境问题的重视,也已经开始鼓励再生混凝土的研究与开发了。 1、日本 日本是一个面积小资源少的岛国,它在建筑垃圾再生利用研究方面起步早,做的也比好的。日本政府早在1977年就制定了《再生骨料和再生混凝土使用规范》,并相继在各地建立了处理建筑垃圾的再生利用工厂(3)。日本建设省在1992年提出了控制建筑副产品排放和建筑副产品在利用技术开发的5年计划并于1996年10月制订了再生资源法旨在推动建筑副产品的再利用,为建筑垃圾的资源化利用提供法律和制度的保障(4)。日本已经对再生混凝土的吸水性、强度、配合比、干缩性、耐冻性等性质做了系统的研究。目前,日本对建筑垃圾的再生利用率已达到70%左右了。 2、美国 美国政府制定了《超级基金法》,规定:任何生产有工业废弃物的企业,必须自行妥善处理,不得擅自随意倾倒。美国不但鼓励再生混凝土的利用,而且还对再生混凝土的性能做了系统性的研究和试验。比如美国密歇根州的两条公路就是使用的再生混凝土。通过对其的研究,表明再生混凝土的干缩率要比天然骨料的混凝土要大。美国的CYCLEAN 公司采用微波技术可以100%的回收利用路面沥青混凝土,其质量与新拌沥青混凝土路面料相同,而成本降低了1/3,同时节约了垃圾清运和

混凝土裂缝自愈合性能的研究及进展

混凝土裂缝自愈合性能的研究及进展 混凝土在受力或其它因素的作用下,会出现裂缝,影响了混凝土的使用寿命,裂缝自愈合混凝土可以在不影响结构尺寸和美观的情况下,在混凝土出现裂缝后,自动分泌出的粘结液流出深入裂缝,粘结液可使混凝土裂缝重新愈合,恢复并提高混凝土的性能。 1 裂缝的危害以及形成的原因 土木工程结构中,钢筋和混凝土是最常使用的两种材料。但是,由于受到自身材料性能的限制,钢筋混凝土结构中总是存在着程度不同的裂缝,裂缝对结构的使用性能及使用寿命都会产生非常大的影响:一方面,在外荷载的作用下,结构的破坏都是由混凝土中裂缝的逐渐发展所导致;另一方面,裂缝的存在会导致裂缝处钢筋发生锈蚀,从而影响整个建筑物的安全性及耐久性能。裂缝产生的原因可描述如下:钢筋混凝土结构物在使用过程中承受两大类荷载:第一类荷载包括静、动荷载和其他荷载;第二类荷载即变形荷载。结构的裂缝就是由这两大类荷载引起的,概括起来裂缝的主要成因如下:1)由于外荷载(动、静荷载)的直接作用引起的裂缝;2)由外荷载作用引起的结构次内力,由此产生裂缝;3)由变形引起的裂缝,即结构由温度变化引起自身的收缩膨胀从而引起变形,当变形得不到满足,则在结构内部引起应力,

应力超过某一限值后产生裂缝。根据大量的调查资料,工程实际中的裂缝产生的原因,属于变形变化(温度、收缩、不均匀沉降)引起的约占80%以上;属于由荷载引起的约占20%左右。2 混凝土本身的愈合能力 在混凝土裂缝自愈合研究的初期阶段,主要是基于混凝土本身潜在的愈合能力的研究,实际体现在对于其机理和愈合效果的研究。J.Stefan(1995)将混凝土试件冻融破坏后,放置水中2~3个月后混凝土几乎能全部恢复损失的共振频率,并且裂缝中有钙矾石晶体和氢氧化钙晶体。此实验是在有水环境中且产生了水泥水化产物,这说明混凝土自愈合可能的形成原因是混凝土中未水化完全的水泥再次水化。国内也有学者做了这方面的实验和研究,并更进一步得到确切结论。程东辉、潘洪涛对混凝土的这种自愈合现象的机理进行了研究,得出了其愈合的四方面原因,其中水泥浆体水化就是主要原因。且对于3mm左右的裂缝,当其暴露于水环境大于600小时,裂缝可以完全愈合。但是可愈合的裂缝宽度在不同的情况下是否会改变该研究并未进行探索。于是又有学者在这方面展开了研究。姚武、钟慧的研究发现混凝土的自愈合能力存在一个损伤阈值,损伤小于损伤阈值时随损伤的增大,自愈合率也增大;损伤大于损伤阈值则随损伤的增大,自愈合率减小。李厚祥、唐春安等通过试验分析得到了在一定水压梯度下,一周后可能自愈合的混凝土裂缝宽度。结果

混凝土碳化的几点原因

1.混凝土碳化 混凝土的碳化是指大气中的二氧化碳首先渗透到混凝土内部的孔隙中,而后溶解于毛细孔中的水分,与水泥水化过程中所产生的水化硅酸钙和氢氧化钙等水化产物相互作用,生成碳酸钙等产物。所以,混凝土碳化是由于混凝土存在着孔隙,里面充满着水分和空气,在混凝土的气相、液相、固相中进行着一个十分复杂的多相物理化学连续过程。 2.混凝土碳化影响因素 有内在因素,也有外界因素。 2.1影响混凝土碳化的内在因素 不同的水泥,其矿物组成、混合材量、外加剂、生料化学成分不同,直接影响着水泥的活性和混凝土的碱度,对碳化速度有重要影响。一般而言,水泥中熟料越多,则混凝土的碳化速度越慢。外加剂(减水剂、引气剂)一般均能提高抗渗性,减弱碳化速度,但含氯盐的防冻、早强剂则会严重加速钢筋锈蚀,应严格控制其用量。集料品种和级配不同,其内部孔隙结构差别很大,直接影响着混凝土的密实性。材质致密坚实,级配较好的集料的混凝土,其碳化的速度较慢。 增加水泥用量,一方面可以改变混凝土的和易性,提高混凝土的密实性;另一方面还可以增加混凝土的碱性储备,使其抗碳化性能增强,碳化速度随水泥用量的增大而减少。 在水泥用量一定的条件下,增大水灰比,混凝土的孔隙率增加,密实度降低,渗透性增大,空气中的水分及有害化学物质较多的浸入混凝土体内,加快混凝土碳化。 施工质量差表现为振捣不密实,造成混凝土强度低,蜂窝、麻面、空洞多,为大气中的二氧化碳和水分的渗入创造了条件,加速了混凝土的碳化。

混凝土成型后,必须在适宜的环境中进行养护。养护好的混凝土,具有胶凝好、强度高、内实外光和抗侵蚀能力强,能阻止大气中的水分和二氧化碳侵入其内,延缓碳化速度。 2.2影响混凝土碳化的外界因素 酸性气体(如CO2)渗入混凝土孔隙溶解在混凝土的液相中形成酸,与水泥石中的氢氧化钙、硅酸盐、铝酸盐及其他化合物发生中和反应,导致水泥石逐渐变质,混凝土的碱度降低,这是引起混凝土碳化的直接原因。试验研究已证明,混凝土的碳化速度与二氧化碳浓度的平方根成正比,即混凝土碳化速度系数随二氧化碳浓度的增加而加快。 在混凝土浸水饱和或水位变化部位,由于温度交替变化,使混凝土内部孔隙水交替地冻结膨胀和融解松弛,造成混凝土大面积疏松剥落或产生裂缝,导致混凝土碳化。渗漏水会使混凝土中的氢氧化钙流失,在混凝土表面结成碳酸钙结晶,引起混凝土水化产物的分解,其结果是严重降低混凝土强度和碱度,恶化钢筋锈蚀条件。混凝土温度骤降,其表面收缩产生拉力,一旦超过混凝土的抗拉强度,混凝土表面便开裂,导致形成裂缝或逐渐脱落,为二氧化碳和水分渗入创造了条件,加速混凝土碳化。

混凝土损伤演化的超声波法检测[设计+开题+综述]

开题报告 工程力学 混凝土损伤演化的超声波法检测 1 选题的背景与意义 混凝土是在建筑中广泛使用的工程材料,随着社会、工作环境日益复杂,混凝土结构在承受静态及准静态荷载的同时,也承担着变化剧烈且重复作用的冲击荷载,利用超声波法无损检测技术对混凝土状态进行评价,为工程中结构安全可靠性的状态评价提供一种方法,具有积极的现实意义 2 研究的基本内容与拟解决的主要问题: 1、调研目前课题的国内外研究现状,阅读相关文献,完成开题报告. 2、混凝土试样制作,SHPB设备调试到工作状态. 3、实现不同应变率下的冲击加载试验和相同应变率(或相同气压)下混凝土式样的多次冲击加载实验.用超声波回弹检测法测量冲击加载后试样的首波幅值和波速,结合实验结果分析,给出应变率与打击参数对混凝土损伤及其发展规律的影响. 4、撰写论文并完成毕业设计工作. 3 研究的方法与技术路线: 1、借阅相关资料,增强必备的基本理论知识; 2、通过查阅相关期刊杂志,了解有此项研究实验的相关知识; 3、查阅相关的材料,了解并掌握损伤演化方程; 4、认真练习使用matlab,提高应用软件分析问题的应有能力; 5、实际中必然会遇到其他各种问题,除了自己认真思考之外,积极查询有关信息,还很有必要向老师求教. 4 研究的总体安排与进度: 1、2010年12月阅读文献和完成开题报告 2、2011年1-2月试样制作. 3、2011年3月SHPB装置调试,开始试验. 4、2011年 4月完成实验研究,撰写毕业论文. 5、2011年5月准备答辩.

5 主要参考文献 1、胡时胜.霍普金森压杆技术.兵器材料科学与工程.1991,11:40-47 2、陈德兴,胡时胜,张守保,巫绪涛,徐泽清.大尺寸Hopkinson压杆及其应用.实验力学.2005,20(3):398-402. 3、Bischoff P H ,perry S https://www.sodocs.net/doc/4c3958549.html,pressive behavior of concrete at high strain rates.Mater Struct,1991,144(24):425-450. 4、Taylor L M,Chen E P,Kuszmaul J S.Microcrack-induced damage accumulation in brittle rock under dynamic loading.Journal of Computer Methods in Applied Mechanics and Engineering,1986,55(3):301-320. 5、Parviz Soroushian,Mohamed Elzafraney.Damage effects on concrete performance and microstructure,Cement &Concrete Composites 26 (2004) 853-859 6、宁建国,刘海峰,商霖.强冲击载荷作用下混凝土材料动态力学特性及本构模型.中国科学(G辑):2008,38(6):759-772.

再生混凝土的研究现状及其基本性能论文

目录 摘要 (2) 第1章研究的目的、方法、现状 (3) 1.1 研究的目的及意义 (3) 1.2 研究的方法 (3) 1.3 研究的现状 (4) 1.3.1 国外研究现状 (4) 1.3.2 国内研究现状 (4) 第2章再生混凝土在粗、细骨料及再生墙体领域研究现状 (5) 2.1 再生混凝土及再生墙体的基本性能 (5) 2.1.1 再生混凝土的基本性能 (6) 2.1.2 再生墙体的基本性能 (7) 2.2 再生混凝土粗、细骨料研究现状 (7) 2.3 再生墙体研究现状 (8) 第3章促进废旧材料再利用健康发展的对策探索 (9) 3.1 废旧材料再利用的基本方法 (9) 3.1.1 回填掩埋法 (9) 3.1.2 加工骨料法 (10) 3.1.3 还原再利用 (10) 3.1.4 堆山造景的处理方式 (10) 3.2 废旧材料再利用在旧城改造中存在的问题 (11) 3.3 废旧材料再利用建议 (11) 3.3.1 创新废旧材料再利用管理模式 (12) 3.3.2 产学研政联动、提升废旧材料再利用技术水平 (12) 3.3.3、增强宣传教育、提高废旧材料再利用产品的社会认可度 (12) 3.3.4 推进废旧材料再利用产业化 (12) 第4章结论及展望 (13) 4.1 结论 (13) 4.2 展望 (13) 参考文献 (14) 附录A (15) 致谢 (17)

摘要 二十世纪以来,建筑业的快速增长消耗大量环境资源,与此同时爷产生大量的建筑废弃物。相比发达国家,我国建筑废弃物再利用尚处于初级阶段,目前多数建筑废弃物用于基础回填,属于低等级循环利用,其经济效益和社会效益并不令人满意。在我国践行可持续发展为主题、环境友好型社会为建设目标的现在,建筑垃圾回收利用,已变成不可逃避的课题。 本文在废旧材料回收方面的研究,首先对废旧材料再生利用的目的、再生利用发展现状进行分析,重点总结了国内外废旧材料再利用的发展趋势;其次对再生混凝土在粗骨料、细骨料以及再生墙体领域的研究现状做了详细的介绍,并对再生混凝土和再生墙体的基本性能展开阐述;最后本文总结了废旧材料再生利用的一般处理方法,通过分析废旧材料再利用在发展中存在的问题,提出了我国未来废旧材料发展的建议,希望能为我国的新型城镇化建设提供理论参考。 关键词:建筑废弃物,低级循环,可持续发展,再生利用

关于混凝土裂缝问题的分析与防治的研究

关于混凝土裂缝问题的分析与防治的研究 发表时间:2018-11-23T17:14:04.707Z 来源:《防护工程》2018年第22期作者:邱志文[导读] 在建筑工程的建设中,其施工流程涉及到的技术应用手段极其全面,同时整个施工具有较长的周期,又兼顾非常大的危险系数 天津金隅混凝土有限公司天津 300300 摘要:在建筑工程的建设中,其施工流程涉及到的技术应用手段极其全面,同时整个施工具有较长的周期,又兼顾非常大的危险系数,所以,在施工中混凝土的裂缝控制与有效防治非常重要。本文主要针对混凝土裂缝做出详细的分析,并给出施工中裂缝防治的有效措施,希望为其它混凝土工程的施工提供一定的借鉴。 关键词:工程项目;混凝土施工技术;质量控制;裂缝防治措施 1、引言 随着城市化进程的不断加快,建筑工程中的混凝土结构越来越多,而在混凝土结构的长期使用过程中,难免会出现大大小小的裂缝,给整个构件的整体性以及刚度大小造成不利的影响,使建筑物达不到预定的使用年限。 2、混凝土裂缝问题的原因分析 2.1原材料的问题 在混凝土施工的过程中,混凝土材料是由水泥及水、石子等施工材料按照科学的配比掺加一定量的外加剂混合而成。在混凝土的配比过程中,若配比不合理、材料质量不过关,则会在施工中造成混凝土裂缝的出现。比如说,一些负责原材料采购的人员一味的追求工程成本,选择价格较低的材料,使原材料的质量与设计中的规范存在一定的差距,致使施工中出现部分质量问题。其次,选购配料中砂石时,砂石的大小以及质量不符合相关标准,会使混凝土结构构件的内部出现不严密的情况,引起裂缝的出现。另外,配比过程中,若没有对水的使用比例进行良好的控制,会使混凝土结构构件的内部稳定性降低,引起混凝土裂缝。 2.2温度把控不严格 在混凝土施工中,引起混凝土裂缝的又一个原因是混凝土的水化热。当混凝土浇筑完毕之后,在成型并发生硬化的过程中就会产生较多的热量。混凝土表面的温度升高,会使其表面的拉力增大,而温度在发生下降时,就会形成一种强大的反差,使混凝土内部的稳定性有所降低,从而造成混凝土裂缝的出现。其次,混凝土结构构件外部的湿润度也会对混凝土的质量产生较为直接的影响。在混凝土浇筑完毕并发生凝结的过程中,内部水的湿润度呈现出固定的数据,并不会轻易的发生变化,但混凝土结构构件外部环境中的湿润度是非常容易发生变化,若混凝土构件的外表面湿润度出现不均匀变化时,会降低混凝土内部的稳定性,从而出现混凝土的裂缝,甚至会引起构件的断裂问题。 2.3施工中的操作不规范 在整个工程施工过程中,施工主体是相关的施工人员,如果施工人员的技术不过关,或者是相关的施工操作不规范的话,则会引起混凝土出现裂缝。此外,在工程的实际施工过程中,若早期的混凝土模型设计不够合理,就会使混凝土结构构件的整体拉力出现过大的情况,增大其内部钢筋的承受能力,造成其内部结构的不稳定,引起外部表面出现大小不一的裂缝。 2.4混凝土的输送距离较长 在一些大规模的混凝土工程施工中所用到的混凝土,一般都是在施工之前由配比站输送到施工现场,若在运输的过程中没有对混凝土进行合理的保护,则可能会使部分的混凝土出现凝聚的情况,从而降低混凝土的承压能力。将该种混凝土应用到工程建设中极易导致混凝土在凝结过程中出现裂缝。 2.5养护不到位 若在混凝土浇筑完毕后没有进行及时、足够的养护,致使混凝土暴露在空气中时间太长,导致混凝土出现较大的体积收缩,则会使混凝土的强度严重不足,引发混凝土出现开裂。因此,将混凝土处于湿润的状态下,给混凝土提供合适的硬化条件,有效避免裂缝的产生,简言之,正确的养护是有效防止混凝土表面出现裂缝的关键步骤之一,。 3、混凝土工程中裂缝的防治措施 3.1原材料的控制 3.1.1水泥的控制 在混凝土工程的施工中,要根据混凝土浇筑模具类型选择相应标准的水泥。如果建设的工程具有较大的混凝土体量,则要选择水化热较小的配料,以此有效防止混凝土在凝固时出现较多的热量。而降低混凝土凝固时产生的热量,则需对水泥中含有产热量较大的因子进行减少,例如C3A等等,从而有效控制混凝土凝固温度的变化。其次,要选择那些细度较小的骨料,有效降低水化热热量的发散速度,保证混凝土的质量问题,减少混凝土裂缝的出现。 3.1.2外添剂的控制 因为外添剂会产生一定的降热、缓凝以及除泡的作用,所以要加强对外添剂的合理控制,降低混凝土裂缝出现的概率。首先,减水剂的添加会使混凝土的水灰比得到有效降低,进而降低混凝土的水化热以及混凝土表面的温度,有效避免混凝土裂缝。其次,缓凝剂的添加会使混凝土的固化速度有所降低,从而降低混凝土由于水化热而产生的热量,减少混凝土裂缝的出现概率。另外,外加剂的添加会使混凝土在浇筑过程中有效除去内部的一些气泡,从而加强混凝土的质量,减少混凝土裂缝的出现。 3.2温度的控制 3.2.1入模温度的控制 在进行混凝土浇筑的入模过程中,要控制好混凝土的浇筑结构,并科学计算水化热产生热量,从而减少混凝土内部结构与外部表面的温度差,提高其施工质量,并有效的减少裂缝的出现。 3.2.2浇筑温度的控制

混凝土裂缝的研究

常州市职工大学毕业设计(论文) 题目混凝土裂缝的研究专业建筑工程 姓名 学号 指导老师 起讫日期 2012年 10 月 16 日

摘要 混凝土是一种非均质脆性材料,由骨料、水泥石以及其中的气体和水组成。在温度和湿度变化的条件下,硬化并产生体积变形,由于各种材料变形不一致,互相约束而产生初始应力,造成在混凝土内出现微裂缝。这种微细裂缝的分布不规则且不连贯,在荷载或应力作用下,裂缝开始扩展,并逐渐互相贯通,从而出现较大的肉眼可见的裂缝,称为宏观裂缝,即通常所说的裂缝。 开裂发生的原因可能是原材料的选取与配合比的选择不当、施工方法和措施有误、建筑物所处的条件影响以及结构不合理等。混凝土所产生的温度收缩、干燥收缩、不均匀沉降、结构应力集中等都可能会导致混凝土开裂。在实际工程中, 往往是各种因素多重作用引起混凝土开裂。宽度小于或等于0.05mm的裂缝通常对使用无大的危害, 叫做无害裂缝, 而结构物的有害裂缝不仅会降低力学性能和承载力, 而且直接影响结构耐久性, 缩短使用寿命。施工中应采取措施使结构尽量不出现裂缝, 或减少裂缝的数量和宽度, 特别是避免出现有害裂缝。国内外对裂缝宽度都有相应的规定, 如我国的CCES 01-2004《混凝土结构耐久性设计与施工指南》, 对钢筋混凝土结构的最大允许裂缝宽度就明确规定干湿交替和冻融环境下的一般构件为0.2mm;水中和土中环境下为0.3mm。混凝土由于各种收缩引起的开裂问题一直是混凝土结构物裂缝控制的重点和难点。 关键词:混凝土裂缝;温度裂缝;收缩裂缝;混凝土结构受力裂缝

目录 摘要......................................................................................................... I 一、混凝土裂缝的类型及成因.. (1) (一)混凝土因自身特性产生裂缝 (1) (二)化学反应引起的裂缝 (4) (三)混凝土结构受力裂缝 (4) (四)施工工艺及流程造成的裂缝 (5) 二、混凝土裂缝的预防措施 (6) (一)严格控制混凝土施工配合比 (6) (二)严格控制混凝土的温度应力 (6) (三)做好裂缝计算 (6) (四)做好混凝土的浇筑和振捣 (6) (五)做好后浇带的施工 (7) 三、混凝土裂缝的处理措施 (7) (一)表面修补法 (7) (二)灌浆、嵌缝封堵法 (7) (三)结构加固法 (7) (四)混凝土置换法 (7) (五)电化学护法 (7) (六)仿生自愈合法 (8) 四、结束语 (8) 致谢 (9) 参考文献 (10)

混凝土碳化的几点原因

混凝土碳化的几点原因集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

1.混凝土碳化 混凝土的碳化是指大气中的二氧化碳首先渗透到混凝土内部的孔隙中,而后溶解于毛细孔中的水分,与水泥水化过程中所产生的水化硅酸钙和氢氧化钙等水化产物相互作用,生成碳酸钙等产物。所以,混凝土碳化是由于混凝土存在着孔隙,里面充满着水分和空气,在混凝土的气相、液相、固相中进行着一个十分复杂的多相物理化学连续过程。 2.混凝土碳化影响因素 有内在因素,也有外界因素。 2.1 影响混凝土碳化的内在因素 不同的水泥,其矿物组成、混合材量、外加剂、生料化学成分不同,直接影响着水泥的活性和混凝土的碱度,对碳化速度有重要影响。一般而言,水泥中熟料越多,则混凝土的碳化速度越慢。外加剂(减水剂、引气剂)一般均能提高抗渗性,减弱碳化速度,但含氯盐的防冻、早强剂则会严重加速钢筋锈蚀,应严格控制其用量。 集料品种和级配不同,其内部孔隙结构差别很大,直接影响着混凝土的密实性。材质致密坚实,级配较好的集料的混凝土,其碳化的速度较慢。 增加水泥用量,一方面可以改变混凝土的和易性,提高混凝土的密实性;另一方面还可以增加混凝土的碱性储备,使其抗碳化性能增强,碳化速度随水泥用量的增大而减少。 在水泥用量一定的条件下,增大水灰比,混凝土的孔隙率增加,密实度降低,渗透性增大,空气中的水分及有害化学物质较多的浸入混凝土体内,加快混凝土碳化。 施工质量差表现为振捣不密实,造成混凝土强度低,蜂窝、麻面、空洞多,为大气中的二氧化碳和水分的渗入创造了条件,加速了混凝土的碳化。

混凝土成型后,必须在适宜的环境中进行养护。养护好的混凝土,具有胶凝好、强度高、内实外光和抗侵蚀能力强,能阻止大气中的水分和二氧化碳侵入其内,延缓碳化速度。 2.2影响混凝土碳化的外界因素 酸性气体(如CO2)渗入混凝土孔隙溶解在混凝土的液相中形成酸,与水泥石中的氢氧化钙、硅酸盐、铝酸盐及其他化合物发生中和反应,导致水泥石逐渐变质,混凝土的碱度降低,这是引起混凝土碳化的直接原因。试验研究已证明,混凝土的碳化速度与二氧化碳浓度的平方根成正比,即混凝土碳化速度系数随二氧化碳浓度的增加而加快。 在混凝土浸水饱和或水位变化部位,由于温度交替变化,使混凝土内部孔隙水交替地冻结膨胀和融解松弛,造成混凝土大面积疏松剥落或产生裂缝,导致混凝土碳化。渗漏水会使混凝土中的氢氧化钙流失,在混凝土表面结成碳酸钙结晶,引起混凝土水化产物的分解,其结果是严重降低混凝土强度和碱度,恶化钢筋锈蚀条件。 混凝土温度骤降,其表面收缩产生拉力,一旦超过混凝土的抗拉强度,混凝土表面便开裂,导致形成裂缝或逐渐脱落,为二氧化碳和水分渗入创造了条件,加速混凝土碳化。

钢筋混凝土界面损伤研究

学号: 0330503003分类号:TU3 密级:无. UDC(DDC): 624 . 硕 士 学 位 论 文 钢筋混凝土界面损伤研究 黄 闽 莉 指导教师姓名:王向东 教授 河海大学土木工程学院 . 南京市西康路1号.申请学位级别:工学硕士 专 业 名 称: 结构工程 .论文提交日期:2006年4月 论文答辩日期:2006年5月 29日.学位授予单位和日期:河 海 大 学 2006年月日.答辩委员会主席:徐道远 论文评阅人:朱召泉、 张子明 . 2006年5月 中 国 南 京

分类号(中图法)TU3 UDC(DDC) 624 密级无. 论文作者姓名黄闽莉学号 0330503003 单位河海大学 论文中文题名钢筋混凝土界面损伤研究. 论文中文副题名 无. 论文英文题名Study on Interface Damage of Reinforced Concrete . 论文英文副题名无. 论文语种汉语论文摘要语种汉、英论文页数 73 论文字数 4.9 (万)论文关键词钢筋混凝土、粘结、滑移、界面粘结损伤、损伤模型. 申请学位级别工学硕士专业名称结构工程. 研究方向工程结构断裂损伤. 指导教师姓名王向东教授导师单位河海大学土木工程学院. 论文答辩日期 2006年 5 月 29 日.

Study on Interface Damage of Reinforced Concrete Dissertation Submitted to HoHai University In fulfillment of the Requirement For the Degree of Master of Engineering by Minli Huang (College of Civil Engineering) Dissertation Supervisor : Professor Xiangdong Wang May, 2006 Nanjing, P.R.China

混凝土碳化影响因素及减缓措施

混凝土碳化影响因素及减缓措施 摘要:所谓混凝土的碳化,是指水泥石中的水化产物与周围环境中的二氧化碳作用,生成碳酸盐或其他物质的现象。碳化将使混凝土的内部组成及组织发生变化,使得混凝土结构内部环境由强碱性变为弱碱性,破坏钢筋表面的钝化膜,导致钢筋锈蚀,严重的将导致混凝土结构的保护层剥落。 关键词:混凝土;碳化;保护层 1.混凝土碳化影响因素 1.1材料因素:材料因素包括水灰比、水泥品种与用量、掺合料、外加剂等,它们主要通过影响混凝土的碱度和密实性来影响混凝土碳化速度。 (1)水灰比 水灰比W/C是决定混凝土孔结构与孔隙率的主要因素,其中游离水的多少还关系着孔隙饱和度(孔隙水体积与孔隙总体积之比)的大小,因此,水灰比是决定CO2有效扩散系数及混凝土碳化速度的主要因素之一。水灰比增加,则混凝土的孔隙率加大,CO2有效扩散系数扩大,混凝土的碳化速度也加大。水灰比在正常施工条件下,混凝土的碳化速度随水灰比减小而降低。此外,龚洛书最早通过试验给出了水灰比对碳化深度的影响系数拟合公式,碳化深度随水灰比的变大而线性升高。 (2)水泥品种和水泥用量 用矿渣水泥的混凝土比同水灰比的普通混凝土碳化程度快10%~20%。水泥用量越大,则单位体积混凝土中可碳化物质的含量越多,消耗的CO2也越多,从而碳化速度越慢。在水泥用量相同时,掺混合材料的水泥水化后单位体积混凝土中可碳化物质含量减少,且一般活性混合材由于二次水化反应还要消耗一部分可碳化物质Ca(OH)2,使可碳化物质含量更少,故碳化速度加快。因此,相同水泥用量的硅酸盐水泥混凝土的碳化速度最小,普通硅酸盐水泥混凝土次之,粉煤灰水泥、火山灰质硅酸盐和矿渣硅酸盐水泥最大。同一品种的掺混合材水泥,碳化速度随混合材掺量的增加而加大 (3)粉煤灰掺量 在硅酸盐水泥混凝土中,掺入粉煤灰有正负两方面的作用,一方面由于水泥用量减少,水化反应生成的可碳化物质减少,碱储备降低,抗碳化能力降低。另一方面,粉煤灰的二次水化填充效应可显著改善混凝土的孔结构,提高混凝土的密实性。

混凝土损伤理论的分析研究

SHANGHAI UNIVERSITY 结构非线性分析课程论文 UNDERGRADUATE PROJECT (THESIS) 题 目:钢筋混凝土结构有限元分析及其断裂损伤理 论应用 学 院 土木工程系 专 业 建筑与土木工程 学 号 xxxxxxxx 学生姓名 xxx 指导教师 xx 日 期 2017.12.24

上海大学2017~2018学年冬季学期研究生课程考试 小论文 课程名称:结构非线性分析课程编号:18Z147004 论文题目:钢筋混凝土结构有限元分析及其断裂损伤理论应用 研究生姓名: xxx 学号: xxxxxxxx 论文评语: 成绩: 任课教师: xx 评阅日期:

目录 一混凝土损伤理论的研究背景 (1) 二国内外对混凝土损伤理论的研究现状 (2) 1)国外混凝土损伤理论研究现状 (2) 2)国内混凝土研究现状 (2) 三混凝土损伤理论研究中的问题和研究方法 (3) 1)试验条件相差较大时混凝土的本构关系将发生变化 (3) 2)复杂的多轴应力状态下的损伤理论 (3) 3)试验难度大 (3) 4)研究方法 (3) 四钢筋混凝土非线性损伤理论及有限元法 (4) 1)混凝土非线性本构模型 (4) 2)规范中的混凝土损伤理论 (5) ①混凝土单轴受压时的本构模型及dc的选取 (5) ②混凝土单轴受拉时的损伤理论 (6) 2)ABAQUS算例 (6) ①混凝土塑形损伤模型 (6) ②数值分析 (7) 五研究成果与创新 (8) 1)当今国际的研究成果 (8) 2)理论研究的新进展 (8) 3)在有限元中的应用 (8) 六研究混凝土损伤理论的意义和结论 (9) 1)社会意义 (9) 2)经济效益 (9) 3)结论 (9) 七展望 (9) 八建议 (10)

混凝土回弹与碳化深度

混凝土回弹与碳化深度

综述:碳化深度过深会降低混凝土的碱性,影响结构的耐久度。碳化就是混凝土中的Ca(OH)2和空气中的CO2反应生成CaCO3和水的过程。 碳化深度主要与水灰比和周围环境有关。一般说来,水泥用量一定的时候,水灰比越大,碳化越快。当水灰比一定的时候,水泥用量越少,碳化越快。从碳化的定义我们可以看出如果水泥用量多的话,混凝土中的Ca(OH)2就多碱性就越强,越不容易碳化。还有就是周围的环境,CO2的浓度及湿度。非常潮湿和非常干燥的时候,混凝土都不易碳化。太湿可以隔离CO2与Ca(OH)2的反映,太干CO2无法结合到水生成H2CO3(碳酸),混凝土也不会碳化。 回弹检测混凝土强度是以混凝土的表面硬度来推断混凝土强度的.碳化会增大混凝土表面硬度,所以回弹判定其强度时需要检测碳化深度进行修正。 一、混凝土碳化机理及原因 1、混凝土碳化机理 拌和混凝土时,硅酸盐水泥的主要成份CaO水化作用后生成Ca(OH)2,它在水中的溶解度低,除少量溶于孔隙液中,使孔隙液成为饱和碱性溶液外,大部分以结晶状态存在,成为孔隙液保持高碱性的储备,它的PH值为12.5~13.5。空气中的CO2气体不断地透过混凝土中未完全充水的粗毛细孔道,气相扩散到混凝土中部分充水的毛细孔中,与其中的孔隙液所溶解的Ca(OH)2进行中和反应。反应产物为CaCO3和H2O,CaCO3溶解度低,沉积于毛细孔中。

该反应式为:Ca(OH)2+CO2→CaCO3↓+H2O 反应后,毛细孔周围水泥石中的羟钙石补充溶解为Ca2+和OH-,反向扩散到孔隙液中,与继续扩散进来的CO2反应,一直到孔隙液的PH值降为8.5~9.0时,这层混凝土的毛细孔中才不再进行这种中和反应,此时即所谓“已碳化”。确切地说,碳化应称为碳酸盐化。另外,凡是能与Ca(OH)2进行中和反应的一切酸性气体,如SO2、SO3、H2S以至于气相HCI等,均能进行上述中和反应,使混凝土碱度降低,故混凝土碳化应广义地称为“中性化”。混凝土表层碳化后,大气中的CO2继续沿混凝土中未完全充水的毛细孔道向混凝土深处气相扩散,更深入地进行碳化反应。 2、混凝土碳化原因 混凝土的主要成分有水泥、粗细骨料、水以及外加剂。水泥掺与混凝土的拌合中,水泥中主要成分是CaO,经水化作用后生成Ca(OH)2 ,混凝土的碳化,是指混凝土中的Ca(OH)2与空气中的CO2起化学反应,生成中性的碳酸盐CaCO3 。未碳化的混凝土呈碱性,混凝土中钢筋保持钝化状态的最低(临界)碱度是PH 值为11.5,碳化后的混凝土PH值为8.5~9.5。碳化使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,使混凝土对钢筋的保护作用减弱。当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。钢筋锈蚀后,锈蚀产生的体积比原来膨胀2~4倍,从而对周围混凝土产生膨胀应力,锈蚀越严重,铁锈越多,膨胀力越大,最后导致混凝土开裂形

相关主题