搜档网
当前位置:搜档网 › 弹簧振子振动周期的讨论

弹簧振子振动周期的讨论

弹簧振子振动周期的讨论
弹簧振子振动周期的讨论

弹簧振子周期公式的探究

梅丹兵(21610115)

(东南大学交通学院,南京市,210000)

摘 要: 基于本学期在“弹簧振子周期”实验中出现的实验数据和理论数据相差较大的缘故,本文探究了在“弹簧振子周期”实验中弹簧质量对系统周期的影响,并利用数学知识推导出了一个符合实验数据的合理公式。 关键词: 振动周期;弹簧振子;有效质量;非线性改变

A discussion on the cycle of vibration of springs

Mei Danbing

(Transportation Institute of SEU , Nanjing 210000)

Abstract: Based on the reason that the big difference between the experimental data and the theoretical data in the experiment

about “the cycle of vibration of springs “,the article explored the influence of the quality of springs on the vibration cycle ,and made full use of the mathematical knowledge to derive a rational formula in line with experimental data. key words: Vibration cycle ; springs ;effective quality ; Non-linear change

引言

在本学期的“简谐振动”一章中我们学习了弹簧振子周期公式,并做了相关的物理实验。根据课本上简谐运动的周期公式可推导出弹簧振子的振动周期公式为

K

M

T π

2= (1) 其中M 为振子质量,K 为弹簧劲度系数。 而我们发现由(1)式计算出得的理论值0T 与实验测得的测量值1T 之间的偏差达到了2.58%,其中固然有测量误差和阻力误差,但不可排除的是(1)

式中的M 仅指振子的质量,而没有考虑弹簧的质量。由于本实验中弹簧劲度系数K 与振子质量M 都很小,这时弹簧自身的质量已不能忽略。那么如何考虑弹簧质量对系统周期的影响呢?假如弹簧的质量为m ,可以肯定K

m

M T +≠π

2,因为弹簧虽参与振动,但其上各点的振动情况是不一样的。通过查阅相关文献我们得知此时系统的振动周期为

K

M T m

312+=π

(2) 于是在原实验基础上,我们测量了弹簧的质量m ,

并再次将相关数据代入(2)式,计算得出的理论值0T 与实际测量值1T 之间还是有近1.93%的偏差,这一结果的得出不得不引起我对(2)式的质疑。带着疑惑我再次详细的查看了相关文献中(2)式的推导过程,发现了可能造成偏差的主要原因——线弹性变化。通过咨询老师和查阅相关资料,发现弹簧的变化严格意义上不是均匀的,所以(2)式的推导过程严格意义上是不精确的。但我们有理由相信,通过物理模型和相关数学知识,会得到比(2)式更为精确的公式。

梅丹兵,男,1991年11月2日生于湖北黄冈,现就读于东南大学交通学院,主修岩土工程。 E-amil :meidanbing@https://www.sodocs.net/doc/4d15788849.html,

弹簧振子系统周期公式的理论推导

首先来探讨当弹簧末端不加任何物体时其振动周期的表达式。

设有一总长度为L ,质量为m ,劲度系数为k

的弹簧一端固定,另一

端自由(如图1所示),

其振动的固有周期到底为多少呢?

此处我们通过物理学驻波模型来解决此问题。 设另有一根总长度很长的弹簧,其质量均匀分布,且弹簧单位长度的质量为L

m

=

η,劲度系数为k (查阅相关文献知影响弹簧劲度系数K 的因素很

多,此处可以通过改变不同的因素来达到目的)。让这根弹簧两端以相同的振幅和频率沿弹簧方向振动起来,稳定后必然在弹簧上形成驻波。调节波源频率,使长弹簧的波长恰好为4L ,则相邻波腹与波节的距离恰好为L 。由于驻波的波节振幅为零,与图1弹簧的固定点O 一样;驻波的波腹振幅最大,与自由点P 一样,可得图1弹簧的振动与长弹簧波节到相邻波腹振动情况完全一样(因周期只与M 和K 有关,弹簧长度的不同不影响结果)。

下面从驻波行程条件来求解周期T

由于固体中纵波的波速为

ρ

E

v =

(3)

其中E 为弹簧弹性模量,ρ为密度,对于长度为L 的上述弹簧,通过查阅资料得其等效密度和弹性模量分别为:

S

KL LS FL E LS m =?==

ρ 其中S 为弹簧横截面积。

将其代入(3)式得:

m

kL v 2

=

(4) 欲使弹簧波波长为4L ,则图1弹簧的固有周期为:

k

m

m

kL L v

T 4

42==

=

λ

(5) 由此可知K

m

T 32π

=的结论是错误的。(2)式之所以会出错,是因为其在考虑振动速度时,直接认为速度是线性变化的。但事实上当弹簧的质量不能忽略时,其形变量是不均匀的,离固定点O 越近的地方由于受到的弹力越大,形变量也就越大(示意图如图2所示)。那么“一质量为m 的弹簧与一质量为M 的振子组成的‘弹簧振子’振动周期”为多少呢?

设某时刻物体

M 离开其平衡位置的位移为M x ,速度为M v ,加速度为

M a ;而距O 点为l 的一小段弹簧l d 离开其平衡位

置的位移为x ,速度为v ,加速度为a 。由于所有质点的振动情况都同相,则可以得出:

M

M M x x

v v a a =

=。又由于每一段弹簧离开平衡位

图2

O P

图1

置的位移都等于它左侧所有小段的伸长量之和,则距O 点为l 的一小段弹簧l d 的伸长量为x d ,劲度系数为

l kL d ,则其弹力为l x kL d d ?,质量为L

l m d ?。其与相邻小段弹簧的弹力差,即其所受合力

L x l

xm a L l am l x kL f M M d d d d d ==

??

? ???= 化简可得:

x kL

x m a l x M M 2

22

d d = 由于M 物体振动时的M a 与M x 反向,即

M

M x a 为负值,则根据常微分方程的理论,上面微分方程的解可写作)sin(2

?+-

=l kL x m

a A x M M 。其中A 为与M 离开平衡位置的位移有关的变量,由于O 点附近的质元离其平衡位置的位移趋向于零,可得

0=?。

即:l kL

x m

a A x M M 2sin -= (6)

则每一小段弹簧的形变量为

l l kL

x m

a kL x m a A x M M M M d cos d 2

2?-?-

= 相应的小段弹簧弹力为

l kL

x m a x mk a A l kL

x F M M M M 2cos d d -?-=?=

(7)

对于连接M 物体的那小段弹簧,L l =,代入(7)式得

M M M M M Ma k

x m

a x mk a A F =-?-

=cos (8)

下面分三种情况对(8)式进行导论 Ⅰ. 当0=M 时,即没有物体M 时:

0=F

由(8)式得:

2

π

=-

k x m a M M 解得M M M x x m

k

a 224ωπ-=-

= (9)

于是:k

m

T 4

2==

ω

π

(10) 得到与(5)式相同的结论。

Ⅱ. 当0=m 时,即弹簧质量忽略时,

0d d 2

2=l x

则每一小段弹簧的形变量x d 都相等,即弹簧的形变是均匀的,此时的弹簧振子即我们平时看到的弹簧质量可忽略的理想弹簧振子,其振动周期为

k

M T π

2= 得到与(1)式相同的结论。

Ⅲ. 当00≠≠m ,M 时,由(8)式得:

mk

x a A

M

k x m a M

M M M -

=-

cos (11) 由(6)式得:k

x m

a A x M M M -

=sin (12) 设M M x a ?-=2ω,将之与(12)式一起代入(11)式得:

)sin()cos(

ωωωωk

m

k m m M

k m mA x M k m

M ?=?=从而得到:

M

m k m k m =?ωω)tan(

(13) 上式中M 、m 、k 为定值,ω为我们所求弹簧

振子的圆频率。显然只有当

M

m

为特殊值时,该超越方程才有精确解,否则只能是近似解。 例如: 当

0→M

m

,即0→m 时, M m

k m k m

k m =

???? ?

?=?2)tan(ωωω (14) 化简得:

M k =

ω 从而得到 k

M T π

2= 此即理想弹簧振子的圆频率。 当

0→m

M

,即0→M 时, 2πω=k m k

m

T 4

2==

ω

π 即可得与(10)式一样的结论。

4π=M m ,m

k 4

πω=

还有等等…

结果分析

在推导出(13)式之后,我重新将各数据代入到公式中,计算得出的近似理论值0T 与测量值1T 的偏差缩小到了1.52%.虽然较之前只减小了不到0.4%,但

这样的数据还是更为合理。

结论

本文的论述过程是建立在弹簧的非线性形变

基础和微积分公式之上,因此推理过程有些复杂,

但,思路较为清晰、缜密,不失为一种好的论证过程。同时由推导过程知,在振子质量M 和劲度系数K 不变的前提下,弹簧质量m 越大,采用(13)式

与采用(2)式计算得出的理论值0T 之间的偏差越大。因此,我们在处理弹簧振子周期问题时,当弹

簧的质量与振子的质量相比基本可以忽略时,计算系统振动周期,可以近似的采用公式

K

M T m

312+=π

;但当弹簧的质量不可忽略且对实验的要求较高时,采用公式

ωωk

m

k m M m tan ?= 所求出的结果更为精确。

参考文献:

[1] 马文蔚等,物理学.第五版,高等教育出版社,2006,3

(5):1-6,64-69

[2] 钱锋,潘人培. 大学物理实验.修订版 ,高等教育出版,

2005,11. 73-76

[3] 徐滔滔,《大学物理实验》期刊,1998年6月,第11

卷,第2期:《关于弹簧振子振动周期的讨论》 [4] 杨桂通,弹性力学简明教程,清华大学出版社,

2006,9:48-51

[5] 陈学志,罗莹,《中国现代教育装备》,2011年08期:

《探究弹簧劲度系数的影响因素》

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲 26 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量0m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--=&& 令 12k k = 则有 kx mx -=&& ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω=

且 10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是 10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。

气垫导轨上弹簧振子振动的研究

气垫导轨上弹簧振子振动的研究 力学实验最困难的问题就是摩擦力对测量的影响。气垫导轨就是为消除摩擦而设计的力学实验的装置,它使物体在气垫上运动,避免物体与导轨表面的直接接触,从而消除运动物体与导轨表的摩擦,也就是说,物体受到的摩擦阻力几乎可以忽略。利用气垫导轨可以进行许多力学实验,如测速度、加速度,验证牛顿第二定律、动量守恒定律,研究简谐振动、阻尼振动等,本实验采用气垫导轨研究弹簧振子的振动。 一、必做部分:简谐振动 [实验目的] 1.测量弹簧振子的振动周期T 。 2.求弹簧的倔强系数k 和有效质量 0m 。 [仪器仪器] 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 [实验原理] 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图13-1所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐振动。 设质量为m 1的滑块处于平衡位置,每个弹簧的伸长量为x 0,当m 1距平衡点x 时,m 1只受 弹性力)(01x x k +-与)(01x x k --的作用,其中k 1是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 x m x x k x x k =--+-)()(0101(1) 令 12k k = 方程(1)的解为 )s i n (00?ω+=t A x (2) 说明滑块是做简谐振动。式中:A —振幅;0?—初相位。 m k = 0ω (3) 0ω叫做振动系统的固有频率。而 01m m m += (4) 式中:m —振动系统的有效质量;m 0—弹簧的有效质量;m 1—滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系: k m m k m T 010 222+=== ππ ωπ (5) 在实验中,我们改变m 1,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 图13-1简谐运动原理图

弹簧振子实验报告

弹簧振子实验报告 一、引言 ?实验目的 1.测定弹簧的刚度系数(stiffness coefficient). 2.研究弹簧振子的振动特性,验证周期公式. 3.学习处理实验数据. ?实验原理 一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度与振子的位移x成正比,即 F =_ kx⑴ 式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷?这就是胡克定律?式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x 为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.

根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为: + Arx = O x = Asin +(/>) (3) 式表明?弹簧振子在外力扰动后,将做振幅为A,角频率为宀0的简谐振 动,式中的(叫/ +。)称为相位,0称为初相位?角频率为叫的振子其振动周期 (4) (4) 式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的 最基本的特性?弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相 位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识 更复杂震动的基础. 弹簧的质量对振动周期也有影响?可以证明,对于质量为“0的圆柱形弹簧, 振子周期为 (5) m o/ m o/ 式中 ?称为弹簧的等效质量,即弹簧相当于以 ?的质量参加了振子的 振动?非圆柱弹簧(如锥形弹簧)的等效质量系数不等于1/3. d 2x 上式可化为一个典型的二阶常系数微分方程乔 =0 其解为 (3) 可得 x =

高中物理的所有公式归纳

高中物理公式、规律汇编表 一、力学 1、 胡克定律: F = kx (x 为伸长量或压缩量;k 为劲度系数,只与弹簧的 原长、粗细和材料有关) 2、 重力: G = mg (g 随离地面高度、纬度、地质结构而变化;重力约等 于地面上物体受到的地球引力) 3 、求F 1、F 2两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 + F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合 外力为零。 F 合=0 或 : F x 合=0 F y 合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值 反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1) 滑动摩擦力: f= μ F N 说明 : ① F N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G ② μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、 接触面相对运动快慢以及正压力N 无关. (2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明:

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

《弹簧振子》模型

“弹簧振子”模型 太原市第十二中学 姚维明 模型建构: 【模型】常见弹簧振子及其类型问题 在简谐运动中,我们对弹簧振子(如图1,简称模型甲)比较熟悉。在学习过程中,我们经常会遇到与此相类似的一个模型(如图2,简称模型乙)。认真比较两种模型的区别和联系,对于培养我们的思维品质,提高我们的解题能力有一定的意义。 【特点】①弹簧振子做简谐运动时,回复力F=-kx ,“回复力”为振子运动方向上的合力。加速度为m kx a -= ②简谐运动具有对称性,即以平衡位置(a=0)为圆心,两侧对称点回复力、加速度、位移都是对称的。这是解题的关键。 模型典案: 【典案1】把一个小球挂在一个竖直的弹簧上,如图2。当它平衡后再用力向下拉伸一小段距离后轻轻放手,使小球上下振动。试证明小球的振动是简谐振动。 〖证明〗设弹簧劲度系数为k ,不受拉力时的长度为l 0,小球质量为m ,当挂上小球平衡时,弹簧的伸长量为x 0。由题意得mg=kx 0 容易判断,由重力和弹力的合力作为振动的回复力 假设在振动过程中的某一瞬间,小球在平衡位置下方,离开平衡位置O 的距离为x,取向下的方向为正方向 则回复力F=mg+[-k(x 0+x)]=mg-kx 0-kx= -kx 根据简谐运动定义,得证 比较: (1)两种模型中,弹簧振子都是作简谐运动。这是它们的相同之处。 (2)模型甲中,由弹簧的弹力提供回复力。因此,位移(x),回复力(F),速度(v),加速度(a),各量大小是关于平衡位置O 点对称的。 (3)模型乙中,由弹簧的弹力和重力两者的合力提供回复力。弹簧的弹力大小关于平衡位置是不对称...的,这点要特别注意。但是,回复力(加速度)大小关于平衡位置是对称..的。在解题时我们经常用到这点。 【典案2】如图3所示,质量为m 的物块放在弹簧上, 弹簧在竖直方向上做简谐运动,当振幅为A 时,物体对弹 簧的最大压力是物重的1.8倍,则物体对弹簧的最小压力是 物重的多少倍?欲使物体在弹簧振动中不离开弹簧,其振幅 最大为多少? 〖解析〗1)选物体为研究对象,画出其振动过程的几个 特殊点,如图4所示, O 为平衡位置,P 为最高点,Q 为最低点。 图2 m 图3 P 点

第九章简谐振动自测题

第九章简谐振动自测题 一、选择题 1、对于一个作简谐振动的物体,下列说法正确的是( (A)物体处在正的最大位移处时,速度和加速度都达到最大值 (B)物体处于平衡位置时,速度和加速度都为零 (C)物体处于平衡位置时,速度最大,加速度为零 (D)物体处于负的最大位移处时,速度最大,加速度为零 2、对一个作简谐振动的物体,下面哪种说法是正确的( (A)物体位于平衡位置且向负方向运动时,速度和加速度都为零 (B)物体位于平衡位置且向正方向运动时,速度最大,加速度为零 (C)物体处在负方向的端点时,速度和加速度都达到最大值 (D)物体处在正方向的端点时,速度最大,加速度为零 3、一弹簧振子作简谐振动,当运动到平衡位置时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 4、一弹簧振子作简谐振动,当运动到最大振幅处时,下列说法正确的是:() (A)速度最大(B)加速度最大 (C)频率最小(D)周期最小 5、一质点作简谐振动,振动方程为二Acos(‘t ?「),当质点处于最大位移时则 有() (A)=0 ;(B)V =0 ;(C)a =0 ;(D)- 0. 6 —质点作简谐振动,振动方程为x=Acos( 7 + ■'),当时间t=T 2( T为周期)时,质点的速度为() (A)A sin :(B)-A sin :(C)-A cos :(D A cos 7、将一个弹簧振子分别拉离平衡位置1m和2 m后,由静止释放(形变在弹性限度内),则它们作简谐振动时的() (A)周期相同(B)振幅相同(C)最大速度相同(D)最大加速度相同 8、一作简谐振动的物体在t=0时刻的位移x=0,且向x轴的负方向运动,则其初相位为()

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲 2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0ω= 且 10m m m =+

式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量 20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理: 1、用逐差法处理数据 由下列公式 221 104()T m m k π=+

简谐运动周期公式的推导

简谐运动周期公式的推导 【摘要】:本文通过简谐运动与圆周运动的联系,用圆周运动的周期公式推导出了简谐运动周期公式。 【关键辞】:简谐运动、周期、匀速圆周运动、周期公式 【正文】: 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标图2 图3 图4

系。 则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= 二零一一年三月九日 图5

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲26 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω= 且

10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

弹簧质量对振动系统的影响 修改(1)汇总

玉林师范学院本科生毕业论文 弹簧质量对振动系统的影响The Influence of Spring Quality on Vibration System 院系物理科学与工程技术学院 专业物理学 学生班级2009级2班 姓名戴石贵 学号200905401240 指导教师单位物理科学与工程技术学院 指导教师姓名关小蓉 指导教师职称副教授

弹簧质量对振动系统的影响 物理学2009级2班戴石贵 指导教师关小蓉 摘要 弹簧振子是物理学中的一个典型模型,弹簧振子是指忽略质量的轻弹簧系一物体所组成的系统。在实验中得到的弹簧振子的振动频率和理论结果存在着较大的差异,其中有很多原因,但主要是由于弹簧的质量对振动有一定的影响。人们在讨论弹簧振 m、弹性系数子的振动情况时,往往忽略弹簧本身的质量,实际弹簧振子由质量为 为k的弹簧和连接于弹簧一端质量为m的振动物体组成,为解决实际弹簧振子弹簧质量对振动系统的影响问题,采用研究系统的能量方法,建立了有弹簧质量时系统的动能和势能公式,从不同角度定量的分析了弹簧质量对振动系统的周期之间的影响,该研究对实际振动系统的振动问题具有一定的参考价值和指导意义。 由于弹簧本身有质量,这种弹簧振子不是理想的振子,它的振动周期与弹簧的质量有着密切的联系,当我们把这种影响仅归于质量因素时,振子的周期可以写成与弹簧有效质量有关的表达式,实际上处理这类问题的方法有很多种,像四阶龙格——库塔法、瑞利法、传递矩阵法、求解波动方程法、试探法求解微分方程、机械能守恒近似法、迭代法等等,本文主要运用机械能守恒定律和迭代法分别近似求解实际弹簧振子的周期,并对结果做出详细的讨论。 关键词:弹簧振子,弹簧质量,周期,动能,势能

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω= 且

10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

有关弹簧问题中应用简谐运动特征的解题技巧

有关弹簧问题中应用简谐运动特征的解题技巧 黄 菊 娣 (浙江省上虞市上虞中学 312300) 弹簧振子的运动具有周期性和对称性,因而很容易想到在振动过程中一些物理量的大小相等,方向相同,是周期性出现的;而经过半个周期后一些物理量则是大小相等,方向相反.但是上面想法的逆命题是否成立的条件是:①此弹簧振子的回复力和位移符合kx F -=(x 指离开平衡位置的位移) ;②选择开始计时的位置是振子的平衡位置或左、右最大位移处,若开始计时不是选择在这些位置,则结果就显而易见是不成立的. 在这里就水平弹簧振子和竖直弹簧在作简谐运动过程中应用其特征谈一谈解题技巧,把复杂的问题变简单化,从而消除学生的一种碰到弹簧问题就无从入手的一种恐惧心理. 一、弹簧振子及解题方法 在判断弹簧振子的运动时间,运动速度及加速度等一些物理量时所取的起始位置很重要,在解题方法上除了应用其规律和周期性外,运用图象法解,会使问题更简单化. 例1 一弹簧振子做简谐运动,周期为T ,则正确的说法是………………………………………( ) A .若t 时刻和(t +Δt )时刻振子运动位移的大小相等,方向相同,则Δt 一定等于T 的整数倍 B .若t 时刻和(t +Δt )时刻振子运动速度大小相等,方向相反,则Δt 一定等于 2 T 的整数倍 C .若Δt =T ,则在t 时刻和(t +Δt )时刻振子运动的加速度一度相等 D .若Δt =2T ,则在t 时刻和(t +Δt )时刻弹 簧的长度一定相等 解法一:如图1为一个弹簧振子的示意图,O 为平衡位置,B 、C 为两侧最大位移处,D 是C 、O 间任意位置. 对于A 选项,当振子由D 运动到B 再回到D ,振子两次在D 处位移大小、方向都相 同,所经历的时间显然不为T ,A 选项错. 对于B 选项,当振子由D 运动到B 再回到D ,振子两次在D 处运动速度大小相等,方向相反,但经过的时间不是 2 T ,可见选项B 错. 由于振子的运动具有周期性,显然加速度也是如此,选项C 正确. 对于选项D ,振子由B 经过O 运动到C 时,经过的时间为 2 T ,但在B 、C 两处弹簧长度不等,选项D 错.正确答案选C . 解法二:本题也可利用弹簧振子做简谐运动的图象来解.如图2所示,图中A 点与B 、E 、F 、I 等点的振动位移大小相等,方向相同.由图可见,A 点与E 、I 等点对应的时刻差为T 或T 的整数倍;A 点与B 、F 等点对应的时刻差不为T 或T 的整数倍,因此选项A 不正确.用同样的方法很容易判断出选项B 、D 也不正确.故只有选项C 正确. 图1

弹簧振子系统的简谐振动研究 matlab课程作业

《数学实验》报告 实验名称弹簧振子系统的简谐振动研究___ 学院 专业班级 姓名 学号 2012年6月

一、【实验目的】 1.熟悉MATLAB各个函数命令及使用方法. 2.熟悉MATLAB编程原则和子函数应用的方法. 3.进行MATLAB的综合应用以提高使用技巧. 4.对于弹簧振子系统的简谐振动进行编程以更好的理解其定义并熟悉 MATLAB. 二、【实验任务】 设弹簧振子系统由质量为m的滑块和劲度系数为k的弹簧所组成。已知t=0时,m在A处,即x0=A,并由静止开始释放。试研究滑块的运动规律。三、【问题分析】 以x表示质点相对于原点的位移,线性回复力为f=-kx。由牛顿第二定律以及题设条件,可写出弹簧振子的振动微分方程及其初始条件为 d^2x/dt^2+kx/m=0 x(0)=A v(0)=dx/dt|(t=0)=0 滑块的速度和加速度分别为 V=dx/dt a=d^2x/dt^2 令ω*ω=k/m,用符号法求解上诉微分方程,求出运动方程、速度和加速度,并绘制出x-t,v-t和a-x曲线。 四、【实验程序】 clc x=dsolve('D2x=-w^2*x','Dx(0)=0,x(0)=A','t') v=diff(x,'t'),a=diff(x,'t',2), 2

3 k=400;m=2;w=sqrt(k/m); A=0.1;t=0:0.01:0.9; x=eval(x);v=eval(v);a=eval(a); subplot(3,1,1),plot(t,x); title('x-t 关系图 ') subplot(3,1,2);plot(x,v); title('v-x 关系图') subplot(3,1,3);plot(x,a) title('a-x 关系图') 一、 【实验结果】 x = (A*exp(i*t*w))/2 + A/(2*exp(i*t*w)) v = (A*i*w*exp(i*t*w))/2 - (A*i*w)/(2*exp(i*t*w)) a = - (A*w^2*exp(-t*w*i))/2 - (A*w^2*exp(t*w*i))/2 00.10.20.30.40.50.60.70.80.9 -0.10 0.1x-t 关系图 -0.1-0.08-0.06-0.04-0.0200.020.040.060.080.1 -20 2v-x 关系图 -0.1 -0.08-0.06-0.04-0.0200.02 0.040.060.080.1 -200 20a-x 关系图

弹簧振子周期影响因素

弹簧振子周期的影响因素 (南京 210096) 摘要:本文研究了弹簧质量对弹簧振子系统周期的影响,分析了不同方法近似成立的条件并对计算结果进行了讨论。并且通过对弹簧振子研究的进一步探析,发现如果弹簧的形状不是几何对称, 即使用相同的方法对弹簧两端分别挂测,其质量对周期公式产生的影响也是不同的。从而发现弹簧振子的周期与其重心位置也是有关的。 关键词:弹簧振子;周期;质量;重心 Spring vibrator cycle impact factors (Information science and engineering college of Southeast University, Nanjing, 210096) Abstract:This paper studies the quality of spring spring vibration subsystem the influence of the cycle, and analyzes on the different methods of approximate established condition and the calculation results are discussed. And through the spring vibrator further analysis, found that if the shape of the spring is not symmetrical geometric, that is, using the same method of spring ends hang separately measured, its quality to cycle the impact of the formula is also different. Spring vibrator to find the cycle of barycenter position is also related with. key words: spring vibrator; cycle;quality;focus 人们在讨论弹簧振子的振动情况时,往往忽略弹 簧本身的质量。实际弹簧振子由质量为m、劲度系数为k的弹簧和连接于弹簧一端的质量为M的振动物体组成。由于弹簧本身有质量,这种弹簧振子不是理想振子,它的振动周期与弹簧的质量有着密切的联系。当我们把这种影响仅归于质量因素时,振子的周期可以写成与弹簧有效质量有关的表达式。 而且质量一定,形状不规则的弹簧,其运动周期还与他的形状及重心相关。 作者简介:1实验回顾 在“弹簧振子周期公式研究”的实验中,最后的课题探究采用控制变量的方法,控制振子质量M不变,研究弹簧自身质量m对弹簧振子振动周期的影响。测得的数据见表1。

两质量弹簧系统的强迫振动

两质量弹簧系统的强迫振动 /PREP7 !进入前处理模块 /TITLE, EX 8.2(1) by Zeng P, Lei L P, Fang G ET,1,COMBIN14,,,2 !设定1号单元为弹簧阻尼单元,自由度为UX,UY ET,2,MASS21,,,4 ! 设定2号单元为质量块单元,自由度为UX,UY m1=0.5 $m2=0.5 !设置质量块的参数 k1=200 $k2=200 $k3=200 !设置弹簧参数 Force=200 !设置载荷的幅值 R,1,k1 $R,2,k2 $R,3,k3 !设定实常数为弹簧常数 R,11,m1 $R,12,m2 !设定实常数为质量 N,1,0,0 $N,4,1,0 $FILL !生成1号节点及4号节点,然后填充生成之间的节点 c*** 以下三行,分别生成3个弹簧单元 TYPE,1 $REAL,1 $E,1,2 TYPE,1 $REAL,2 $E,2,3 TYPE,1 $REAL,3 $E,3,4 c*** 以下分别生成2个质量块单元 TYPE,2 $REAL,11 $E,2 TYPE,2 $REAL,12 $E,3 FINISH !结束前处理模块 /SOLU !进入求解模块 ANTYPE,HARMIC !设置简谐响应分析方式 HROPT,FULL !设置完全简谐响应算法 HROUT,OFF !设置输出结果为幅值和相位角方式 OUTPR,BASIC,1 !设置基本的输出方式 HARFRQ,0,7.5 !设置频率范围为0到7.5Hz NSUBST,30 !设置频率间隔的子步数 KBC,1 !设置阶梯式加载方式 D,1,UY,,,4 !对1号节点至4号节点施加位移约束UY=0 D,1,UX,,,4,3 !对1号节点和4号节点施加位移约束UX=0 F,2,FX, Force !在2号节点处施加载荷FX=200 SOLVE $FINISH !进行求解,结束求解模块 /POST26 !进入时间历程后处理模块 NSOL,2,2,U,X,P2_UX !将2号节点的位移UX设置为2号变量,标识为P2_UX NSOL,3,3,U,X,P3_UX !将3号节点的位移UX设置为3号变量,标识为P3_UX /GRID,1 !设置图形的网格线 /AXLAB,Y,DISP !设定Y轴的标识为DISP PLV AR,2,3 !图形显示2号及3号变量的曲线 *GET,X1_R,V ARI,2,RTIME,1.5 !获取2号变量对应与频率1.5的响应幅值(实部),赋给X1_R *GET,X1_I,V ARI,2,ITIME,1.5 !获取2号变量对应与频率1.5的响应幅值(虚

简谐振动模型

第二讲 简谐振动模型 【教学目标】 1.掌握简谐振动模型一弹簧振子 2.学习计算简谐振动模型→单摆的周期 【知识点一】弹簧振子 1、定义:物体和弹簧所组成的系统. 条件(理想化) : ①物体看成质点 ②忽略弹簧质量 ③忽略摩擦力 2、回复力:指向平衡位置的合外力提供 回复力。 左图:弹簧弹力提供回复力, 小球的平衡位置为O ,在AB 两点间做简谐振动, 振幅为OA=0B 右图:弹簧弹力和重力的合力提供回复力 3、周期:2m T K π= , 由振子质量和弹簧的劲度系数共同决定,与振幅无关。 ★运动规律包含振幅与周期 【例】如图所示,是一弹簧振子,设向右方向为正,O 为平衡位置,则下列说法不正确的是( ) A A→O 位移为负值,速度为正值 B O→B 时,位移为正值,加速度为负值 C B→O 时,位移为负值,速度为负值 D O→A 时,位移为负值,加速度为正值 【例】弹簧振子做简谐运动的振动图像如图2所示,在t1至t2这段时间内( ) A 振子的速度方向和加速度方向都不变 B 振子的速度方向和加速度方向都改变 C 振子的速度方向改变,加速度方向不变 D 振子的速度方向不变,加速度方向改变 【例】同一个弹簧振子从平衡位置被分别拉开5cm 和2cm,松手后均作简谐运动,则它们的振幅之比A1:A2=______,最大加速度之比a1:a2=_____,振动周期之比T1:T2=______. ★回复力 【例】如图所示,物体A 放在物体B 上,B 与弹簧相连,它们在光滑水平面上一起做简谐运动.当弹簧伸长到最长时开始记时(t = 0),取向右为正方向,A 所受静摩擦力f 随时间t 变化的图象正确的是( )

振动力学考题集[]

1、四个振动系统中,自由度为无限大的是()。 A. 单摆; B. 质量-弹簧; C. 匀质弹性杆; D. 无质量弹性梁; 2、两个分别为c1、c2的阻尼原件,并连后其等效阻尼是()。 A. c1+c2; B. c1c2/(c1+c2); C. c1-c2; D. c2-c1; 3、()的振动系统存在为0的固有频率。 A. 有未约束自由度; B. 自由度大于0; C. 自由度大于1; D. 自由度无限多; 4、多自由度振动系统中,质量矩阵元素的量纲应该是()。 A. 相同的,且都是质量; B. 相同的,且都是转动惯量; C. 相同的,且都是密度; D. 可以是不同的; 5、等幅简谐激励的单自由度弹簧-小阻尼-质量振动系统,激励频率()固有频率时, 稳态位移响应幅值最大。 A. 等于; B. 稍大于; C. 稍小于; D. 为0; 6、自由度为n的振动系统,且没有重合的固有频率,其固有频率的数目(A )。 A. 为n; B. 为1; C. 大于n; D. 小于n; 7、无阻尼振动系统两个不同的振型u(r)和u(s),u(r)T Mu(s)的值一定()。 A. 大于0; B. 等于0; C. 小于0; D. 不能确定; 8、无阻尼振动系统的某振型u(r),u(r)T Ku(r)的值一定()。 A. 大于0; B. 等于0; C. 小于0; D. 不能确定; 9、如果简谐激励力作用在无约束振动系统的某集中质量上,当激励频率为无限大时, 该集中质量的稳态位移响应一定()。 A. 大于0; B. 等于0; C. 为无穷大; D. 为一常数值; 10、相邻固有频率之间的间隔呈近似无限等差数列的振动系统是()。 A. 杆的纵向振动; B. 弦的横向振动; C. 一般无限多自由度系统; D. 梁的横向振动; 11、两个刚度分别为k1、k2串连的弹簧,其等效刚度是()。 A. k1+k2; B. k1k2/(k1+k2);

弹簧振子周期公式的研究

教案(首页) 备课笔记附后:

实验二 弹簧振子周期公式的研究 【实验目的】 1. 学习建立实验公式的实验方法,找出弹簧振子的周期公式。 2. 通过公式简化、曲线直化和数据处理,练习作图和图解。 【实验原理】 已知弹簧振子的振动周期T 与倔强系数K 、振子质量m 相关,为了找出T 、K 、m 三者之间的关系,从量纲分析,可以假设满足下式 β α m AK T = (1) 式中α、β和A 均为待定常数。如果能通过实验测量和数据处理找到α、β和A 的具体数值,那么(1)式就被具体地确定了。如果找不出α、β和A 的数值,则说明(1)式的假设是错误的,还需要对T 、K 、m 三者的函数关系做新的假设。 为了简化,先使倔强系数K 或振子质量m 保持不变进行实验。例如先使振子质量m 保持不变,则(1)式可写成 常数===βαAm C K C T 11 (2) 这样,对应于不同的倔强系数K 的弹簧,就有不同的振动周期T ,可以测定一组T ~K 的对应值。 再使倔强系数K 保持不变(用同一个弹簧),则(1)式又可写成 22常数===αβAK C m C T (3) 这样,对于不同的振子质量m ,又有不同的振动周期T ,可以测定一组T ~m 的对应值。 从(2)式和(3)式可见,只要α、β不等于1,则T ~K 和T ~m 间的关系就不是直线关系。为了便于图解,可将(2)式和(3)式取对数,将曲线直化、得到 K C T lg lg lg 1α+= (4) m C T lg lg lg 2β+= (5) 式中常数α、β可以从图线的斜率求出,1C 、2C 可从图线的截距求得。然后将得到的1C 、 2C 值和α、β值,分别代入(2)式或(3)式而确定A 值。当α、β和A 值确定之后, 则所求的周期公式就被具体地确定了。 为了完成以上实验,需要先对各弹簧的倔强系数K 进行测定。 【实验内容】 1. 因六个砝码的误差较大,实验前应先作出校测,记录数据。 2. 弹簧倔强系数K 的测定 用一次增荷法(取31050-?=? m 公斤)测定K 值。计算公式为 x F K ??= 五个弹簧各测一次,记录数据。 3. 振子质量m 一定(统一用3号砝码),测定一组T ~K 的对应值。 4. 倔强系数K 一定(统一用3号弹簧),测定一组T ~m 的对应值

弹簧质量与弹簧振子振动周期关系的探讨(精)

第26卷第5期 V01.26No.5 周口师范学院学报 JournalofZhoukouNormalUniversity 2009年9月 Sep.2009 弹簧质量与弹簧振子振动周期关系的探讨 周俊敏,王玉梅 (周口师范学院物理系,河南周口466001) 摘要:从能量的观点出发,分别讨论了弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解微分方程,得出结论.这些结论对指导实验和生产实践有一定的参考价值. 关键词:弹簧振子;振动周期;机械能守恒;运动方程中图分类号:0326文献标识码:A 文章编号:1671—9476(2009)05—0058—03 弹簧振子在生产实践中有着十分广泛的应用,而振动的周期是描述振动系统运动的一个非常重要的基本物理量,因此探讨弹簧质量对弹簧振子振动周期的影响就显得十分必要.在实验教学中笔者发现,大部分实验教材直接给出弹簧振子的振动周 r‘‘—?———=7 的正方向,建立坐标系如图1(b)所示.设质点的位置坐标为X,引即为质点相对于坐标原点的位移. 取物体为研究对象,作用在物体上的力有两个:重力大小为mg,方向竖直向下;弹簧对物体的拉力F=一k(x+z。),方向竖直向上.由此可知物体的合力F台一一点(z+X。)+mg=一妇.由简谐 图1 期公式为T一2,r^/m+cM,学生通过实验测出f V K 值的范围为0.32~0.34,但未从理论上分析c值在这一范围的原因[1-3].另外,教材中分析弹簧振子振动周期时,大都从力的观点[4_51出发得出运动方程.笔者从能量的观点出发,分别讨论弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解运动方程得出弹簧振子的振动周期以及 1

相关主题