搜档网
当前位置:搜档网 › 脂肪酶固定化及固定化脂肪酶的应用研究进展

脂肪酶固定化及固定化脂肪酶的应用研究进展

脂肪酶固定化及固定化脂肪酶的应用研究进展
脂肪酶固定化及固定化脂肪酶的应用研究进展

脂肪酶的概述及应用

脂肪酶的概述与应用 一脂肪酶概述、 脂肪酶(Lipase,甘油酯水解酶)隶属于羧基酯水解酶类,能够逐步的将甘油三酯水解成甘油和脂肪酸。脂肪酶存在于含有脂肪的动、植物和微生物(如霉菌、细菌等)组织中。包括磷酸酯酶、固醇酶和羧酸酯酶。脂肪酸广泛的应用于食品、药品、皮革、日用化工等方面脂肪酶广泛的存在于动植物和微生物中。植物中含脂肪酶较多的是油料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶对脂肪消化的不足,在肉食动物的胃液中含有少量的丁酸甘油酯酶。 脂肪酶是一类具有多种催化能力的酶,可以催化三酰甘油酯及其他一些水不溶性酯类的水解、醇解、酯化、转酯化及酯类的逆向合成反应,除此之外还表现出其他一些酶的活性,如磷脂酶、溶血磷脂酶、胆固醇酯酶、酰肽水解酶活性等(Hara;Schmid)。脂肪酶不同活性的发挥依赖于反应体系的特点,如在油水界面促进酯水解,而在有机相中可以酶促合成和酯交换。 脂肪酶的性质研究主要包括最适温度与pH、温度与pH稳定性、底物特异性等几个方面。迄今,已分离、纯化了大量的微生物脂肪酶,并研究了其性质,它们在分子量、最适pH、最适温度、pH和热稳定性、等电点和其他生化性质方面存在不同(Veeraragavan等)。总体而言,微生物脂肪酶具有比动植物脂肪酶更广的作用pH、作用温度范围,高稳定性和活性,对底物有特异性(Schmid等;Kazlauskas等)。 脂肪酶的催化特性在于:在油水界面上其催化活力最大,早在1958年Sarda和Desnnelv 就发现了这一现象。溶于水的酶作用于不溶于水的底物,反应是在2个彼此分离的完全不同的相的界面上进行。这是脂肪酶区别于酯酶的一个特征。酯酶(E C3.1.1.1)作用的底物是水溶性的,并且其最适底物是由短链脂肪酸(≤C8)形成的酯。 脂肪酶是重要的工业酶制剂品种之一,可以催化解脂、酯交换、酯合成等反应,广泛应用于油脂加工、食品、医药、日化等工业。不同来源的脂肪酶具有不同的催化特点和催化活力。其中用于有机相合成的具有转酯化或酯化功能的脂肪酶的规模化生产对于酶催化合成精细化学品和手性化合物有重要意义。 脂肪酶是一种特殊的酯键水解酶,它可作用于甘油三酯的酯键,使甘油三酯降解为甘油二酯、单甘油酯、甘油和脂肪酸。 酶是一种活性蛋白质。因此,一切对蛋白质活性有影响的因素都影响酶的活性。酶与底物作用的活性,受温度、pH值、酶液浓度、底物浓度、酶的激活剂或抑制剂等许多因素的影响。

固定化酶载体材料的最新研究进展

万方数据

万方数据

万方数据

万方数据

固定化酶载体材料的最新研究进展 作者:袁定重, 张秋禹, 侯振宇, 李丹, 张军平, 张和鹏, YUAN Dingzhong, ZHANG Qiuyu , HOU Zhenyu, LI Dan, ZHANG Heping, ZHANG Junping 作者单位:西北工业大学理学院应用化学系,西安,710072 刊名: 材料导报 英文刊名:MATERIALS REVIEW 年,卷(期):2006,20(1) 被引用次数:10次 参考文献(28条) 1.李伟.孙建中.周其云适于酶包埋的高分子载体材料研究进展[期刊论文]-功能高分子学报 2001(03) 2.Wilhelm Tischer.Frank Wedekind Immobilized enzyme:methods and applicatons 1999 3.Barbara.Krajewska Application of chitin-and chitosanbased materials for enzyme immobilizations:a review[外文期刊] 2004 4.Bullockc Immobilized enzymes 1995 5.Chaplin M F.Bucke C Enzyme technology 1990 6.Wiseman A Designer enzyme and cell applications in industry and in environment monitoring 1993 7.Pskin A K Therapeutic potential of immobilized enzymes 1993 8.Paul W.Sharma C P Chitosan,a drug carrier for the 21st century:a review 2000 9.安小宁.苏致兴高磁性壳聚糖微粒的制备与应用[期刊论文]-兰州大学学报(自然科学版) 2001(02) 10.Chiou Shaohua Immobilization of candida rugosa lipase on chitosan with activation of the hydroxgl groups 2004(02) 11.王斌.谢苗.曾竞华磁性壳聚糖微球固定化褐藻酸酶的研究学[期刊论文]-中国水产科学 2004(03) 12.袁春桃.蒋先明壳聚糖-g-丙烯腈固定化木瓜蛋白酶的研究[期刊论文]-应用化学 2002(09) 13.Prashanth S J.Mulimani V H Soymilk oligosaccharide hydrolysis by Aspergillus oryzae galactosidase immobilized in calcium alginate[外文期刊] 2005(3-4) 14.Patel S Stabilization of a haloophilic α-amlyase by callium alginate immobilization 1996(02) 15.Ding Liang.Yao Zihua Synthesis of macroporous polmer carrier and immobilization of papain 2003(06) 16.Li Songjun Use of chemically modified PMMA microspheres for enzyme immobilization 2004(1-3) 17.Cao Linqiu Immobilized enzyme:scence or art? 2005 18.薛屏.卢冠忠.郭杨龙青霉素酰化酶在含铁MCM-41介孔分子筛上的固定化研究[期刊论文]-化学通报(印刷版) 2003(10) 19.Han Yongjin.Jordan T Watson.Galen D Catalytic activity of mesoporous silicate-immobilized chloroperoxidase[外文期刊] 2002 20.Zhang Xin.Guan Ren feng.Wu Dan qi Enzyme immobilization on amino-fuctionalized mesostructrued cellular foam surfaces,characterization and catalytic properties[外文期刊] 2005 21.谢钢.张秋禹.李铁虎磁性高分子微球[期刊论文]-高分子通报 2001(0q) 22.邱广明.孙宗华磁性高分子微球共价结合中性蛋白酶 1995(03) 23.Han Lei.Wang Wei The preparation and catalytically active characterization of papain immobilized

固定化酶的研究进展

固定化酶的研究进展 固定化酶是20世纪60年代发展起来的一项新技术。最初主要是将水溶性酶与不溶性体结合起来,成为不溶于水的酶衍生物,所以曾叫过“水不溶酶”和“固相酶”。但是,后来发现,也可以将酶包埋在凝胶内或置于超滤装置中,高分子底物与酶在超滤膜一边,而反应产物可以透过膜逸出。在这种情况下,酶本身仍是可溶的,只不过被固定在一个有限的空间内不能再自由流动。因此,用水不溶酶或固相酶的名称就不再恰当。在1971年第一届国际酶工程会议上,正式建议采用“固定化酶”的名称[1]。 一固定化酶的发展历程[1] 酶参与体内各种代谢反应,而且反应后其数量和性质不发生变换。作为一种生物催化剂,酶可以在常温常压等温和条件下高效地催化反应,一些难以进行的化学反应在酶的催化作用下也可顺利地进行反应,而且反应底物专一性强、副反应少等优点大大促进了人们对酶的应用和酶技术的研究。近年来,酶被人们广泛应用于食品生产与检测、生物传感器、医药工程、环保技术、生物技术等领域。 1916年美国科学家NELSON和GRIFFIN最先发现了酶的固定化现象;直到20世纪50年代,酶固定化技术的研究才真正有效地开展;1953年,德国科学家GRUB-HOFER 和SCHLEITH首先将聚氨基苯乙烯树脂重氮化,然后将淀粉酶、胃蛋白酶、羧肽酶和核糖核酸酶等与上述载体结合制备固定化酶;到20世纪60年代,固定化技术迅速发展;1969年日本千畑一郎利用固定化氨基酰胺酶从DL-氨基酸生产L-氨基酸,是世界上固定化酶大规模应用的首例;在1971年的第一届国际酶工程会议上,正式建议使用固定化酶(mimobilizedenzyme)这个名称。我国的固定化酶研究开始于1970年,首先是中国科学院微生物所和上海生化所的酶学工作者同时开始了固定化酶的研究工作 二固定化酶的特点[2] [3] 固定化酶具有许多优点:极易将固定化酶与底物、产物分开;可以在较长时间内进行分批反应和装柱连续反应;在大多数情况下,可以提高酶的稳定性;酶反应过程能够加以严格控制;产物溶液中没有酶的残留,简化了提取工艺;较水溶性酶更适合于多酶反应;可以增加产物的收率,提高产物的质量;酶的使用效率提高,成本降低。但是,固定化酶也有其不足之处,如固定化时,酶活力有损失;增加了固定化的成本,工厂开始投资大;只能用于水溶性底物,而且较适用于小分子。 三固定化酶固定化方法[3] [4] 由于所固定的酶或细胞的不同,或者固定的目的及固定用的载体的不同,使固定化方法大相径庭。根据固定的一般机理,可将之分为如下几种方法。酶的固定化方法有:

脂肪酶抑制剂奥利司他,远不止是减肥2

文献综述 脂肪酶抑制剂奥利司他,远不止是减肥 版权所有,请勿转载。 综述者:大耳狐(darfox)医药科技 2016-09-08 奥利司他是长效的特异性胃肠道脂肪酶抑制剂,能阻止甘油三酯水解为可吸收的游离脂肪酸和单酰基甘油,使其不被吸收,从而减少热量摄入,控制体重。这是奥利司减肥的基本作用机制。 由于脂肪代谢涉及多种代谢,包括血糖、神经、细胞生长等方面,因而,奥利司他的作用可能远不止是减肥,研究显示,奥利司他对高血糖、高血脂、脂肪肝等具有多方面的积极影响,还对多囊卵巢综合症患者有益,增大动脉内径从而降低粥样硬化风险。还有足够的研究证据表明,奥利司他抑制肿瘤的增殖,促进肿瘤细胞凋亡,降低肿瘤转移风险。奥利司他还有减轻便秘的作用。 奥利司他降低高血脂 (1) 奥利司他降低心血管病危险因素 (2) 奥利司他防治糖尿病 (3) 奥利司他可逆转脂肪肝 (3) 奥利司他用于多囊卵巢综合症 (4) 奥利司他用于老年人和青少年,以及减轻精神分裂症用药的副反应 (4) 奥利司他用于减肥 (4) 奥利司他联合其他药物进行治疗 (5) 代谢综合症患者服用奥利司他的药物经济性 (5) 奥利司他用于癌症治疗的广泛探索 (6) 文献(摘要) (6) 奥利司他降低高血脂 奥利司他不仅能抑制人体对脂肪酸的吸收,也能抑制胆固醇的吸收,其机制在于抑制胆固醇转运蛋白以及鞘磷脂沉积病C1样蛋白1(NPC1L1) [008] 。有研究发现,奥利司他将胆固醇的吸收率从59%下降到44%,减少25%[066]。肥胖患者服用奥利司他9个月,乙酰胆碱变化的幅度、峰值都增加,血压、LDL、总胆固醇、心律都下降[020]。轻中度高血脂肥胖病人服用奥利司他显著降低总胆固醇、

酶的固定化方法的研究进展

l竖!壁塑翌苎垫!!竺篁!塑!篁箜!!!塑!:兰!旦旦旦垦二竺垒燮鱼!里!呈型!里壁!里!型旦塑鱼!垫!!塑:!!里!:!!!! 酶的固定化方法的研究进展 徐莉?,侯红萍2 (1.山西农业大学食品科学与工程学院,山西太谷030801;2.山西农业大学食品科学与工程学院,山西太谷030801) 摘要:固定化酶是酶工程的核心,利于实现酶的重复利用及产物与酶的分离。介绍了几种常用的固定化酶的方 法,如吸附法、包埋法、交联法和共价结合法,以及近几年研究的一些新型的固定化技术,如交联酶聚集体、定向固定 和共固定技术。 关键词:酶;固定化;研究近展 中图分类号:QSl4;Q55文献标识码:B文章编号:1001—9286(2010)01—0086—04 ResearchProgressintheImmobilizationofEnzymes ,xuLilandHOUHong—ping (1.FoodScience&EngineeringCollegeofShanxiAgriculturalUniversity,Taigu,Shanxi030801,China) Abstract:Immobilizedenzymeisthecoreine/izymeengineeringanditishelpfulforthel℃useofenzymeandtheseparationofproductsanden- zyme.Illthispaper,severalcommonly-usedimmobilizationmethodsofenzymewei'eintroducedincludingabsorptionmethod.embeddingmethod,cross-linkingmethodandcovalentbindingmethod.Besides,somenewly-developedimmobilizationmethodsinrecentyearssuchascross-linkedenzymeaggregates.orientationfixedandtotalfixationtechnique、^,erealsointroduced. Keywords:enzyme;immobilization;researchprogress 酶是一类具有催化功能的蛋白质,与化学催化剂相比具有反应速度快、反应条件温和、底物专一性强,可在水溶液和中性pH下操作等优点,但同时也存在一些不足,如酶一旦从细胞中分离出来,其活性会迅速下降,由于酶是溶于水的,在水溶液中进行反应,会导致酶和底物、产物从水中分离的困难,不利于循环使用【ll。 然而,固定化技术的出现彻底解决了这些问题,不仅提高了酶的活性,而且还实现了酶的可重复使用性。近年来,固定化酶的研究得到了人们极大的关注,并取得了许多重要成果。下面以酶的固定化方法为核心,介绍一些有关固定化技术的研究新进展。 1吸附法 利用多种固体吸附剂将酶或含酶细胞吸附在其表面上而使酶固定的方法。该方法最显著的优点是操作简便,条件温和,不会引起酶的变异失活,且载体价廉易得,可反复使用。但酶与载体结合不牢,极易脱落,所以它的使用受到一定的限制[21。因此,人们不断尝试使用新的载体来解决这易脱落的问题。 通常,吸附法分为物理吸附法和离子吸附法。1.1物理吸附法 酶被载体吸附而固定的方法称为物理吸附法。从载体对酶的适应性来看,这个方法效果是好的,酶蛋白的活性中心不易受破坏,酶的高级结构变化也不明显,但其缺点是酶与载体的相互作用较弱,被吸附的酶极易从载体表面上脱落下来,不能获得较高活力的固定化酶[3】。该方法常用的载体有活性炭、多孔陶瓷、纤维素及其衍生物、甲壳素及其衍生物等。 纵伟、刘艳芳等(2008)以磁性壳聚糖微球作为新型载体,并采用物理吸附法固定化脂肪酶,对影响固定化的各种因素进行考察,确定了最优条件,同时比较了游离酶和固定化酶的pH值和热稳定性。结果表明,固定化的适宜条件为:加酶量600U/g,温度5℃,pH7.0,固定化时间2h。固定化酶的pH值和热稳定性都优于游离酶,固定化酶连续使用5次后,其相对酶活仍为使用前的57.8%,具有较好的操作稳定性问。 近年来,随着介孔分子筛制备技术的日臻成熟,人们正在考虑用其担当固定化酶的载体。与其他材料相比,介孔分子筛规则的孔道、大的比表面积、极强的吸附性能、稳定的结构等特点,使其具有担当固定化酶载体得天独 收稿日期:2009一10—12 作者简介:徐莉(1984一),女,山西省孝义市,在读硕士研究生,研究方向:食品微生物与食品发酵。 通讯作者:侯红萍,女,教授,硕士生导师,主要从事食品发酵及生物工程等方面的教学与科研工作。主持、参加基金项目与科研项目多项。万方数据

酶固定化技术研究进展

酶固定化技术研究进展 选题说明 酶作为一种生物催化剂,具有高催化效率,高选择性,催化反应条件温和,清洁无污染等特点,其卓越的催化效能,令普通无机催化剂难以望其项背,因此酶的工业化使用一直是广受社会关注的课题,但天然酶稳定性差、易失活、不能重复使用,并且反应后混入产品,纯化困难,使其难以在工业中更为广泛的应用。此外,分离和提纯酶以及其一次性使用也大大增加了其作为催化剂的成本,严重限制了酶的工业推广。在此条件下,固定化酶的概念和技术得以提出和发展,并成为近些年酶工程研究的重点。酶的固定化,是用固体材料将酶束缚或限制于一定区域内,仍能进行其特有的催化反应,并可回收及重复使用的一类技术。通过固定化,可以解决天然酶的局限性,实现酶的广泛运用。 基于对于酶的工业化使用和固定化酶的兴趣,我通过互联网和数据库信息检索的方式对酶的固定化技术发展状况进行了初步探索,并对目前的研究成果进行了简要的概括。希望能使大家对这一领域有所认识。 检索过程说明 1,检索工具和数据库 1.1,百度搜索引擎 1.2,Google搜索引擎 1.3,中国期刊全文数据库 1.4,万方数据系统 1.5,重庆维普中文科技期刊数据库 2,检索过程简述

首先,我选择了使用百度和Google搜索引擎进行关键词检索,都得到了浩繁的搜索结果,所的信息主要是百科简介和企业广告信息,介绍较为浅显陈旧,可利用性较差,但可以用于简单的信息了解,在搜素过程中,尝试使用了布尔检索规则如“固定化酶and应用”、高级检索和结果中检索的检索方式,以减小数据量。也尝试了Google学术搜索,得到了很多有用信息。运用维普中文科技期刊数据库搜素“题名或关键词”为“固定化酶”的相关资料得到655条,搜素“题名或关键词”为“固定化酶应用”的相关资料得到72条,检索关键词搜素“题名或关键词”为“固定化酶研究”的相关资料得到4条. 万方数据系统搜索主题词"固定化酶",得到相关资料1024条,搜索“固定化酶技术应用”得到相关资料23条.。中国期刊全文数据库中检索“固定化酶技术”得到相关资料2604条,搜索“固定化酶技术应用”得到相关资料742条 关键词 酶固定化载体制备研究应用 酶固定化技术研究进展 提要: 固定化酶有许多优点,尤其是稳定性和可重复使用性使其在许多领域得到广泛应用。固定化酶技术是一门交叉学科技术。目前已得到长足的发展。本文重点介绍了固定化酶制备的传统方法和近些年出现的一些新方法,同时对酶在一些性能优良的栽体上的固定进行了综述。 正文: 一,传统的酶固定化方法

最新固定化酶制备及应用的研究进展

固定化酶制备及应用的研究进展

固定化酶制备及应用的研究进展摘要:本文主要从分析酶单独应用中的不足、酶的固定化载体、固定化方法等方面介绍了固定化酶制备中的研究进展情况,并且从医药、食品、环保、化学工业、能源等方面其在其中的新应用出发,对固定化酶在新领域中的应用作了综述,给固定化酶研究的发展前景进行了展望,并且指出了今后酶固定化研究的主要方向是多酶的固定化及制备高活性、高负载、高稳定性的固定化酶。 关键字:酶;酶的固定化;载体;酶固定化应用领域 酶是重要的生物催化剂,具有专一性强、催化效率高、无污染、反应条件温和等特点,在制药、食品、环保、酿造、能源等领域都得到了广泛的应用。但在实际应用中,酶也存在许多不足,如大多数的酶在高温、强酸、强碱和重金属离子等外界因素影响下,都容易变性失活,不够稳定;与底物和产物混在一起,反应结束后,即使酶仍有很高的活力,也难于回收利用,这种一次性使用酶的方式,不仅使生产成本提高,而且难于连续化生产;并且分离纯化困难,也会导致生产成本的提高等。固定化酶(immobilized enzyme)这个术语是在1971 年酶工程会议上被推荐使用的。随着固定化技术的发展,出现固定化菌体。1973年,日本首次在工业上应用固定化大肠杆菌菌体中的天门冬氨酸酶,由反丁烯二酸连续生产L-天门冬氨酸。固定化酶技术为这些问题的解决提供了有效的手段,从而成为酶工程领域中最为活跃的研究方向之一。本文将从酶生

物催化剂固定化载体、固定化方法和技术及固定化酶的应用等几个方面出发,归纳和综述这些方面近年来的研究进展。 1酶固定化的传统方法 关键在于选择适当的固定化方法和必要的载体以及稳定性研究、改进。 1.1 吸附法 吸附法是利用物理吸附法,将酶固定在纤维素、琼脂糖等多糖类或多孔玻璃、离子交换树脂等载体上的固定方式。显著特点是:工艺简便及条件温和,包括无机、有机高分子材料,吸附过程可同时达到纯化和固定化;酶失活后可重新活化,载体也可再生。但要求载体的比表面积要求较大,有活泼的表面。 1.2包埋法 包埋固定化法是把酶固定聚合物材料的格子结构或微囊结构等多空载体中,而底物仍能渗入格子或微囊内与酶相接触。这个方法比较简便,酶分子仅仅是被包埋起来,生物活性被破坏的程度低,但此法对大分子底物不适用。 1)网格型 将酶或包埋在凝胶细微网格中,制成一定形状的固定化酶,称为网格型包埋法。也称为凝胶包埋法。 2)微囊型 把酶包埋在由高分子聚合物制成的小球内,制成固定化酶。由于形成的酶小球直径一般只有几微米至几百微米,所以也称为微囊化法。

磁珠富集与液相色谱-质谱联用结合筛选枳壳中脂肪酶抑制剂

Vol.33高等学校化学学报No.122012年12月 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 2692~2696磁珠富集与液相色谱鄄质谱联用结合筛选 枳壳中脂肪酶抑制剂 陈 锥1,陶 益1,王 怡2,王 毅1 (1.浙江大学药物信息研究所,杭州310058;2.天津中医药大学中医药研究院,天津300193) 摘要 提出了一种磁珠收集与液相色谱?质谱联用(LC?MS)结合用于快速筛选中药提取物中的脂肪酶抑制剂的方法.通过制备键合脂肪酶的磁珠,将其与枳壳总黄酮孵育后,筛选出枳壳中脂肪酶的配体.通过LC?MS 分析发现,4个化合物均是潜在的脂肪酶抑制剂,鉴定其分别为柚皮苷二新橙皮苷二橙皮苷和枸橘苷.对4个化合物进行了体外脂肪酶抑制活性验证.研究结果表明,新橙皮苷二橙皮苷和枸橘苷具有显著的脂肪酶抑制活性,IC 50分别为48.04,52.45和46.18μg /mL,其中枸橘苷具有脂肪酶抑制活性为首次报道.结果表明,磁珠富集与LC?MS 集成技术能够用于快速发现中药活性成分. 关键词 脂肪酶;磁珠富集;枳壳;配体筛选 中图分类号 O629 文献标识码 A doi :10.7503/cjcu20120436S 收稿日期:2012?05?04. 基金项目:国家 重大新药创制”科技重大专项课题(批准号:2012ZX09304?007)和国际科技合作项目(批准号:2009DFB30510)资助. 联系人简介:王 毅,男,博士,副教授,主要从事中药药效物质快速发现技术方面的研究.E?mail:mysky@https://www.sodocs.net/doc/4d19007186.html, 脂肪酶是催化体内三酰甘油水解的关键酶.食物中的脂肪在胰脂肪酶和胃脂肪酶的作用下被水解为单酰甘油和游离脂肪酸,在肠道内被吸收,然后在体内重新合成脂肪,造成脂肪堆积,最终可导致肥胖[1,2].因此,脂肪酶抑制剂可通过抑制肠道中脂肪酶对脂肪的分解催化作用,达到减少脂肪吸收二控制和治疗肥胖的作用[3,4].临床用于治疗肥胖的药物,如奥利司他等是典型的脂肪酶抑制剂[5,6].迄今,人们已经从植物中发现了很多天然的脂肪酶抑制剂[7],如何快速筛选出新的脂肪酶抑制剂成为目前研究的热点. 常规的脂肪酶抑制剂筛选方法为均相溶液酶法,即以溶液酶作为酶源,与抑制剂共同孵育一段时间后,通过相关指标来检测溶液酶的活性,从而评价抑制剂对酶活性的抑制效果.如Nakai 等[8]选择4?甲基伞形酮油酸酯作为底物,将酶与底物孵育后,通过分光光度法评估待测物对脂肪酶的抑制活性.这种方法需与活性追踪分离等方法相结合,才能从混合物中筛选出活性化合物,因此需要较长的研究周期.近年来,采用固相酶法筛选活性化合物引起人们的关注.该方法是将酶或靶标蛋白固定在某种合适的载体上,通过筛选等方式富集和分离与酶特异性结合的配体[9].磁性颗粒作为一种酶或靶标蛋白的固定载体[10,11],已用于筛选具有酶抑制活性的化合物,如Marsza??等[12]使用键合黑色素的磁珠筛选先导化合物;Liu 等[13]使用键合牛血清蛋白(BSA)的磁性纳米氧化铁颗粒从野葛花中筛选BSA 的配体;Qing 等[14~16]使用键合人血清白蛋白(HSA)的磁珠从穿山薯蓣和黄山药中筛选可与HSA 结合的薯蓣皂苷,还在磁珠表面键合α?葡萄糖苷酶和蛋白质酪氨酸磷酸酯酶1B(PTP1B),并从石榴皮中筛选出了α?葡萄糖苷酶和PTP1B 的抑制剂;Yasuda 等[17]制备出表面包被SIRT6的磁性颗粒,并从胡芦巴种子提取物中筛选出SIRT6抑制剂.但迄今采用脂肪酶键合磁珠筛选脂肪酶抑制剂的研究仍鲜见报道. 本文选择脂肪酶作为筛选靶标,采用磁珠收集与液相色谱?质谱联用(LC?MS)结合的方法从枳壳提取物中筛选潜在的脂肪酶抑制剂,为快速发现中药药效物质提供了一种新的研究思路.

纳米材料固定化酶的研究进展_高启禹

?综述与专论? 2013年第6期 生物技术通报 BIOTECHNOLOGY BULLETIN 酶的固定化方法和技术研究是酶工程研究的重点之一,其核心是如何将游离的酶通过一定的方式与水不溶性的载体相结合,同时保持酶的催化活性和催化特性。固定化酶的概念自1953年由德国科学家Gubhofen [1]提出以来,先后经过了实验室研发到工业化生产的重大转折,并建立了传统的固定化酶的基本方法,如包埋法、交联法、吸附法和共价结合法[2]。近年来,随着结构生物学、蛋白质工程及材料科学的不断发展,在酶的固定中出现了一些新型载体和新型技术,从而使酶在负载能力、酶活力和稳定性等方面获得了极大提高,且降低了酶在工农业应用中的催化成本。这些载体和技术包括交联酶聚集体、“点击”化学技术、多孔支持物和最近的以纳米粒子为基础的酶的固定化[3]。纳米材料作为 收稿日期:2012-11-27基金项目:河南省科技厅科技攻关项目(112102210299),河南省教育厅自然研究计划项目(2011A180026)作者简介:高启禹,男,硕士,讲师,研究方向:酶与酶工程;E -mail :gaog345@https://www.sodocs.net/doc/4d19007186.html, 纳米材料固定化酶的研究进展 高启禹1 徐光翠2 陈红丽1 周晨妍1 (1.新乡医学院生命科学技术学院 河南省遗传性疾病与分子靶向药物重点实验室培育基地,新乡 453003; 2.新乡医学院公共卫生学院,新乡 453003) 摘 要: 纳米材料在蛋白酶及核酶的固定化研究领域进展迅速,主要包括各种磁性纳米载体及非磁性纳米载体。目前在固定化纳米载体的特性、固定化方法及固定化效果上已进行了广泛探讨。综述以纳米载体的研究现状为基础,分析纳米载体固定化酶的应用前景及纳米载体固定对酶学性质的影响,并对该技术的研究进行介绍和展望。 关键词: 纳米材料 固定化酶 磁性载体 非磁性载体 核酶 Research Progress of Nanoparticles for Immobilized Enzymes Gao Qiyu 1 Xu Guangcui 2 Chen Hongli 1 Zhou Chenyan 1 (1. College of Life Science and Technology ,Xinxiang Medical University ,Henan Key Laboratory of Hereditary Disease and Molecular Target Drug Therapy (Cultivating Base ),Xinxiang 453003;2. College of Public Health ,Xinxiang Medical University ,Xinxiang 453003) Abstract: Immobilization of protease and ribozyme by nanometer carrier are researched as a more useful means, including of the magnetic nanoparticle and nonmagnetic nanoparticles. Currently, the types of immobilized carrier and methods and results of nanoparticles are discussed. In this paper, we describe the current application of immobilized enzyme by nanocarrier, the effect of nanoparticles matrix to enzymatic properties and the prospect of application for the above mentioned technology were introduced, and the direction of the development of nanoparticles immobilization of enzyme was analyzed. Key words: Nanoparticle cartie Immobilized enzymes Magnetic nanoparticles Non magnetic nanoparticles Ribozyme 酶固定化的新型载体,能够体现良好的生物相容性、较大的比表面积、较小的颗粒直径、较小的扩散限制、有效提高载酶量及在溶液中能稳定存在等优点[4]。固定化的微粒状态根据纳米材料物理形态的差异性可分为纳米粒(包括纳米球、纳米囊)、纳米纤维(包括纳米管、纳米线)、纳米膜及纳米块等。目前,用于酶固定化的纳米形态以纳米粒(Nanoparticles,Nps)最为常见,纳米粒通常指粒子尺寸在1-1 000 nm 范围内的球状或囊状结构的粒子。而用于酶固定的纳米载体材料有磁性纳米载体、非磁性纳米载体等[5]。但是,在进行相关固定化设计时,仍然需严格遵循固定化酶的主要任务,即一方面要满足应用上的催化要求;另一方面又要满足在调节控制及分离上的非催化要求。

固定化脂肪酶研究进展(2)

固定化脂肪酶研究进展 毛满琴 生物工程一班,20091489) 摘要:固定化脂肪酶由于其易与底物分离且可重复使用而备受关注。综述了常用的固定化方法,包括吸附法、共价交联法和包埋法,不同的固定化方法对酶的性质有不同的影响。 关键词:固定化,脂肪酶,载体 Research progress in lipase immobilization MAO Man-qin (Class one, bioengineering, 20091489) Abstract: Immobilized lipase become a hotspot because its easy to separate and can be reused. The common immobilization methods were generally introduced including adsorption, covalent cross-linking method and entrapment method. Different immobilization methods had different effects on the enzyme. Key words: immobilization; lipase; carrier 脂肪酶(Lipase EC3.1.1.3,甘油酯水解酶)是一类特殊的酰基水解酶,它的底物是油脂,其水解部位是油脂中脂肪酸和甘油相连接的酯键;脂肪酶能在油水界面上催化酯水解或醇解、酯合成、酯交换、内酯合成、多肽合成、高聚物合成及立体异构体拆分等有机合成反应,是目前被重点研究的酶催化剂。脂肪酶与底物的作用过程包括:第一步,活化丝氨酸的酰基化(通过亲核攻击)和酯键裂解,甘油二酯释放后,四面体半缩醛中间产物形成;第二步,脱酰基作用(丝氨酸酰基化的逆反应),是活化水分子对酯进行攻击,接下来的裂解过程同样包括脂肪酸释放后四面体半缩醛中间产物结构的形成。游离脂肪酶催化技术虽然成熟,但酶分离困难,不能重复使用,难以实现过程连续化,因此脂肪酶催化技术工业化很大程度上取决于酶的固定化。当底物和产物是小分子的可溶性物质时,固定化酶更占优势。 1 固定化脂肪酶的方法 [1] [2] 1.1 吸附法 吸附法是最简单的固定化方法,载体和生物催化剂之间的作用力是次级作用力。根据吸附的特点又分为物理吸附法和离子交换吸附法。 彭立凤[3]等研究了以CaCO3粉末为载体吸附法固定化脂肪酶的方法。结果表明,当酶的用量为CaCO3质量的013g.g「1,吸附时间1.5h,所得固定化酶活最高,为 158.1UCaCO3/g.min。 林繁华[4]等利用以醋酸纤维素/聚丙烯复合膜为载体对脂肪酶进行吸附固定,研究了 不同条件对固定化脂肪酶活性的影响。实验结果表明当酶浓度为0.020g/mL 时效果最好, 当酶的浓度低于0.020g/mL 时,固定化酶活随酶浓度的增大而增加,而高于此值固定化酶 的酶活不再增加。说明脂肪酶在吸附固定化时,载体吸附的酶量是有限的,一方

脂肪酶修饰研究进展

脂肪酶修饰研究进展 摘要 脂肪酶广泛应用于食品、化工和生物技术等领域,反应体系涉及溶剂体系和水相体系;为提高脂肪酶在反应中活性和稳定性,可采取多种方法对脂肪酶进行修饰。该文对脂肪酶修饰方法进行综述。 关键词脂肪酶酶修饰酶 脂肪酶(EC 3.1.1.3)能催化脂肪酸酯水解、醇解、酸解、酯交换及脂肪酸酯化反应,广泛应用于食品、化工、医药、纺织等领域;脂肪酶可应用于水相反应,亦可应用于非水相反应。脂肪酶系由生物细胞所分泌、以蛋白质为主要成分生物催化剂,具有选择性好、催化活性高、反应条件温和、环保无污染等特点。但天然脂肪酶在实际应用中仍存在一些问题,如游离酶与产物分离困难、游离酶不易回收重复利用、游离酶稳定性差等。为解决天然脂肪酶在实际应用中存在问题,研究者采用多种方法对其进行修饰,以改善其功能。 酶修饰化技术始于20世纪50年代,并很快应用于工业化生产。酶修饰目的有:定向修饰酶催化活性中心氨基酸残基,揭示酶活性中心构成及催化机理修饰与组成酶活性中心无关氨基酸侧链,改善酶的应用性能及酶原有催化功能或创造新功能;酶与其它物质(或化合物)通过非共价键相互作用,改善酶的表面特性或应用特性。根据修饰中酶与修饰分子间作用力不同,可将酶的修饰方法分为共价修饰和非共价修饰。 1 脂肪酶共价修饰 1.1 大分子修饰脂肪酶 很多大分子经活化可用以修饰脂肪酶,如聚乙二醇、葡聚糖、右旋糖苷、甲壳素和壳聚糖及其衍生物等。 聚乙二醇(PEG)是一种单功能聚合物,具有一系列不同分子量产品,其无毒副作用、无刺激性、无免疫原性,并具良好水溶性,与许多有机物组份呈良好相溶性。20 世纪70 年代后期,PEG 对蛋白质化学修饰已有很多报道。Abuchowski研究发现,经PEG修饰蛋白质作为药物比未修饰蛋白质有效许多。PEG主要通过改变蛋白分子侧链基团或分子中主链结构对脂肪酶进行修饰,按PEG 修饰基团不同可将之分为氨基修饰、巯基修饰、羧基修饰等。但PEG用于脂肪酶化学修饰必须活化,因此PEG修饰一般可分为两步:首先,将PEG 予以活化处理,使其连接一个活性基团,以便其与酶蛋白分子某些功能基团结合,然后将经活化PEG与酶进行共价结合。目前,最常用活化剂有:氰尿酰氯(三聚氯氰)、三氟乙烷磺酰氯、氯甲酸–P–硝基苯酯、N–羟基琥珀酰亚胺等。其中三聚氯氰是一种常用活化剂,价格低廉、容易获得;但毒性较大,且有可能会影响酶活性。脂肪酶经活化PEG 修饰后,可提高其在有机溶剂中溶解性和稳定性;但酶活可能会有不同程度改变。用硝基苯基氯仿、氰尿酸氯化物活化的PEG修饰念珠菌属脂肪酶,修饰酶在异辛烷中稳定性和活力均提高许多。而用对硝基苯―氯甲酸酯活化PEG,再用此活化PEG 修饰C.rugosa 类VII脂肪酶(CRL),修饰虽降低酶活性,但提高酶稳定性。经PEG修饰后可提高酶在有机溶剂中稳定性和溶解性;但PEG修饰脂肪酶在存在少量水条件下才能在酯化反应和酰基交换反应体系中发挥其活力,同时少量水的存在可使反应逆向进行。 甲壳素是一种在自然界储量丰富天然多糖,对蛋白质呈有高亲和性,有许多反应基团,是一种具多功能基团高分子化合物,可发生多种反应。甲壳素部分水解脱乙酰基可得到壳聚糖。甲壳素、壳聚糖均存在氨基,能与酶蛋白共价结合,又能螯合金属离子,使金属离子不能抑制酶活性。脱酰壳聚糖也可通过戊二醛偶联到酶分子上。黄朋、Lee 等采用Fe3O4化学沉淀法合成一种磁性高分子微球,通过固定化修饰脂肪酶,可提高脂肪酶耐受性、酶使用次

固定化酶在食品中的应用

固定化酶在食品中的应用 (生物科学与技术学院袁定清) 摘要:固定化酶技术将酶工程提高到一个新水平,实现了酶的重复使用及产物与酶的分离。而且它已在食品领域得到了迅速的发展和广泛的应用。本文主要介绍了固定化酶技术的特点、固定方法、食品工业方面的应用和发展趋势的预测,是酶工程的核心技术之一。 关键词:固定化酶;食品制造;固定化技术 Application of immobilized enzyme in food(College of biological science and technology Yuan Dingqing ) Abstract:The technology of immobilized enzyme is one of the core technology for enzyme engineering, it enzyme engineering to a new level, to achieve the separation of enzyme reuse andproduct with the enzyme. And it has been in the food area of rapid development and wide application. This paper describes the characteristics of the immobilized enzyme technology, fixation methods, applications and development trends in the food industry forecast. Key words:immobilized enzyme; food industry; immobilization technology; prospects 1 固定化酶的定义和特点 固定化酶技术是用人工方法将酶固定在特定载体上,进行催化生产,因而固定化酶一般可以被认为是不溶性酶,与水溶性酶相比,其优点如下:易于将固定化酶与底物、产物分离,便于后续的分离和纯化;可以在较长时间连续生产;酶的稳

脂肪酶固定化方法的研究进展

脂肪酶固定化方法的研究进展 生物工程2班周明20091525 摘要:酶的固定化是生物技术中最为活跃的研究领域之一。脂肪酶能发生催化水解、醇解、酯化、酯交换等反应,是一种重要的生物催化剂。而由于脂肪酶的特性,其能否工业化利用很大程度取决于固定化技术的成功与否,酶的固定化方法是酶固定化技术的重要研究内容。固定化脂肪酶由于其易与底物分离且可重复使用而备受关注。为此,本文综述了常用的固定化方法,包括物理吸附法、共价结合法、交联法和包埋法,不同的固定化方法对酶的性质有不同的影响。本文对近年来固定化脂肪酶方法的研究进行了综述,为固定化方法的进一步探讨提供了研究基础。 关键词:固定化;脂肪酶;载体材料 The research progress of lipase immobilized Abstract:Of enzyme fixed is in the biotechnology research field of the most active.Fat enzymes would happen catalytic water and alcohol, ester, ester exchange for is a major catalyst of biological.And the fat, the enzymes can be very much depends on the use of technology on the success of the enzyme is a fixed set of the technical content of important research.Into a fatty because of the enzymes that are and separate and can reuse have a major concern.The common immobilization methods were generally introduced including physical adsorption, covalent cross-linking method and entrapment method. Different immobilization methods had different effects on the enzyme.Of the few years, the enzymes a study of the review, as a further explore the method provides research. Keywords:immobilization; lipase; carrier 脂肪酶(Lipase EC3.1.1.3,甘油酯水解酶)是一类特殊的酰基水解酶它的底物是油脂其水解部位是油脂中脂肪酸和甘油相连接的酯键[1];人们对脂肪酶的研究已有上百年的历史,是最早被研究的酶类之一[2]。脂肪酶作为生物催化剂,可用于许多有机合成反应,列如能在油—水界面上催化酯水解或醇解、酯合成、酯交换、内酯合成、多肽合成、高聚物合成及立体异构体拆分等有机合成反应,是目前被重点研究的酯催化剂[3]。有关脂肪酶(1ipase)较确切的定义是20世纪70年代由Brockerhoff等首先提出的,他将水解长链脂肪酸酯或水解油酸酯类的酶类定义为脂肪酶[4]。自由酶对所处环境十分敏感,在强酸、强碱、高温、高离子浓度和部分有机溶剂中均不够稳定,容易导致酶蛋白的变性,从而降低甚至丧失其催化活性。同时,自由酶反应后不易与底物和产物分离,既影响反应产物纯度又难以重复使用,这在很大程度上限制了酶促反应的广泛应用[5]。固定化酶(Immobilized enzyme)技术克服了自由酶的上述不足,提高了酶的储存稳定性,实现了重复使用及连续自动化生产,降低了成本,在生物工程、食品工业、医药和精细

相关主题