搜档网
当前位置:搜档网 › 反三角函数的概念和性质

反三角函数的概念和性质

反三角函数的概念和性质
反三角函数的概念和性质

反三角函数的概念和性质

一.基础知识自测题:

1.函数y=arcsin x的定义域是 [-1, 1] ,值域是.

2.函数y=arccos x的定义域是 [-1, 1] ,值域是 [0, π] .

3.函数y=arctg x的定义域是R,值域是.

4.函数y=arcctg x的定义域是R,值域是 (0, π) .

5.arcsin(-)=; arccos(-)=; arctg(-1)=; arcctg(-)=. 6.sin(arccos)=; ctg[arcsin(-)]=; tg(arctg)=;

cos(arcctg)=.

7.若cos x=-, x∈(, π),则x=.

8.若sin x=-, x∈(-, 0),则x=.

9.若3ctg x+1=0, x∈(0, π),则x=.

二.基本要求:

1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;

2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y=

arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围;

3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,]

上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数;

4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据;

5.注意恒等式sin(arcsin x)=x, x∈[-1, 1] , cos(arccos x)=x, x∈[-1, 1], arcsin(sin x)=x, x∈[-,], arccos(cos x)=x, x∈[0, π]的运用的条件;

6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用;

7.注意恒等式arcsin x+arccos x=, arctg x+arcctg x=的应用。

例一.下列各式中成立的是(C)。

(A)arcctg(-1)=-(B)arccos(-)=-

(C)sin[arcsin(-)]=-(D)arctg(tgπ)=π

解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。

例二.下列函数中,存在反函数的是(D)。

(A)y=sin x, x∈[-π, 0] (B)y=sin x, x∈[, ]

(C)y=sin x, x∈[,] (D)y=sin x, x∈[,]

解:本题是判断函数y=sin x在哪个区间上是单调函数,由于y=sin x在区间[,]上是单调递减函数,所以选D。

例三. arcsin(sin10)等于(C)。

(A)2π-10 (B)10-2π(C)3π-10 (D)10-3π

解:本题是判断哪个角度的正弦值与sin10相等,且该角度在[-, ]上。

由于sin(3π-10)=sin(π-10)=sin10, 且3π-10∈[-, ], 所以选C。

例四.求出下列函数的反函数,并求其定义域和值域。

(1)f (x)=2sin2x, x∈[, ];(2)f (x)=+arccos2x.

解:(1) x∈[, ], 2x∈[, ], 2x-π∈[-, ], -2≤y≤2

由y=2sin2x, 得sin2x=, sin(2x-π)=-sin2x=-, ∴ 2x-π=arcsin(-), ∴ x=-arcsin, ∴ f-1(x)=-arcsin, -2≤x≤2, y∈[, ].

(2) f (x)=+arccos2x, x∈[-, ], y∈[,],

∴ arccos2x=y-, 2x=cos(y-), x=cos(y-)=sin y,

∴f-1(x)=sin x , x∈[,], y∈[-, ].

例五.求下列函数的定义域和值域:

(1) y=arccos; (2) y=arcsin(-x2+x); (3) y=arcctg(2x-1),

解:(1) y=arccos, 0<≤1, ∴ x≥1, y∈[0, ).

(2) y=arcsin(-x2+x), -1≤-x2+x≤1, ∴ ≤x≤,

由于-x2+1=-(x-)2+, ∴ -1≤-x2+x≤, ∴ -≤y≤arcsin.

(3) y=arcctg(2x-1), 由于2x-1>-1, ∴ 0< arcctg(2x-1)<, ∴ x∈R, y∈(0, ). 例六.求下列函数的值域:

(1) y=arccos(sin x), x∈(-, ); (2) y=arcsin x+arctg x.

解:(1) ∵x∈(-, ), ∴ sin x∈(-, 1], ∴ y∈[0, ).

(2) ∵y=arcsin x+arctg x., x∈[-1, 1], 且arcsin x与arctg x都是增函数,

∴ -≤arcsin x≤, -≤arctg x≤, ∴ y∈[-,].

例七.判断下列函数的奇偶性:

(1) f (x)=x arcsin(sin x); (2) f (x)=-arcctg x.

解:(1) f(x)的定义域是R,f(-x)=(-x)arcsin[sin(-x)]=x arcsin(sin x)=f(x), ∴ f (x)是偶函数;

(2) f (x)的定义域是R,

f (-x)=-arcctg(-x)=-(π-arcct

g x)=arcctg x-=-f (-x),

∴ f (x)是奇函数.

例八.作函数y=arcsin(sin x), x∈[-π, π]的图象.

解:y=arcsin(sin x), x∈[-π, π], 得, 图象略。

例九.比较arcsin, arctg, arccos(-)的大小。

解:arcsin<, arctg<, arccos(-)>, ∴arccos(-)最大,

设arcsin=α,sinα=, 设arctg=β, tgβ=, ∴ sinβ=

β<α,

∴ arctg< arcsin< arccos(-).

例十.解不等式:(1) arcsin x.

解:(1) x∈[-1, 1], 当x=时, arcsin x=arccos x, 又arcsin x是增函数,arccos x

是减函数,

∴ 当x∈[-1, )时, arcsin x

(2) ∵ arccos x=-arcsin x, ∴ 原式化简得4arcsin x>, ∴ arcsin x>=arcsin,

∵ arcsin x是增函数, ∴

三.基本技能训练题:

1.下列关系式总成立的是(B)。

(A)π-arccos x>0 (B)π-arcctg x>0 (C)arcsin x-≥0 (D)arctg x->0 2.定义在(-∞, ∞)上的减函数是(D)。

(A)y=arcsin x(B)y=arccos x(C)y=arctg x(D)y=arcctg x

3.不等式arcsin x>-的解集是. 4.不等式arccos x>的解集是. 四.试题精选:

(一) 选择题:

1.cos(arccos)的值是(D)。

(A)(B)(C)cos(D)不存在

2.已知arcsin x>1,那么x的范围是(C)。

(A)sin1

3.已知y=arcsin x·arctg|x| (-1≤x≤1),那么这个函数(A)。

(A)是奇函数(B)是偶函数(C)既是奇函数又是偶函数(D)非奇非偶函数

4.若a=arcsin(-), b=arcctg(-), c=arccos(-),则a, b, c的大小关系是(B)。

(A)a

5.已知tg x=-, x∈(, π),则x=(C)。

(A)+arctg(-)(B)π-arctg(-)(C)π+arctg(-)(D)

6.函数f (x)=2arccos(x-2)的反函数是(D)。

(A)y=(cos x-2) (0≤x≤π) (B)y= cos(x-2) (0≤x≤2π)

(C)y= cos(+2) (0≤x≤π) (D)y= cos+2 (0≤x≤2π)

7.若arccos x≥1,则x的取值范围是(D)。

(A)[-1, 1] (B)[-1, 0] (C)[0, 1] (D)[-1, arccos1]

8.函数y=arccos(sin x) (-

(A)(, ) (B)[0, ] (C)(, ) (D)[,] 9.已知x∈[-1, 0],则下列等式成立的是(B)。

(A)arcsin=arccos x(B)arcsin=π-arccos x

(C)arccos=arcsin x(D)arccos=π-arcsin x

10.直线2x+y+3=0的倾斜角等于(C)。

(A)arctg2 (B)arctg(-2) (C)π-arctg2 (D)π-arctg(-2) (二) 填空题:

11.若cosα=- (<α<π),则α=. (用反余弦表示) 12.函数y=(arcsin x)2+2arcsin x-1的最小值是-2 .

13.函数y=2sin2x (x∈[-, ])的反函数是. 14.函数y=arcsin的定义域是x≤1或x≥3,值域是

15.用反正切表示直线ax-y+a=0 (a≠0)的倾斜角为α=

(三) 解答题:

16.求下列函数的反函数:

(1) y=3cos2x, x∈[-, 0]; (2) y=π+arccos x2 (0

解:(1) x∈[-, 0], ∴ 2x∈[-π, 0], 函数y=3cos2x在定义域内是单值函数.

且-3≤y≤3. ∴ π+2x∈[0, π], y=3cos2x=-3cos(π+2x), cos(π+2x)=-, ∴ π+2x=arccos, ∴x=arccos-,

∴y=3cos2x, x∈[-, 0]的反函数是y=arccos-, -3≤x≤3.

(2) ∵0

∴ 原函数的反函数是y=, π≤x<.

17.求函数y=(arccos x)2-3arccos x的最值及相应的x的值。

解:函数y=(arccos x)2-3arccos x, x∈[-1, 1], arccos x∈[0, π]

设arccos x=t, 0≤t≤π, ∴ y=t2-3t=(t-)2-,

∴ 当t=时,即x=cos时, 函数取得最小值-,

当t=π时,即x=-1时,函数取得最大值π2-3π.

18.若f (arccos x)=x2+4x, 求f (x)的最值及相应的x的值。

解:设arccos x=t, t∈[0, π], x=cos t, 代入

得f (t)=cos2t+4cos t,

∴ f (x)=cos2x+4cos x, x∈[0, π], cos x∈[-

1, 1], f (x)=(cos x+2)2-4,

∴ 当cos x=-1时,即x=π时,函数取得最小值

-3.

当cos x=1时,即x=0时,函数取得最大值5.

19.(1)求函数y=arccos(x2-2x)的单调递减区间; (2)求函数arctg(x2-2x)的单调递增区间。

解:(1) 函数y=arccosu, u∈[-1, 1]是减函数,

∴ -1≤x2-2x≤1,1-≤x≤1+, 又x2-2x=(x-1)2+1,

∴ 1≤x≤1+时, u=x2-2x为增函数,根据复合函数的概念知此时原函数为减函数。

(2) 函数y=arctgu增函数, u∈R, 又x2-2x=(x-1)2+1,

∴ 当x≥1时,原函数是增函数。

20.在曲线y=5sin(arccos)上求一个点,使它到直线x+y-10=0的距离最远,并求出这个最远距离

解:设arccos=α, -3≤x≤3, cosα=,

y=5sinα=5,

∴ 25x2+9y2=225, -3≤x≤3, 0≤y≤5, 即在上半个椭圆上求一个点,使它到直线的距离最远。从图形上可以看出,当点在椭圆左端时,即P(-3, 0)时满足条件,此时最远距离是

.

三角函数和反三角函数

一、三角函数 1.图像和性质:

(1)画出正弦函数的图像并写出它的定义域、值域、单调区间、周期、奇偶性、对称性和对称中心;

(2)画出余弦函数的图像并写出它的定义域、值域、单调区间、周期、奇偶性、对称性和对称中心;

(3)画出正切函数的图像并写出它的定义域、值域、单调区间、周期、奇偶性、对称性和对称中心;

2.函数sin()(0,0)y A x A ω?ω=+>> (1)写出它的振幅、周期、频率和初相;

(2)描述五点作图法的步骤;

(3)写出对于sin y x =的图像,如何通过平移、伸缩等变化得到sin()y A x ω?=+;

(4)写出对于cos y x =的图像,如何通过平移、伸缩等变化得到sin()y A x ω?=+.

3.例题解析:

1.设123T T T 、、分别是函数2

2tan 3(),()2sin sin()1tan 2

x F x G x x x x

πππ=

=?-

+,

2

2

()cos 2sin 2T x x x =-的最小正周期,则有( )

A .123T T T ==

B .123T T T <<

C .312T T T <<

D .321T T T <<

2.函数sin(2)6

y x π

=+

的图象可由cos y x =的图象经下面变换得到( )

A . 先纵坐标不变,横坐标变为原来的

12

,再向右平移

3

π

个单位;

B . 先纵坐标不变,横坐标变为原来的2倍,再向左平移

6

π

个单位;

C . 先纵坐标不变,横坐标变为原来的

12

,再向右平移

6

π

个单位;

D . 先纵坐标不变,横坐标变为原来的2倍,再向左平移3

π

个单位.

3.ω是正实数,函数()2sin f x x ω=在[,]34

ππ

-上是增函数,那么( )

A .2

30≤<ω B .20≤<ω C .7

240≤<ω

D .2≥ω

4.函数2cos y x =

-的值域是( )

A . [1,1]-

B . [

C .11

(,)24

- D .[-

5.函数sin cos ()1sin cos x x f x x x

=

++的值域是( )

A .[1]-

B .[22

-

C .[1,

1]2

2

--- D .11[,1)(1,

]2

2

---

6.求函数y =

7.已知函数()cos sin f x x a x =+的图像有一条对称轴的方程为4

x π

=,求a 的值.

8.已知tan ,tan αβ是方程2

40x ++=的两根,若,(,)22

ππ

αβ∈-

,则

αβ+=( ) A .3

π

B .

3

π

或23

π-

C .3

π

-

23

π D .23

π-

9.求斜边长为1的直角三角形内切圆半径的最大值.

10.定义:若对任意12,(,)x x a b ∈,函数()f x 恒有12

12()()

(

)2

2

x x f x f x f ++≥

成立,则

称函数()f x 在(,)a b 内为“上凸函数”.已知“上凸函数”有如下性质成立:对任意的

(,)(1,2,,),i x a b i n ∈= 必有1212()()()

(

)n

n x x x f x f x f x f n

n

+++++≥

成立.

(1)求证:sin y x =在(0,)π内是“上凸函数”; (2)在外接圆半径为R 的A B C ?中,求周长l 的最大值.

二、反三角函数 1.图像和性质:

(1)指出原函数和反函数的转化和相互关系,研究反函数存在的条件,写出原函数与反函数有哪些共通的性质.

(2)画出反正弦函数的图像,并写出它的定义域、值域、单调性、奇偶性、对称性;

(3)画出反余弦函数的图像,并写出它的定义域、值域、单调性、奇偶性、对称性;

(4)画出反正切函数的图像,并写出它的定义域、值域、单调性、奇偶性、对称性;

2.反三角恒等式:

sin(arcsin )x x = a r c s i n (s i n )x x =(这两个式子成立需要什么条件?) cos(arccos )x x = a r c c o s (c o s )x x =(这两个式子成立需要什么条件?) tan(arctan )x x = a r c t a n (t a n )x x =(这两个式子成立需要什么条件?)

3.三角方程:

(1)写出sin x a =的通解形式;

(2)写出cos x a =的通解形式;

(3)写出tan x a =的通解形式.

4.例题解析:

11.给出四个命题:①函数s in y x =和arcsin y x =都是周期函数;②函数c o s y x =和

arccos y x =都是偶函数;③函数tan y x =和arctan y x =的定义域都是(,)-∞+∞;④函

数cot y x =和arc cot y x =都是定义域上的减函数,其中正确命题的个数是( ) A . 0

B . 1

C . 2

D . 3

12.设(0,1)α∈,则在[0,2π]内,使sin x α≥的x 的范围是( ) A . [0,arcsin α]

B . [arcsin ,arcsin ]απα-

C .[arcsin ,]παπ-

D . [arcsin ,

arcsin ]2

π

αα+

13.若2arccos 3

x π≥,则x 的取值范围是( )

. A .1[,1]2-

B .2[0,]3π

C .1[1,]2

--

D . 2[

,]3

ππ

14.已知()sin arcsin f x x x =+,若2(1)(1)0f a f a -+-<,求

三角和反三角函数图像

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域R R {x|x∈R且x≠kπ+ 2 π ,k∈Z} {x|x∈R且x≠kπ,k∈Z}值域 [-1,1]x=2kπ+ 2 π 时y max=1 x=2kπ- 2 π 时y min=-1 [-1,1] x=2kπ时y max=1 x=2kπ+π时y min=-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性周期为2π周期为2π周期为π周期为π 奇偶性奇函数偶函数奇函数奇函数 单调性 在[2kπ- 2 π ,2kπ+ 2 π ]上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π]上都是减函数(k∈Z) 在[2kπ-π,2kπ]上都是增函数; 在[2kπ,2kπ+π]上都是减函 数(k∈Z) 在(kπ- 2 π ,kπ+ 2 π )内都是增函数 (k∈Z) 在(kπ,kπ+π)内都是减函数 (k∈Z)

反三角函数

反三角函数是一种基本初等函数。它并不能狭义的理解为三角函数的反函数,是个多值函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。 三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数,而不是 。 为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

反三角函数及性质

y=arcs inx. 函数y=sinx , x€ [- n /2 , n /2]的反函数叫做反正弦函数,记作x=arcsiny. 习惯上用x表示自变量,用y表示函数,所以反正弦函数写成y=arcsinx.的形式 请注意正弦函数y=sinx,x € R因为在整个定义域上没有一一对应关系,所以不存在反函数。 反正弦函数只对这样一个函数y=sinx , x€ [- n /2 , n /2]成立,这里截取的是正弦函数靠近原点的一个单调区间,叫做正弦函数的主值区间。 理解函数y=arcsinx中,y表示的是一个弧度制的角,自变量x是一个正弦值。这点必须牢记 性质 根据反函数的性质,易得函数y=arcsinx的,定义域[-1 , 1],值域[-n /2 , n /2],是单调递增函数 图像关于原点对称,是奇函数 所以有arcsin(-x)=-arcsinx ,注意x的取值范围:x € [-1 , 1] 导函数: arcsinx = (土匚(-1,1)) vl-x2,导函数不能取|x|=1 * / fim (arcsinx) =-oo lim {arcsinx) = +oo - . ,:T 1 反正弦恒等式 sin(arcsinx)=x , x € [-1 , 1] (arcsinx)'=1/ V (1-x A2) arcsin x=-arcs in(-x) arcs in ( sin x)=x , x 属于[0, n /2]

arccosx 反三角函数中的反余弦。意思为:余弦的反函数,函数为y=arccosx,函数图像如右下图。 就是已知余弦数值,反求角度,如cos(a) = b,贝U arccos(b) = a ; 它的值是以弧度表达的角度。定义域:【-1 , 1】。 由于是多值函数,往往取它的单值支,值域为【0, n ],记作y=arccosx,我们称它叫 做反三角函数中的反余弦函数的主值, arcta n x 反三角函数中的反正切。意思为:tan(a) = b;等价于arctan(b) = a fflil 定义域:{x lx € R},值域:y € (- n/2,冗/2) 计算性质: tan( arcta na)=a arcta n(-x)=-arcta nx arctan A + arctan B=arcta n(A+B)/(1-AB) arctan A - arctan B=arcta n(A-B)/(1+AB) 反三角函数在无穷小替换公式中的应用:当x T 0时,arctanx~x

三角和反三角函数图像

三角和反三角函数图像 The Standardization Office was revised on the afternoon of December 13, 2020

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x ∈R 且x≠kπ+ 2 π ,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z } 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ- 2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在[2kπ- 2π,2kπ+2 π ]上都是增函数;在[2kπ+2 π ,2kπ+32π]上都是减函数(k ∈Z) 在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k ∈Z) 在(kπ- 2π,kπ+2 π )内都是增函数(k ∈Z) 在(kπ,kπ+π)内都是减函数(k ∈Z)

推荐-(一)反三角函数的概念·例题 精品

(一)反三角函数的概念·例题 注 (i)求反三角函数值,先用一个字母表示这个反三角函数,再写出它的原三角函数,并确定所在角的象限。然后利用已知三角函数值查表求出角来,或者利用特殊角的三角函数值求出角来。 (ii)如果一个式子中有多个反三角函数值,一般分别用一个字母表示,按上述步骤分别进行。 那么D= ______,M=______。 由对数函数的性质知,D由下面不等式组解确定

从而 所以M=(-∞,log2π-1)。 注求复合函数的定义域,可由里向外(或由外向里),一层一层得出有关不等式组。求出这不等式组的解,即为所求的定义域。 (1)求它的定义域D; (2)求它的反函数,并求反函数的值域与定义域。

注 (i)反三角函数都是单调函数。故已知值域求定义域时,只须求出值域两端点的反三角函数值即可。 (ii)原函数的定义域为反函数的值域,原函数的值域为反函数的定义域。 所以 y=sinx=sin(x-2π) x-2π=arcsiny y=arcsinx+2π 注求三角函数的反函数时,必须先利用诱导公式,把自变量的取值范围变到此三角函数的主值区间上,再利用反三角函数表出。 例4-1-5求y=arctg(9-8cosx-2sin2x)的定义域与值域。 解由于z=arctgu的定义域为(-∞,+∞),又因为y=cosx与y=sinx的定义域也都是(-∞,+∞),从而所求函数定义域也是(-∞,+∞)。 再求值域。令u=9-8cosx-2sin2x,则 u=2(cosx-2)2-1 当cosx=-1时,u max=17,从而y max=arctg17; 注当复合函数的“外”函数是反三角函数时,求此复合函数的值域的步骤是:先求出“内”函数的最大值a与最小值b;令此复合函数为y=f(x);再求出f(a),f(b)。那么值域为[f(a),f(b)](当“外”函数为增函数时)或 [f(b),f(a)](当“外”函数为减函数时)。

三角函数,反三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2 A )= A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB 积化和差 sinasinb = - 21[cos(a+b)-cos(a-b)] cosacosb = 2 1 [cos(a+b)+cos(a-b)]

常用反三角函数公式表

反三角函数公式

反三角函数图像与特征 1 :

反三角函数的定义域与主值范围 式中n为任意整数.

反三角函数的相互关系 sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))

If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function ArcCos(x) 函数 功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。 语法:ArcCos(x)。 说明:其中,x的取值范围为[-1,1],x的数据类型为Double。 程序代码: Function ArcCos(x As Double) As Double If x >= -1 And x < -0.5 Then ArcCos = Atn(Sqr(1 - x *x) / x) + 4 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcCos = -Atn(x/ Sqr(1 - x * x)) + 2 * Atn(1) If x> 0.5 And x <= 1 Then ArcCos = Atn(Sqr(1 - x*x) / x) End Function

反三角函数的概念和性质

反三角函数的概念和性质 一.基本知识: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系; 2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y=arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,] 上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; 5.注意恒等式sin(arcsin x)=x, x∈[-1, 1] , cos(arccos x)=x, x∈[-1, 1], arcsin(sin x)=x, x∈[-,], arccos(cos x)=x, x∈[0, π]的运用的条件; 6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用; 7.注意恒等式arcsin x+arccos x=, arctg x+arcctg x=的应用。 例一.下列各式中成立的是(C)。 (A)arcctg(-1)=-(B)arccos(-)=- C)sin[arcsin(-)]=-(D)arctg(tgπ)=π

解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。 例二.下列函数中,存在反函数的是(D)。 (A)y=sin x, x∈[-π, 0] (B)y=sin x, x∈[, ] (C)y=sin x, x∈[,] (D)y=sin x, x∈[,] 解:本题是判断函数y=sin x在哪个区间上是单调函数,由于y=sin x在区间[,]上是单调递减函数,所以选D。 例三. arcsin(sin10)等于(C)。 (A)2π-10 (B)10-2π(C)3π-10 (D)10-3π 解:本题是判断哪个角度的正弦值与sin10相等,且该角度在[-, ]上。 由于sin(3π-10)=sin(π-10)=sin10, 且3π-10∈[-, ], 所以选C。( 例四.求出下列函数的反函数,并求其定义域和值域。 (1)f (x)=2sin2x, x∈[, ];(2)f (x)=+arccos2x. 解:(1) x∈[, ], 2x∈[, ], 2x-π∈[-, ], -2≤y≤2

三角函数和反三角函数图像性质知识点总结

三角函数 1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值 2. 角度制与弧度制 设扇形的弧长为l ,圆心角为a (rad ),半径为R ,面积为S 角a 的弧度数公式 2π×(a /360°) 角度与弧度的换算 ①360°=2π rad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈57.3° 弧长公式 l a R = 扇形的面积公式 12 s lR = 3. 诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数k 的奇偶性(k ·π/2+a ) 所谓符号看象限是看原函数的象限(将a 看做锐角,k ·π/2+a 之和所在象限) 注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中z k ∈) ①: 三角函数 x y sin = x y cos = x y tan = cot y x = 函 数 图 象 定义域 R R 2 x k π π≠+ x k π ≠ 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇 偶 奇 非奇非偶 单 调 性 2,222k k ππππ? ?-+↑????2,222k k ππππ??-+↑???? []2,2k k πππ-↑ []2,2k k πππ+↓ ,22k k ππππ? ?-+↑???? [],k k πππ+↓ 对 称 性 :2 x k π π=+ 对称轴 对称中心:(,0)k π :x k π =对称轴 : 对称中心(+ ,0) 2k π π : 对称中心( ,0)2 k π 零值点 πk x = 2 π π+ =k x πk x = 2 π π+ =k x 最 值 点 2 π π+ =k x ,1max =y 2 π π- =k x ,1min -=y πk x 2=,1max =y ; 2y k ππ=+,1min -=y

三角函数 正切、余切图象及其性质

正切、余切函数图象和性质反三角函数[知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图象上三点及两条重要的辅导线——渐近线,来作正切函数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: y=tanx y=cotx 定义域值域R R 单调性在上单增(k∈Z) 在上单减(k∈Z) 周期性T=π T=π 对称性10 对称中心,奇函数(k∈Z) 20 对称轴;无10 对称中心,奇函数(k∈Z) 20 对称轴;无 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的.

3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数. y=tanx,x∈的反函数记作y=arctanx, x∈R,称为反正切函数. y=cotx,x∈(0, π)的反函数记作y=arccotx, x∈R,称为反余切函数. 2.反三角函数的图象 由互为反函数的两个函数图象间的关系,可作出其图象. 注:(1)y=arcsinx, x∈[-1,1]图象的两个端点是 (2)y=arccosx, x∈[-1,1]图象的两个端点是(1,0)和(-1,π). (3)y=arctanx, x∈R图象的两条渐近线是和. (4)y=arccotx, x∈R图象的两条渐近线是y=0和y=π. 四、反三角函数的性质由图象,有 y=arcsinx y=arccosx y=arctanx y=arccotx 定义域[-1,1] [-1,1] R R 值域[0, π] (0, π) 单调性在[-1,1]上单增在[-1,1]上单减在R上单增在R上单减对称性10对称中心(0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无10对称中心 (0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无周期性无无无无 另外: 1.三角的反三角运算 arcsin(sinx)=x(x∈)arccos(cosx)=x (x∈[0, π]) arctan(tanx)=x(x∈)arccot(cotx)=x(x∈(0, π)) 2.反三角的三角运算 sin(arcsinx)=x (x∈[-1,1])cos(arccosx)=x (x∈[-1,1])

三角和反三角函数图像性质总结

反三角函数的图像和性质 yx,arccos yx,arctanyx,arcsin ,1,1,1,1,,,,R 定义域 ,,,,,,,, ,,,,值域 [0,π] ,,,,2222,,,, 在上单调递增在上单调递减 ,1,1,1,1,,,,在R上单调递增单调性 无减区间无减区间无增区间 3奇偶性奇函数非奇非偶函数奇函数 32, 32,,21212,-1 图象 -22468-224682O11 -1,-1-,2-2 -22468-1 -1O2-2 -1 arcsin()arcsin,,,xxarccos()arccos,,,xx,arctan()arctan,,,xx 运算公x,,[1,1]x,,[1,1] xR,式1 运算公,,,, arccos(cos),[0,]xxx,,, arctan(tan),(,)xxx,,,arcsin(sin),[,]xxx,,,2222式2 运算公 sin(arcsin),[1,1]xxx,,,cos(arccos),[1,1]xxx,,,tan(arctan),xxxR,, 式3 , arctancotxarcx,,运算公,2 arcsinarccos,[1,1]xxx,,,,2式4 xR, 三角函数的图像和性质 4 yx,cosy,tanx yx,sin kZ,343 3222 1一个周11(((113,,2,,,期的图-22468,-22468(-4-2246823,,O,2,O2O--12-12-1-1-1 22像 -2-2 -2

-3,,,x|x,k,,k,Z ,定义域 R R ,,2,, [1,1],[1,1], 值域 R 奇偶性奇函数偶函数奇函数 , 2,2,周期 对 ,直线xk,kZ, ,,,称直线,无 xk,,kZ,2 轴对 称对 性称k,,(,0)k,,kZ, 点,kZ, 点(,0)k,(,0)点,kZ, ,22中 心 ,,,,,在上 [2,2]kk,,[2,22]kk,,,,,,,,,上在,上在(,)kk,,,,2222单调性 ,,3,在上,,[2,2]kk,,,,,[2,2]kk,,在上无减区间 22

大学高数 函数与反三角函数图像

三角函数公式和图象总结 1.与角α终边相同的角,连同角α在内,都可以表示为S={β|β=α+k ×360,k ∈Z} 2.弧长公式:α?=r l 扇形面积公式lR S 21 = 其中l 是扇形弧长,R 是圆的半径。 3.三角函数定义: sin ,cos ,tan y x y r r x ααα===,其中P (,)x y 是α终边上一点,||r OP = 4.同角三角函数的两个基本关系式 22 sin sin cos 1 tan cos ααααα +== sin sin αsin β tan tan α

sin cos), a x b x x? +=+其中tan b a ?=,?所在的象限与点(,) a b所在的象限一 致。

12.①sin()(0)y A x b A ω?=++>、cos()(0)y A x b A ω?=++>的最小正周期为 || ω,最大值为A+b ,最小值为-A+b. ②tan()(0)y A x b A ω?=++>的最小正周期为|| π ω 13.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 14.余弦定理:2 2 2 2cos a b c bc A =+- bc a c b A 2cos 2 22-+= 15.S ⊿= 21a a h ?=21ab C sin =21bc A sin =2 1ac B sin =R abc 4=2R 2 A sin B sin C sin =))()((c p b p a p p ---(其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 反三角函数图像与反三角函数特征 反正弦曲线 反余弦曲线 拐点(同曲线对称中心):,该点切线斜率为1 拐点

(完整版)反三角函数公式大全

反三角函数公式大全 三角函数的反函数,是多值函数。它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x 当x∈〔0,∏〕,arccos(cosx)=x x∈(—∏/2,∏/2),arctan(tanx)=x x∈(0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似 若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)

反三角函数典型例题

反三角函数典型例题 例1:在下列四个式子中,有意义的为__________: 解:(4)有意义。 (1)(2)arcsin 4 π ;(3)sin(arcsin 2);(4)arcsin(sin 2)。 点评:arcsin x ——x [1,1]∈-。 例2:求下列反正弦函数值 (1)= 解:3 π (2)arcsin0= 解:0 (3)1arcsin()2-= 解:6π- (4)arcsin1= 解:2 π 点评:熟练记忆:0,1 2 ±、,,1±的反正弦值。 思考:1sin(arcsin )24 π +该如何求? 例3:用反正弦函数值的形式表示下列各式中的x (1)sin x 5= ,x [,]22ππ ∈- 解:x =arcsin 5 变式:x [,]2 π ∈π? 解:x [,]2π ∈π时,π-x [0,]2 π∈,sin(π-x)=sinx =5 ∴π-x =,则x =π- 变式:x [0,]∈π? 解:x =或x =π- (2)1 sin x 4 =-,x [,]22ππ∈- 解:1x arcsin 4=- 变式:1 sin x 4=-,3x [,2]2π∈π 解:3x [,2]2π∈π时,2π-x [0,]2π∈,sin(2π-x)=-sinx =1 4 ∴2π-x =arcsin 14,则x =2π-arcsin 1 4 点评:当x [,]22ππ ∈-时,x arcsina =;而当x [,]22ππ?-,可以将角转化到区间[,]22 ππ-上,再用诱导公式 处理对应角之三角比值即可。 练习: (1)sin x = ,x [,]22ππ ∈- 解:x 3π= (2)sin x =,x [0,]∈π 解:x =x =π- (3)3sin x 5=-,3x [,]22ππ∈ 解:3 x arcsin 5 =π+

反三角函数的概念和性质

反三角函数的概念和性质 . 一.基础知识自测题: 1.函数y=arcsin x的定义域是 [-1, 1] ,值域是. 2.函数y=arccos x的定义域是 [-1, 1] ,值域是 [0, π] . 3.函数y=arctg x的定义域是R,值域是. 4.函数y=arcctg x的定义域是R,值域是 (0, π) . 5.arcsin(-)=; arccos(-)=; arctg(-1)=; arcctg(-)=. 6.sin(arccos)=; ctg[arcsin(-)]=; tg(arctg)=; cos(arcctg)=. 7.若cos x=-, x∈(, π),则x=. 8.若sin x=-, x∈(-, 0),则x=. 9.若3ctg x+1=0, x∈(0, π),则x=. 二.基本要求: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;

2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y= arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,] 上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; 5.注意恒等式sin(arcsin x)=x, x∈[-1, 1] , cos(arccos x)=x, x∈[-1, 1], arcsin(sin x)=x, x∈[-,], arccos(cos x)=x, x∈[0, π]的运用的条件; 6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用; 7.注意恒等式arcsin x+arccos x=, arctg x+arcctg x=的应用。 例一.下列各式中成立的是(C)。 (A)arcctg(-1)=-(B)arccos(-)=- (C)sin[arcsin(-)]=-(D)arctg(tgπ)=π 解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。

角、反三角函数图像及性质与三角公式

三角、反三角函数图像 (附:资料全部来自网络,仅对排版做了改动,以方便打印及翻阅,其中可能出现错误,阅者请自行注意。) 1.六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 2.三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x 函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x∈R 且x≠kπ+2 π ,k∈Z } {x |x∈R 且x≠kπ,k∈Z} 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ-2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数

单调性 在 [2kπ- 2 π ,2kπ+ 2 π ] 上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π]上都是减函数 (k∈Z) 在[2kπ -π, 2kπ]上都是增 函数;在[2kπ, 2kπ+π]上都是 减函数(k∈Z) 在(kπ- 2 π , kπ+ 2 π )内都是 增函数(k∈Z) 在(kπ,kπ+π) 内都是减函数 (k∈Z) 3.反三角函数的图像和性质: arcsinx arccosx arctanx arccotx 名称反正弦函数反余弦函数反正切函数反余切函数 定义 y=sinx(x∈ 〔- 2 π , 2 π 〕的反 函数,叫做反正弦 函数,记作 x=arsiny y=cosx(x∈ 〔0,π〕)的反函 数,叫做反余弦 函数,记作 x=arccosy y=tanx(x∈(- 2 π , 2 π )的反函数,叫 做反正切函数,记作 x=arctany y=cotx(x∈(0, π))的反函数, 叫做反余切函 数,记作 x=arccoty 理解 arcsinx表示属于 [- 2 π , 2 π ] 且正弦值等于x的 角 arccosx表示属 于[0,π],且 余弦值等于x的 角 arctanx表示属于 (- 2 π , 2 π ),且正切 值等于x的角 arccotx表示属 于(0,π)且余切 值等于x的角 性 质 定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞) 值域[- 2 π , 2 π ][0,π](- 2 π , 2 π )(0,π)单调性 在〔-1,1〕上是增 函数 在[-1,1]上是 减函数 在(-∞,+∞)上是增 数 在(-∞,+∞)上 是减函数

反三角函数_一、函数概念

1、函数都是以f(x)这样的符号表示的,如862 +-=x x y ,其中的(x )表示x 是个会变化的量,我们称x 为“自变量”,y 因为x 的变化而变化,因此叫“因变量”. f(x)叫对应法则,x 所能取值的范围叫函数的定义域,只有当两个函数的定义域、对应法则完全相同时,才认为它们是同一个函数. 函数表示法中大家注意一下“复合函数”、“分段函数”. 复合函数 这是我们遇到的新名词,例如我们有两个函数: .7)(, )(+==x x g x x f 我们把它们复合成一个函数:7)7())((+= +=x x f x g f ,结果就是把函数f(x)里的每 一个x ,都以x+7替代. 分段函数 当你看到函数中有曲里拐弯的大括号,这就是分段函数了. 例如:?????<≥=1,1,)(2x x x x x f 分段函数需要注意的: (1)分段函数是用几个公式合起来表示一个函数,而不是表示几个函数; (2)因为函数式子是用几个公式分段表示的,所以各段的定义域必须明确标出; (3)求分段函数的函数值时,不同点的函数值应带入相应范围的公式中去; (4)分段函数的定义域是各段定义域的并集. 要你求函数在某一点x0的函数值,你得看清楚了,x0是在定义域的哪一部分,得用合适的对应法则才能得出正确答案. 2、函数定义域的求法: (1)分式中的分母不能为零; (2)负数不能开偶次方; (3)对数中的真数必须大于零; (4)反三角函数arcsinx 与arccosx 中的x 必须满足|x|≤1; (5)上述数种情况同时在某函数中出现,此时应取其交集.

1、单调性 若函数在其整个定义域区间上单调,则称它为单调函数. 判定函数单调性的常用方法有: (1)用函数单调的定义 (2)用函数的导数符号判定 2、有界性 理解即可. 3、奇偶性 讨论函数的奇偶性的前提是其定义域为对称区域,由于奇函数图像关于原点对称,偶函数图像关于y轴对称,故借助函数奇偶性作图有时很方便. 判定函数奇偶性的方法 (1)奇偶性的定义 给出一个函数f(x),要判断它的奇偶性,将x替换成–x,求出结果,如果等于f(x),即为偶函数,如果等于 -f(x),则为奇函数,若二者都不是,则是非奇非偶函数. (2)利用下列性质: 两个奇(偶)函数之和仍为奇(偶)函数; 两个奇(偶)函数之积必为偶函数; 奇函数与偶函数之积必为奇函数. 4、周期性 通常所说的周期是指最小正周期,理解即可. 三、反函数 函数是单调函数时才具有反函数. 应注意互为反函数的两个函数之间的定义域、值域的对应关系,它们的图像是关于y=x为对称的. 特别注意,四个反三角函数是在对其定义域分别规定了主值区间才加以定义反函数的. 求反函数的一般步骤为: (1)在y=f(x)中将y作为已知量,解出x,即得x=ψ(y); (2)在x=ψ(y)中,将x和y的位置互换,则得到y=f(x)的反函数y=ψ(x). 四、基本初等函数

反三角函数及性质

函数y=sinx,x∈[-π/2,π/2]的反函数叫做反正弦函数,记作x=arcsiny. 习惯上用x表示自变量,用y表示函数,所以反正弦函数写成y=arcsinx.的形式 请注意正弦函数y=sinx,x∈R因为在整个定义域上没有一一对应关系,所以不存在反函数。 反正弦函数只对这样一个函数y=sinx,x∈[-π/2,π/2]成立,这里截取的是正弦函数靠近原点的一个单调区间,叫做正弦函数的主值区间。 理解函数y=arcsinx中,y表示的是一个弧度制的角,自变量x是一个正弦值。这点必须牢记 性质 根据反函数的性质,易得函数y=arcsinx的,定义域[-1,1],值域[-π/2,π/2],是单调递增函数 图像关于原点对称,是奇函数 所以有arcsin(-x)=-arcsinx,注意x的取值范围:x∈[-1,1] 导函数: ,导函数不能取|x|=1 , 反正弦恒等式 sin(arcsinx)=x,x∈[-1,1] (arcsinx)'=1/√(1-x^2) arcsinx=-arcsin(-x) arcsin(sinx)=x ,x属于[0,π/2]

反三角函数中的反余弦。意思为:余弦的反函数,函数为y=arccosx,函数图像如右下图。 就是已知余弦数值,反求角度,如cos(a) = b,则arccos(b) = a; 它的值是以弧度表达的角度。定义域:【-1,1】。 由于是多值函数,往往取它的单值支,值域为【0,π】,记作y=arccosx,我们称它叫做反三角函数中的反余弦函数的主值, arctan x 反三角函数中的反正切。意思为:tan(a) = b; 等价于 arctan(b) = a 定义域 :{x∣x∈R} ,值域:y∈(-π/2,π/2) 计算性质: tan(arctana)=a arctan(-x)=-arctanx arctan A + arctan B=arctan(A+B)/(1-AB) arctan A - arctan B=arctan(A-B)/(1+AB) 反三角函数在无穷小替换公式中的应用:当x→0时,arctanx~x

三角函数与反三角函数图像性质、知识点总结

三角函数 1.特殊锐角( 0°, 30°, 45°, 60°, 90°)的三角函数值 2.角度制与弧度制 设扇形的弧长为l ,圆心角为 a (rad ), 半径为 R,面积为 S 角a 的弧度数公式2π×(a /360 °) ①360°=2π rad 角度与弧度的换算②1°=π/180rad ③1 rad= 180°/π=57° 18′≈ 57.3 ° 弧长公式l a R 扇形的面积公式s1lR 2 3.诱导公式:(奇变偶不变,符号看象限)所谓 奇偶指是整数 k 的奇偶性( k· /2+ a) 所谓符号看象限是看原函数的象限(将a 看做锐角, k· /2+ a 之和所在象限)注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了 学习指导参考

4. 三角函数的图像和性质: (其中 k z ) ①: 三角 函数 函 数 图 象 定义域 值域 周期 奇偶性 单 调 性 对 称 y sin x R [-1,1] 2 奇 2k , 2k 2 2 2k , 2k 2 2 对称轴 : x k 2 y cosx R [-1,1] 2 偶 2k ,2 k 2k ,2 k 对称轴 : x k y tanx y cotx x k x k 2 R R 奇 非奇非偶 k , k k , k 2 2 对称中心: ( k 2 , 0) 性 对称中心 : ( k , 0) 对称中心 : ( k + 2 , 0) 零值点 x k x k 2 最 x k , y max 1 x 2k , y max 1 ; 2 值 x k , y min 1 y 2k , y min 1 x k x 2 k

相关主题