搜档网
当前位置:搜档网 › 工艺参数的设定和调节

工艺参数的设定和调节

工艺参数的设定和调节
工艺参数的设定和调节

第四节工艺参数的设定和调节技能

压铸生产中机器工艺参数的设定和调节直接影响产品的质量。一个参数可能造成产品的多个缺陷,而同一产品的同一缺陷有可能与多个参数有关,要求在试压铸生产中要仔细分析工艺参数的变化对铸件成形的影响。压铸生产厂家通常由专人设定和调节机器参数。下面以力劲机械厂有限公司生产的DCC280卧式冷室压铸机为例,说明压铸生产中主要工艺参数的设定和调节技能。

第四节工艺参数的设定和调节技能

压铸生产中机器工艺参数的设定和调节直接影响产品的质量。一个参数可能造成产品的多个缺陷,而同一产品的同一缺陷有可能与多个参数有关,要求在试压铸生产中要仔细分析工艺参数的变化对铸件成形的影响。压铸生产厂家通常由专人设定和调节机器参数。下面以力劲机械厂有限公司生产的DCC280卧式冷室压铸机为例,说明压铸生产中主要工艺参数的设定和调节技能。

一、主要工艺参数的设定技能

DCC280卧式冷室压铸机设定的内容及方法如下:

(1)射料时间:射料时间大小与铸件壁厚成正比,对于铸件质量较大、压射一速速度较慢且所需时间较长时,射料时间可适当加大,一般在2S以上。射料二速冲头运动的时间等于填充时间。

(2)开型(模)时间:开型(模)时间一般在2S以上。压铸件较厚比较薄的开型(模)时间较之要长,结构复杂的型(模)具比结构简单的型(模)具开型(模)时间较之要长。调节开始时可以略为长一点时间,然后再缩短,注意机器工作程序为先开型(模)后再开安全门,以防止未完全冷却的铸件喷溅伤人。

(3)顶出延时时间:在保证产品充分凝固成型且不粘模的前提下,尽量减短顶出延时时间,一般在0.5S以上。

(4)顶回延时时间:在保证能顺利地取出铸件的前提下尽量减短顶回延时时间,一般在0.5S以上。

(5)储能时间:一般在2S左右,在设定时操作机器作自动循环运动,观察储能时间结束时,压力是否能达到设定值,在能达到设定压力值的前提下尽量减短储能时间。

(6)顶针次数:根据型(模)具要求来设定顶针次数。

(7)压力参数设定

在保证机器能正常工作,铸件产品质量能合乎要求的前提下,尽量减小工作压力。选择、设定压射比压时应考虑如下因素:

1)压铸件结构特性决定压力参数的设定。

①壁厚:薄壁件,压射比压可选高些;厚壁件,增压比压可选高些。

②铸件几何形状复杂程度:形状复杂件,选择高的比压;形状简单件,比压低些。

③工艺合理性:工艺合理性好,比压低些。

2)压铸合金的特性决定压力参数的设定

①结晶温度范围:结晶温度范围大,选择高比压;结晶温度范围小,比压低些。

②流动性:流动性好,选择较低压射比压;流动性差,压射比压高些。

③密度:密度大,压射比压、增压比压均应大;密度小,压射比压、增压比压均选小些。

④比强度:要求比强度大,增压比压高些。

3)浇注系统决定压力参数的设定

①浇道阻力:浇道阻力大,主要是由于浇道长、转向多,在同样截面积下、内浇口厚度小产生的,增压比压应选择大些。

②浇道散热速度:散热速度快,压射比压高些;散热速度慢,压射比压低些。

4)排溢系统决定压力参数的设置

①排气道分布:排气道分布合理,压射比压、增压比压均选高些。

②排气道截面积:排气道截面积足够大,压射比压选高些。

5)内浇口速度

要求速度高,压射比压选高些。

(⑥温度

合金与压铸型(模):温差大,压射比压高些;温差小,压射比压低些。

8)压射速度的设定

压射速度分为慢压射速度(又称射料一速)、快压射速度(又称射料二速)、增压运动速度。

慢压射速度通常在0.1~0.8m/s范围内选择,运动速度由0逐渐增大,快压射速度与内浇口速度成正比,一般从低向高调节,在不影响铸件质量的情况下,以较低的快压射速度即内浇口速度为宜。

增压运动所占时间极短,它的目的是压实金属,使铸件组织致密。增压运动速度在调节时,一般观察射料压力表的压力示值在增压运动中呈一斜线均匀上升,压铸产品无疏松现象即可。

(9)一速、二速转换感应开关的位置调节原则

1)一速、二速运动转换应该在压射冲头通过压室浇注口后进行

2)对于薄壁小铸件,一般一速较短、二速较长

3)对于厚壁大铸件,一般一速较长,二速较短

4)根据铸件质量(如飞边、欠铸、气泡等)调节转换点。

(10)金属液温度的调节合金液温度可从机器电气箱面板上显示和设定。各种合金液其浇注温度不相同,同一压铸合金不同结构的产品,其厚壁铸件比薄壁铸件浇注温度要低。

(11)浇注量的选择所选择的每次浇注量应使所生产出来的产品余料厚度在15~25mm范围为宜,并要求每次合金液的舀取量要稳定。

(12)模温的控制模温是指压铸型(模)合型(模)时的温度,对于不同的合金液,其模温温度不同,一般以合金凝固温度的1/2为限。在压铸生产中最重要的是型(模)具工作温度的稳定和平衡,它是影响压铸件质量和压铸效率的重要因素之一。

机器液压系统各个动作的工艺参数,如压力、速度、行程、起点与终点,各个动作的时间和整个工作循环的总时间都有一定的技术参数,要求调试人员一定要熟悉机器技术性能,根据液压系统图认真分析所有元件的结构、作用、性能和调试范围,搞清楚液压元件在设备上的实际位置,并了解机械、电气、液压的相互关系。

二、主要工艺参数的调节技能

1.机器在调节时应注意的事项

1)只能调节机器使用说明书上指出的可调参数。调压时应按使用说明书的要求进行,不准大于规定的压力值,尽量防止调压过高,而致使油温增高或损坏元件。

2)不准在执行元件(液压缸、液压马达)运动状态下调节系统工作压力。

3)调压前应先检查压力表是否损坏,若有异常,待压力表更换后再调节压力。

4)调压前,先把所要调节的调压阀上的调节螺母放松,调压后,应将调节螺钉的紧固螺母拧紧,以免松动。

2.主要工艺参数的调节技能

(1)开、合型(模)慢速段的调节

开型(模)和合型(模)慢速段的速度统一由慢速油阀左侧的调节螺钉控制。顺时针旋紧螺钉,则开、合型(模)慢速段速度减慢,逆时针旋松螺钉,则开、合型(模)慢速速度加快。调节合适后,将固定螺母拧紧,如图3-93所示。

图3-93 开、合型(模)慢速段的调节

(2)开、合型(模)常速(即快速)段的调节

1)开型(模)常速段速度由开、合型(模)换向阀右侧的调节螺钉控制。顺时针旋紧螺钉,则速度减慢,逆时针旋松螺钉,则速度加快。调节合适后,将固定螺母拧紧,如图3-94所示。

图3-94 开型(模)常速(即快速)段的调节

2)合型(模)常速段速度由开、合型(模)换向阀左侧的调节螺钉控制。顺时针旋紧调节螺钉,则合型常速段速度减慢,逆时针旋松调节螺钉,则合型常速段速度加快。调节合适后,将固定螺母拧紧,如图3-95所示。

图3-95 合型(模)常速(即快速)段的调节

(3)低压大流量泵压力的调节

起动机器作自动循环运动,用手旋转双泵流量控制阀上的调节螺钉,可调节低压压力到一定值(一般5×106Pa(50bar)左右),低压压力值从低压压力指示表上读出。调节合适后,将固定螺母拧紧,如图3-96所示。

图3-96低压大流量泵压力的调节

(4)射料二速工作压力的调节

射料二速工作压力由控制二速压力的调节螺钉调节,用手旋转减压阀上的调节螺钉可调节压力大小,其压力示值从射料二速压力表中读出,此压力即为二速射料运动中的射料压力。DCC400卧式冷室压铸机具体调节步骤如下:

1)先旋松截止阀上调节螺钉,使二速蓄能器卸荷后再旋紧,如图3-97所示。

图3- 97 旋松截止阀

2)旋松减压阀调节螺钉上的紧固螺母,如图3-98所示。

图3- 98 旋松减压阀

3)一边用手按住起压按钮,一边慢速调节减压阀上调节螺钉,观察压力表上指针到所需要的示值(最大值1.4×107Pa(140bar))为止,如图3-99所示;

4)将减压阀调节螺钉上的紧固螺母拧紧。

图3-99 起压并观察压力表

(5)增压运动工作压力的调节

增压运动工作压力由控制增压蓄能器的减压阀上的调节螺钉调节。用手旋转减压阀上的调节螺钉,可调节其压力大小,其压力示值从增压压力表中读出。DCC400卧式冷室压铸机增压压力具体调节步骤如下:

1)先旋松截止阀(V54)阀上调节螺钉,使增压蓄能器卸荷后再旋紧,如图3-100所示;

图3-100 旋松截止阀

2)旋松减压阀调节螺钉上的紧固螺母,如图3-101所示。

图3-101 旋松减压阀

3)一边用手按住起压按钮,一边调节减压阀(V51)上调节螺钉,观察压力表指针到所需要的示值为止,如图3-102所示;

4)将减压阀调节螺钉上的紧固螺母拧紧。

图3-102 起压、观察压力表,调节螺钉

(6)增压控制蓄能器压力的调节

1)先旋松截止阀(V63)阀上调节螺钉,使增压控制蓄能器卸荷后再旋紧,如图3-103所示。

图3-103 旋松减压阀

2)旋松减压阀(V65)调节螺钉上的紧固螺母。

3)一边用手按住起压按钮,一边调节减压阀(V51)上调节螺钉,顺时针旋转螺杆,压力增大;逆时针旋转螺杆,压力减小,观察压力表指针到所需要的示值(6×106Pa(60bar))为止,如图3-104所示。

4)将减压阀调节螺钉上的紧固螺母拧紧。

图3-104 起压、观察压力表

(7)射料一速速度的调节

射料一速运动速度由一速可调插装阀左侧控制,调节其螺杆可改变一速运动速度:顺时针旋转螺杆,速度减小;逆时针旋转螺杆,速度增大,如图3-105所示。

图3-105射料一速速度的调节

(8)射料二速速度的调节

射料二速的速度大小由二速插装阀上的调节手轮控制,用手旋转手轮可获得不同的速度:顺时针旋转手轮,速度减小;逆时针旋转手轮,速度增大,如图3-106所示。

图3-106射料二速速度的调节

(9)增压速度的调节

增压速度的大小由插装阀上的调节手轮控制,用手旋转手轮可获得不同的速度:顺时针旋转手轮,速度减小;逆时针旋转手轮,速度增大,如图3-107所示。

图3-107增压速度的调节

(10)射料回锤速度调节

射料回锤运动的速度由射料可调换向阀右侧控制,调节其螺杆可改变回锤运动速度:顺时针旋转螺杆,速度减小;逆时针旋转螺杆,速度增大,如图3-108所示。

图3-108 射料回锤速度调节

(11)一速、二速运动行程的调节

一速、二速运动行程的长短由二速感应开关的位置决定,两段行程的长短影响铸件的成形质量,例如欠铸、飞边、气泡等,一般在试压铸生产中根据产品质量作调节,如图3-109所示。

图3-109 一速、二速运动行程的调节

第三节压铸机的选用

一、压铸机的选用原则

1)根据铸件的技术要求、使用条件和压铸工艺规范核算压铸机的技术参数及工艺性,初选合适机型。

2)根据初步构想的压铸型(模)技术参数和工艺要求核算出压铸工艺参数及压铸型(模)外形尺寸,选用合适机型。

3)评定压铸机的工作性能和经济效果,包括成品率、合格率、生产率及运转的稳定性、可靠性、和安全性等。

二、压铸机的选用方法

1)在实际生产中,选择压铸机主要根据压铸合金的种类、铸件的轮廓尺寸和重量确定采用热室或冷室压铸机。对于锌合金铸件和小型的镁合金铸件通常选用热室压铸机。对于铝合金、铜合金铸件和大型的镁合金铸件选用冷室压铸机为主。立式冷室压铸机适合于形状为中心辐射状和圆筒形的、同时又具备开设中心浇道条件的铸件。

2)根据压铸件的材料、轮廓尺寸、平均壁厚、净重来选择压铸机型号规格。可通过计算来求得锁型(模)力的大小值、每次浇注量、压射室充满度等实际工艺参数作为选取机型的依据。

3)压铸型(模)大小应与压铸机上安装型(模)具的相应尺寸相匹配,其主要尺寸为压铸型(模)的厚度和型(模)具分型面之间的距离。必须满足压铸机基本参数的要求:

应满足如下条件

①压铸型(模)厚度H设不得小于机器说明书所给定的最小型(模)具厚度,也不得大于所给定的最大型(模)具厚度,H

H

min +10mm ≤ H

≤ H

max

-10mm

式中 H

--所设计的型(模)具厚度(mm);

H

min

--压铸件所给定的型(模)具最小厚度,即"模薄"(mm);

H

max

--压铸机所给定的型(模)具最大厚度,即"模厚"(mm)。

②压铸机开型(模)后,应使压铸机动型(模)座板行程(L)即压铸型(模)具分型面之间的距离大于或等于能取出铸件的最小距离。

L≥L

如图5-6 所示为推杆推出的压铸型(模)取出铸件的最小距离。

L

取≥L

+L

+K

式中,K一般取10mm。

图5-6 核算动型(模)座板行程

三、压铸机选用方法举例

例已知一盒形铸件,如图5-7所示。下面以力劲机械厂有限公司生产的卧式冷室压铸机机型技术参数为依据进行选型分析。基本条件材料为铝合金;外形尺寸(长×宽×高)为280mm×180mm×80mm;平均壁厚为3 mm;铸件净重为1240g

图5-7 盒形压铸件

1、计算投影面积

铸件 A1=280mm×180mm=50400mm2

浇道系统 A2=(0.15~0.30)A1 选0.21

则 A2=0.2×50400mm2=10584mm2

余料(料饼) A3=πd2/4 选压室内径d为φ70mm(即冲头直径φ70)

则 A3=3847mm2

排溢系统 A4=(0.1~0.2)A1 选0.12

则 A4=6048mm2

总投影面积:A=A1+A2+A3+A4

=50400mm2+10584mm2+3847mm2+6048mm2=70879mm2

2、计算胀型力、锁型力,初选型

(1)如果铸件只有一般要求,属普通件,选增压比压p

bz

=40N/mm2(MPa)

F

=40N/mm2×70879mm2=2835160N

F

锁=F

/K 取K=0.85

F

=2835160N/0.85=3335482N=3335.482kn

可选用锁型力为4000kn的机型,力劲机选DCC400机型。

(2)如果铸件有一定强度要求,属于技术件,选增压比压p

bz

=70N/ mm2(MPa)

F

=70N/mm2×70879mm2=4961530N

F

锁=F

/K 取K=0.85

F

=4961530N/0.85=5837094N=5837.094 kn

可选用锁型力为6300kn的机型,力劲机选DCC630机型。

3、计算浇入合金液的重量

铸件净重 G1=1240g;查表得知铝合金液态密度ρ=2.5g/cm3

浇道系统 G2 设浇道平均深度(厚度)为7mm(0.7cm)

G2=V

2

ρ=A2×0.7×2.5=186g

余料(料饼)G3 设余料厚度为30mm(3cm)

G3=V

3

ρ=A3×3×2.5=288.5g

排溢系统 G4 设溢流槽深度为6mm(0.6cm)

G4=V

4

ρ=A4×0.6×2.5=90.8g

浇入金属液总重 G=G1+G2+G3+G4

=1.81kg

4、核算压室充满度

(1)选DCC400时,冲头直径φ70的浇注量为3.6kg

充满度φ=1.81/2.6×100%=50.3%

通常充满度在40%~75%范围,以上选DCC400符合要求。

(2)选DCC630时,冲头直径φ70的浇注量为4.3kg

充满度φ=1.81/4.3×100%=42.1%

选DCC630也符合要求。

5、压铸型(模)具与机器装模尺寸的关系

查出DCC400、DCC630机型中,模薄、模厚,动型座板行程,拉杠之间的内尺寸诸技术参数,核算所设计的压铸型(模)具的相应尺寸能否符合要求。

6、核算压射能量利用压射系统的最大金属静压与流量-pQ2关系图进行分析,核算选用的压铸机压射性能能否符合所需能量要求。机器诸参数核算后,从理论上即可确定出压铸机机型。

压铸工艺参数的设定和调节

压铸工艺参数的设定和调节 压铸生产中机器工艺参数的设定和调节直接影响产品的质量。一个参数可能造成产品的多个缺陷,而同一产品的同一缺陷有可能与多个参数有关,要求在试压铸生产中要仔细分析工艺参数的变化对铸件成形的影响。压铸生产厂家通常由专人设定和调节机器参数。 一、卧式冷室压铸机主要工艺参数的设定和调节 下面以力劲机械厂有限公司生产的DCC280 卧式冷室压铸机为例,说明压铸生产中主要工艺参数的设定。 1. 主要工艺参数的设定 (1)射料时间:射料时间大小与铸件壁厚成正比,对于铸件质量较大、压射一速速度较慢且所需时间较长时,射料时间可适当加大,一般在2s 以上。射料二速冲头运动的时间等于填充时间。 (2)开型(模)时间:开型(模)时间一般在2s 以上。压铸件较厚比较薄的开型(模)时间较之要长,结构复杂的型(模)具比结构简单的型(模)具开型(模)时间较之要长。调节开始时可以略为长一点时间,然后再缩短,注意机器工作程序为先开型(模)后再开安全门,以防止未完全冷却的铸件喷溅伤人。 (3)顶出延时时间:在保证产品充分凝固成型且不粘模的前提下,尽量减短顶出延时时间,一般在0.5s以上。 (4)顶回延时时间:在保证能顺利地取出铸件的前提下尽量减短顶回延时时间,一般在0.5s 以上。 (5)储能时间:一般在2s 左右,在设定时操作机器作自动循环运动,观察储能时间结束时,压力是否能达到设定值,在能达到设定压力值的前提下尽量减短储能时间。 (6)顶针次数:根据型(模)具要求来设定顶针次数。 (7)压力参数设定在保证机器能正常工作,铸件产品质量能合乎要求的前提下,尽量减小工作压力。 选择、设定压射比压时应考虑如下因素: 1)压铸件结构特性决定压力参数的设定。 ①壁厚:薄壁件,压射比压可选高些;厚壁件,增压比压可选高些。 ②铸件几何形状复杂程度:形状复杂件,选择高的比压;形状简单件,比压低些。 ③工艺合理性:工艺合理性好,比压低些。

常用塑料注塑工艺参数

浅述冷/热模注塑成型技术 2010-2-25来源: 网络文摘 【全球塑胶网2010年2月25日网讯】?所谓的“冷/热模注塑成型”技术,是一种可在注塑成型周期内,使模腔表面温度实现冷热循环的工艺。其特点是:在注射前,先加热模腔,使其表面温度达到加工材料的玻璃化转变温度(Tg)以上;当模腔填满后,迅速冷却模具,以使制件在脱模前完全冷却。? 这种冷/热模注塑成型工艺可以大幅度地改善注塑制品的外观质量,而且可以省去某些二次加工(如旨在掩 盖表面缺陷的底漆和磨砂处理)过程,从而降低整体生产成本。在某些情况下,甚至还可以省去上漆或粉末涂布工艺。在那些对表面光泽度有较高要求的应用中,冷/热模注塑成型工艺还允许使用玻纤增强材料。该工艺的其他优势还包括:降低注塑内应力、减少甚至消除喷射痕和可见的熔接线,以及增强树脂的流动性,从而生产出薄壁产品等。 ?通常情况下,冷/热模注塑成型工艺适用于所有的传统注塑机。但是,如果希望模具表面得到快速加热或冷却,还需要配合使用特定的辅助系统,目前常用的辅助系统是高温热水系统和高温蒸汽系统。这些辅助系统中的蒸汽,要么来自外部锅炉,要么由其自身的控制设备产生。早在几年前,沙伯基础创新塑料就开始在日本研究冷/热模注塑成型技术。目前,该公司在其亚太区的开发中心中使用的是高温蒸汽系统,而在位于马萨诸塞州匹兹菲尔德的聚合物加工开发中心(PP DC)中,该公司则使用了德国Single Temperiertechnik公司的高温热水系统,它可以提供200℃的高温热水。??为了实现有效的工艺控制,模具必须配备热电偶,并且热电偶最好被安置在靠近模腔表面的位置,以便监控温度。为了确保工艺的稳定性,注塑模具、注塑机和冷/热控制器还必须集成在一起。沙伯基础创新塑料在该工艺的生产体系中配备了一台控制设备,以将各个要素有效地集成在一起。??在该工艺的开始阶段,利用在模内循环的蒸汽或高温热水来加热模腔表面,使其温度达到高于被加工树脂的玻璃化转变温度10~30℃的水平。一旦模腔表面达到这一温度值,系统便向注塑机发出信号,以将塑料注射到模腔中。当模腔被填满(注射阶段完成)后,冷水开始在模具中循环流动,以快速带走热量,从而使注塑部件在脱模前完全冷却。利用一个阀站,即可方便地实现从蒸汽或高温热水到冷水的切换,反之亦然。当部件冷却后,模具打开,部件被顶出,然后重复上述过程。??工艺优化:模具的设计和构造?冷/热模注塑成型技术的循环周期除了取决于所加工的材料外,模具的设计和构造对其则有极大的影响。一般,加热模具所需的时间取决于模具用钢的总量,因此尽量减少所要加热和冷却的钢材量非常重要。为了做到这一点,最好是将模腔和模芯嵌入到模板中,而不是穿过模板。为了减小热损失并提高效率,还应在任何可能的条件下,利用气隙和隔热材料,将这些嵌入件与模腔和模芯固定板隔开。 ?除了尽可能地减少必须进行冷/热循环的钢的用量外,还应考虑使用具有高导热性的金属,如铍铜合金或其他具有良好导热性的合金来制作模具。这些金属有助于缩短加热/冷却模腔表面所需的时间。此外,在模腔表面附近布置水路管线也可以加快响应速度。然而,多数情况下,制品的几何形状不允许这样做。尽管如此,共形冷却方法却极适合这种工艺,这是因为,其管线的布置可以与部件表面形状保持一致。因此,共形冷却方法可以极大地缩短最重要位置(即模腔表面)的热响应时间。? 就共形冷却技术而言,它往往涉及到注塑模的制造,或者更确切地说是镶嵌块的制造。一般,通过优化冷却道的设置,可以优化冷却效率,缩短生产周期。而传统的冷却方法很难做到这一点,因为一般制品的形状都很复杂,且常规的冷却通道只能被钻成直线形。? 目前,有多种模具制造技术可实现共形冷却,如激光烧结和直接金属沉积法。为了开发用于该工艺的测试模具,沙伯基础创新塑料的PP DC选择了位于美国密歇根州特洛伊市的Fast4m Tooling公司作为其模具供应商。Fast4mTooling采用钢板层压构造技术,设计并制造了带有共形冷却通道的模腔和模芯组

关键质量属性和关键工艺参数

关键质量属性关和键工艺参数(CQA&CPP) 1、要求: 生产工艺风险评估的重点将由生产工艺的关键质量属性(CQA)和关键工艺参数(CPP)决定。 生产工艺风险评估需要保证能够对生产工艺中所有的关键质量属性(CQA)和关键工艺参数(CPP)进行充分的控制。 2、定义: CQA关键质量属性:物理、化学、生物学或微生物的性质或特征,其应在适当的限度、范围或分布内,以保证产品质量。 CPP关键工艺参数:此工艺参数的变化会影响关键质量属性,因此需要被监测及控制,确保产产品的质量。 3、谁来找CQA&CPP 3.1 Subject Matter Experts(SME)在某一特定领域或方面(例如,质量部门,工程学,自动化技术,研发,销售等等),个人拥有的资格和特殊技能。 3.2 SME小组成员:QRM负责/风险评估小组主导人、研发专家、技术转移人员(如适用)、生产操作人员、工程人员、项目人员、验证人员、QA、QC、供应商(如适用)等。 3.3 SME小组能力要求矩阵: 4、如何找CQA&CPP 4.1 在生产工艺中有很多影响产品关键质量属性的因素,每个因素都存在着不同的潜在的风险,必须对每个因素充分的进行识别分析、评估,从而来反映工艺的一些重要性质。

4.2 列出将要被评估的工序步骤。工艺流程图,SOP或批生产记录可以提供这些信息。评估小组应该确定上述信息的详细程度来支持风险评估。 例:

文件资源:保证在评估之前已经具备所有必要的文件。 良好培训:保证在开展任何工作之前所有必要的风险评估规程、模板和培训已经就位。 评估会议:管理并规划所有要求的风险评估会议。 例:资料需求单 ICH Q8(R2)‐ QbD‐系统化的方法、 ICHQ9‐质量风险管理流程图 CQA&CPP风险评估工具‐FMEA

印刷机工艺参数的调节与影响

印刷机工艺参数的调节与影响1.刮刀的夹角 刮刀的夹角H11A3SD影响到刮刀对焊锡膏垂直方向力的大小,夹角越小,其垂直方向的分力Fy越大,通过改变刮刀角度可以改变所产生的压力。刮刀角度如果大于80。,则焊锡膏只能保特原状前 进而不滚动,此时Fy几乎没有垂直方向的分力,焊锡膏便不入印刷模板窗开口。刮刀角度的最佳设定应在45。~60。范围内进行,此时焊锡膏具有良好的滚动性。 2.刮刀的速度 刮刀速度变快时,焊锡膏所受的力会变大。考虑到焊锡膏压入窗口的实际情况,即焊锡膏压入的时间反而变短,如果刮速度过快,焊锡膏不能滚动而仅在印刷模板上滑动。因为锡膏流进窗口需要时间,这一点在印刷细间距QFP图形时能明显感觉到,当刮刀沿QFP -侧 运行时垂直于刮刀的焊盘上焊锡膏图形比另一侧要饱满,故有的印刷机具有刮刀旋转45。的功能,以保证细间距QFP印刷时圆面焊锡膏量均匀。最大的印刷速度应保证FQFP焊盘焊锡膏印刷纵横方向均匀、饱满,通常当刮刀速度控制在20~40mm/s时,板刷效果较好。 3.刮刀的压力 焊锡膏在滚动时,会对刮刀装置有垂直平衡,通常施加一个正压力,即通常所说的印刷压力,印刷压力不足时会引起焊锡膏刮不干净,如果印压过大时又会导致模板背后的渗漏,故一般把刮刀的压力设定在5~12N/25mm之间。理想的刮刀速度与压力应该以正好把焊锡

膏从钢板表面刮干净为准。 4.刮刀宽度 如果刮刀相对于PCB过宽,那么就需要更大的压力、更多的焊锡膏参与其工作,因而会造成锡膏的浪费。一般刮刀的宽度为PCB长度(印刷方向)加上50mm左右为最佳,并要保证刮刀头落在金属模板上。 5.印刷间隙 通常保持PCB与模板零距离(早期也要求控制在0~0.5mm但有FQFP时应为零距离),部分印刷机器还要求PCB平面稍高于模板的平面,调节后模板的金属模板微微被向上撑起,但此撑起的高度不应过大,否则会引起模板损坏,从刮刀运行动作上看,刮刀在模板运行自如,既要求刮刀所到之处焊锡膏全部刮走,不留多余的锡膏,同时刮刀不应在模板留下划痕。 6.分离速度 锡膏印刷后,钢板离开PCB 的瞵时速度是关系到印刷质量 的参数,其调节能力也是体现 印刷机质量好坏的参数,在精 密印刷中尤为重要。早期印刷 机的恒速分离,先进的印刷机其钢板离开锡膏图形时有一个微小的停留过程,以保证获取最佳的印刷图形,如图9.31所示.

常用塑料注塑工艺参数表样本

常见塑料注塑工艺参数表:

常见塑料注塑工艺参数( 2) -06-16 20:02:13| 分类: 个人日记 | 标签: |字号大中小订阅聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、 PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料, Tg为149~150℃; Tf为215~225℃; 成型温度为250~310℃; 2、热稳定性较好, 并随分子量的增大而提高。但PC高温下遇水易降解, 成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前, PC树脂必须进行充分干燥( 而且应当充分注意防止干燥过的物料再吸湿) 。干燥效果的快速检验法, 是在注塑机上采用”对空

注射”。3、熔体粘度高, 流动性较差, 其流动特性接近于牛顿流体, 熔体粘度受剪切速率影响较小, 而对温度的变化十分敏感, 在适宜的成型加工温度范围内调节加工温度, 能有效地控制PC的粘度。4、由于粘度高, 注射压力较高, 一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品, 为使熔体顺利、及时充模, 注射压力要适当提高至120~150MPa。保压压力为80~100MPa。5、成型时, 冷却固化快, 为延迟物料冷凝, 需控制模温为80~120℃。6、 PC分子主链中有大量苯环, 分子链的刚性大, 注塑中易产生较大的内应力, 使制品开裂或影响制品的尺寸稳定性; ( 在100℃以上作长时间热处理, 它的刚硬性增加, 内应力降低) 。PC的典型干燥曲线台湾奇美典型牌号加工参数: 十、 PA及玻纤增强PA注塑工艺特性与工艺参数设定1、常见品种及其熔点: q 品种: 尼龙-66; 尼龙-610; 尼龙-1010; 尼龙-1212; 尼龙-46尼龙-6; 尼龙-7; 尼龙-9; 尼龙-11; 尼龙-12; 尼龙-66/6、尼龙-66/610; 尼龙-6∕66∕1010; 尼龙-66/6/610q 熔点: 尼龙n系列: 尼龙-6 215~220℃; 尼龙-12为178℃; 尼龙m,n系列: 尼龙- 46 295 ℃; 尼龙-66 255~265℃; 尼龙-610 215~223℃; 尼龙-1010 200℃; 共缩聚尼龙: 由于分子链的规整性较差, 结晶性和熔点一般较低, 如尼龙-6∕66∕1010的熔点仅为155~175℃, 但其有较好的透明性和弹性。2、熔点高, 熔化范围窄( 约10℃) 。考虑到PA熔点高、热稳定性较差, 故加工温度不宜太高, 一般高于熔点30℃左右即可。3、吸湿性大, 且酰胺基易于高温水解, 引起分子量严重降低; ( 须严格干燥至含水量低于0.05%, 特别是回料使用时更应严格干燥, 必要时可添加”增粘剂”。) 4、熔体粘度低, 表观粘度对温度敏感, 由于熔体的冷却速率快, 要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流, 螺杆头应装有止逆环; 另外, 为防止喷嘴处熔体的”流涎”现象, 应选用自锁式喷嘴。5、注射PA时不需高的注射压力, 一般选取范围为70~100MPa, 一般不超过120MPa。注射速率宜略快些, 这样可防止因冷却速率快而造成波纹及充模不足等问题。6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大。7、酰胺基在高温下

印刷机工艺参数调整方法

印刷机工艺参数调整方法 The Standardization Office was revised on the afternoon of December 13, 2020

印刷机工艺参数调整方法 印刷的工作原理 ? 丝网印刷原理:控制流体的运动。 ? 印刷前,丝网上的浆料因粘度较大不会自行流动而漏过丝网。 ? 印刷时,刮刀把浆料压入网孔,在刮板及丝网的作用下,浆料受到切应力而粘度迅速下降,并滚动运动,在滚动压力的作用下流过 网孔,从而与硅片接触,在丝网回弹过程中附着到硅片上。 印刷相关参数的作用 ? 印刷压力:用于在印刷时提供给刮刀垂直力,以保证在印刷过程中能把浆料刮干净 ? 印刷间距:保证网板与硅片之间有一定的距离,保证在印刷后网板的回弹。 ? 印刷速度:印刷速度决定了整线的产量,但也不能过快。因为浆料在印刷时会滚动运动并产生两种力,一个反作用力和一个朝网板&朝刮刀的上下力,速度越大,力越大;从而浆料刮到硅片的量也会加大。 网板张力 ? 网板的张力对印刷的质量有很大的影响(如刮不干净浆料,碎片) ? 网板的张力在新的时候最大,随着印刷次数的增加,网板张力程线性下降 ? 随着网板张力的下降,在不改变其它印刷参数的情况下,最明显的就是刮不干净浆料。在加大压力后能把浆料收干净,但因为网板张力减小,加大的印刷压力就可能全部加到硅片上,从而导致碎片或隐裂。 印刷过程中碎片产生的原因 ? 硅片在印刷的过程中受到压力过大,从而造成碎片(试想如果没外加压力,硅片在印刷台面是不会碎的) ? 网板张力改变时,未改变间距,只加大压力,硅片可能因为承受压力过大而碎片 ? 前段刮刀胶条不平,造成硅片背极不平,在印刷栅线时碎片 ? 台面不平(或不干净),清理网版与台面上的杂物,更换台面纸.

常用塑料注塑工艺参数表

常用塑料注塑工艺参数表:

常用塑料注塑工艺参数(2) 2010-06-16 20:02:13| 分类:个人日记| 标签:|字号大中小订阅 聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料,Tg 为149~150℃;Tf为215~225℃;成型温度为250~310℃; 2、热稳定性较好,并随分子量的增大而提高。但PC高温下遇水易降解,成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前,PC树脂必须进行充分干燥(并且应当充分注意防止干燥过的物料再吸湿)。干燥效果的快速检验法,是在注塑机上采用“对空注射”。 3、熔体粘度高,流动性较差,其流动特性接近于牛顿流体,熔体粘度受剪切速率影响较小,而对温度的变化十分敏感,在适宜的成型加工温度范围内调节加工温度,能有效地控制PC的粘度。4、由于粘度高,注射压力较高,一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品,为使熔体顺利、及时充模,注射压力要适当提高至120~150MPa。保压压力为80~100MPa。 5、成型时,冷却固化快,为延迟物料冷凝,需控制模温为80~120℃。6、PC分子主链中有大量苯环,分子链的刚性大,注塑中易产生较大的内应力,使制品开裂或影响制品的尺寸稳定性;(在100℃以上作长时间热处理,它的刚硬性增加,内应力降低)。PC的典型干燥曲线台湾奇美典型牌号加工参数:十、PA及玻纤增强PA注塑工艺特性与工艺参数设定 1、常用品种及其熔点:q 品种:尼龙-66;尼龙-610;尼龙-1010;尼龙-1212;尼龙-46尼龙-6;尼龙-7;尼龙-9;尼龙-11;尼龙-12;尼龙-66/6、尼龙-66/610;尼龙-6∕66∕1010;尼龙-66/6/610q 熔点:尼龙n系列:尼龙-6 215~220℃;尼龙-12为178℃;尼龙m,n系列:尼龙-46 295 ℃;尼龙-66 255~265℃;尼龙-610 215~223℃;尼龙-1010 200℃;共缩聚尼龙:由于分子链的规整性较差,结晶性和熔点一般较低,如尼龙-6∕66∕1010的熔点仅为155~175℃,但其有较好的透明性和弹性。2、熔点高,熔化范围窄(约10℃)。考虑到PA熔点高、热稳定性较差,故加工温度不宜太高,一般高于熔点30℃左右即可。3、吸湿性大,且酰胺基易于高温水解,引起分子量严重降低;(须严格干燥至含水量低于0.05%,尤其是回料使用时更应严格干燥,必要时可添加“增粘剂”。)4、熔体粘度低,表观粘度对温度敏感,由于熔体的冷却速率快,要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流,螺杆头应装有止逆环;另外,为防止喷嘴处熔体的“流涎”现象,应选用自锁式喷嘴。5、注射PA时不需高的注射压力,一般选取范围为70~100MPa,通常不超过120MPa。注射速率宜略快些,这样可防止因冷却速率快而造成波纹及充模不足等问题。 6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大。 7、酰胺基在高温下对氧敏感,容易发生氧化变色(必要时可添加尼龙专用的热稳定剂); 8、高结晶性,成型收缩率大,易产生结晶应力,并且明显随制品的厚度增大而增加;9、成型后制品的缓慢吸湿易引起尺寸精度的较大变化。这点也被利用来进行调湿处理,通常可在沸水或醋酸钾水溶液(醋酸钾与水的比例为1.25∶1,沸点为121℃)中进行。 10、熔体着色所适用的有机颜料品种较少(酰胺基具有还原性,加之成型温度高)。尼龙吸水率尼龙及玻纤增强尼龙成型温度PA46安全加工温度-时间组合图玻璃纤维增强尼龙(GF-PA)工艺特性1、GF-PA中由于含大量玻纤,注塑中存在四大问题:(1)流动性差。(2)收缩率小,且各向异性明显。(3)制品性能易出现波动。(4)制品表面粗糙度数值大。 2、由于流动性差,且加入玻纤后的熔体冷凝硬化快,需要比未加玻纤时提高温度约10-30 ℃;3、应采用较大的注射速率和较高的注射压力; 4、由于大量玻纤引起的高粘度,增强尼龙可用通用喷嘴;5、对机筒的磨损大;6、为使增强尼龙制品有较高的强度,需要注意尽可能地保护玻纤的长度,减少玻纤损伤;(从螺杆、喷嘴、浇口等装备因素到注塑工艺条件)7、玻纤增强料成型加工中最常有缺陷:“浮纤”或称“玻纤外露”;玻纤取向引起的各向异性;熔接痕处强度特低;纤维取向不同厚度处的取向状况皮-芯效应与熔接痕前锋料遇到障碍后分流-合流-熔接玻纤含量与熔接痕强度十一、PMMA注塑工艺特性与工艺参数的设定 PMMA树脂俗称“压克力”,国内著名商品牌号有372#(实为MS)1、PMMA无定形聚合物,Tg为105℃,熔融温度大于160℃,而分解温度高达270℃以上,成型的温度范围较宽;2、PMMA树脂颗粒易吸收水份,而这些水分的存在,在成型过程中由于受热挥发,导致熔体起泡、膨胀、使制品出现银丝、气泡、透明度变差、有糊斑等问题。PMMA在热风循环干燥设备上的干燥,其干燥工艺参数:温度为70~80℃,时间为2~4h;3、 PMMA熔体粘度对温度变化比较敏感。注射温度的改变对熔体流动长度的影响要比注射压力与比注射速率明显些,更比模具温度显著得多。故在成型时改变PMMA的流动性主要是从注射温度着手。但选用高料温时易受其它工艺参

印刷机工艺参数调整方法(精)

印刷机工艺参数调整方法 印刷的工作原理 ? 丝网印刷原理:控制流体的运动。 ? 印刷前,丝网上的浆料因粘度较大不会自行流动而漏过丝网。 ? 印刷时, 刮刀把浆料压入网孔, 在刮板及丝网的作用下, 浆料受到切应力而粘度迅速下降,并滚动运动,在滚动压力的作用下流过 网孔,从而与硅片接触,在丝网回弹过程中附着到硅片上。 印刷相关参数的作用 ? 印刷压力:用于在印刷时提供给刮刀垂直力, 以保证在印刷过程中能把浆料刮干净 ? 印刷间距:保证网板与硅片之间有一定的距离,保证在印刷后网板的回弹。 ? 印刷速度:印刷速度决定了整线的产量, 但也不能过快。因为浆料在印刷时会滚动运动并产生两种力, 一个反作用力和一个朝网板&朝刮刀的上下力, 速度越大,力越大;从而浆料刮到硅片的量也会加大。 网板张力 ? 网板的张力对印刷的质量有很大的影响(如刮不干净浆料,碎片 ? 网板的张力在新的时候最大,随着印刷次数的增加,网板张力程线性下降 ? 随着网板张力的下降, 在不改变其它印刷参数的情况下, 最明显的就是刮不干净浆料。在加大压力后能把浆料收干净, 但因为网板张力减小, 加大的印刷压力就可能全部加到硅片上,从而导致碎片或隐裂。 印刷过程中碎片产生的原因

? 硅片在印刷的过程中受到压力过大, 从而造成碎片 (试想如果没外加压力, 硅片在印刷台面是不会碎的 ? 网板张力改变时, 未改变间距, 只加大压力, 硅片可能因为承受压力过大而碎片 ? 前段刮刀胶条不平,造成硅片背极不平,在印刷栅线时碎片 ? 台面不平(或不干净 , 清理网版与台面上的杂物 , 更换台面纸 . 印刷参数 ? Pressure (印刷压力 Snap-Off (印刷间距 Printing Speed (印刷速度 Down-Stop Position (印刷时刮刀下降高度 参数相互关系 ? 压力与间距:压力越大时,间距也大;因为压力大时,刮刀与网板接触的地方凸出来也多,间距小的话,硅片承受的压力加大,碎片的概率会加大。两个参数当中的一个改变 , 另外一个不改 , 就可能加大硅片碎的可能性或影响印刷质量 ? 印刷速度影响到产能 , 同时也影响到印刷到硅片浆料的多少 参数的调整 ? 先把印刷速度改小,以方便在调试时能很好的观察(如印刷速度为 50mm/s。 ? 先设定印刷间距:印刷间距以浆料能很好的印刷到硅片为宜,无粘片和虚印。(推荐为:1500+300um ? 在间距定下后, 设定印刷压力。压力由小到大慢慢加, 加到在印刷时浆料能收干净为宜。

常用塑料的注塑工艺参数

常用塑料的注塑工艺参数 一、高密度聚乙烯(HDPE) 料筒温度喂料区30~50℃(50℃) 区1 160~250℃(200℃) 区2 200~300℃(210℃) 区3 220~300℃(230℃) 区4 220~300℃(240℃) 区5 220~300℃(240℃) 喷嘴220~300℃(240℃) 括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件流长与壁 厚之比为50:1到100:1 熔料温度220~280℃ 料筒恒温220℃ 模具温度20~60℃ 注射压力具有很好的流动性能,避免采用过高的注射压力80~140MPa(800~1400bar); 一些薄壁包装容器除外可达到180MPa (1800bar) 保压压力收缩程度较高,需要长时间对制品进行保压,尺寸精度是关键因素,约为注射压力的30%~60% 背压5~20MPa(50~200bar);背压太低的地方易造成制品重量和色散不均 注射速度对薄壁包装容器需要高注射速度,中等注射速度往往比较适用于其它类的塑料制品 螺杆转速高螺杆转速(线速度为1.3m/s)是允许的,只要满足冷却时间结束前就完成塑化过程就可以;螺杆的扭矩要求为低 计量行程0.5~4D(最小值~最大值);4D的计量行程为熔料提供足够长的驻留时间是很重要的 残料量2~8mm,取决于计量行程和螺杆直径 预烘干不需要;如果贮藏条件不好,在80℃的温度下烘干1h就可以 回收率可达到100%回收 收缩率 1.2~2.5%;容易扭曲;收缩程度高;24h后不会再收缩(成型后收缩) 浇口系统点式浇口;加热式热流道,保温式热流道,内浇套;横截面面积相对小,对薄截面制品已足够 机器停工时段无需用其它材料进行专门的清洗工作;PE耐温升 料筒设备标准螺杆,标准使用的三段式螺杆;对包装容器类制品,混合段和切变段几何外形特殊(L:D=25:1),直通喷嘴,止逆阀 二、聚丙烯(PP) 料筒温度喂料区30~50℃(50℃) 区1 160~250℃(200℃) 区2 200~300℃(220℃) 区3 220~300℃(240℃) 区4 220~300℃(240℃) 区5 220~300℃(240℃) 喷嘴220~300℃(240℃)

DTY生产工艺与参数设定

DTY生产工艺及参数设定 DTY是有POY(预取向丝)通过假捻而形成的,我们公司的DTY设备是TMT公司的ATF-1500SZ加弹机,加弹机是由拉伸变形区、定型区、卷绕区所组成的。整个流程是:原丝架→切丝器→第一罗拉(FR1)→生头杆导丝器→第一加热箱(H1)→冷却板→假捻器→力器→第二罗拉(FR2)→网络喷嘴→第二罗拉A(FR2A)→第二加热箱(H2)→第三罗拉(FR3)→探丝器(感应器)→上油轮→卷绕成型装置。 一、设备简述 第一罗拉为喂入罗拉,其装置有两种组成方式。一个是喂丝罗拉和皮圈,另一个是喂丝罗拉和皮辊,皮圈的优点接触面积大、握持力大、可减少轴承磨损,其缺点是易损坏。而皮辊的优点是耐磨且可多次使用,其缺点是握持力不足,须在辊上绕圈弥补。我司设备是由喂丝罗拉和皮辊组成的,在FR2上必须绕两圈,在加工细旦时还需在FR1上绕两圈(移丝间距一般为5-10mm)来弥补力不足。丝条通过第一罗拉到升头杆,升头杆顶部有个止捻器装置,作用是将丝条固定在第一热箱顶部,起到防止丝逃捻或回捻。 第一热箱又叫变形热箱,它是接触式加热方式(与第二热箱不同),其作用是加热丝条呈塑化状态,更容易拉伸变形,它的温度越高蓬松性和卷曲性越好,染色变浅。其长度为2.5m(加弹机分为两种型,“M”型和“V”型,我司的加弹机属于“M”型,而“V”型的长度为2m)。它是由真空密封联苯蒸汽和电加热复合加热。定型区主要是第二热箱又叫定型热箱,是非接触型空气加热,它是由热媒加热的。 第二罗拉A与第三罗拉之间的超喂比,即定型超喂,主要控制丝条在相对松驰状态下定型。 假捻器(叠盘式摩擦假捻器)是整个加弹机的核心部位,它是通过摩擦盘的转向对丝条进行加捻和解捻从而形成一个假捻的作用(我们公司一般做“Z”捻)。一般摩擦盘分软盘(聚氨酯PU盘等)和硬盘(瓷盘、砂盘等),软盘摩擦系数高、表面柔软、对丝条损伤小、“雪花少”但使用寿命短成本贵;而硬盘与软盘反之。 第三罗拉前方是油轮,作用主要是给低弹丝加上适当的油剂,使它提高丝条的集束性,增加丝条的平滑性,改善丝条的抗静电性与退绕性能。这边再讲一下上油率,所上的油剂量占纤维总重量的比例,一般在2%左右,我司DTY油剂一般用ATY普通油剂,影响其上油率的还有油轮的转速,我们公司一般油轮的转速在0.3rpm-08rpm。卷绕区,卷绕装置的整个过程无需手动操作,其核心在于IAD启动开关,此开关的功能是强制启动挂丝作业。 二、浅谈工艺 工艺条件主要是加工速度(YS)、牵伸比(DR)、速比(D/Y指摩擦盘的表面速度与丝条离开假捻器的速度之比),K值(解捻力与加捻力的比值)以及三个超喂OF2%、OF2A%、OF3%和两个热箱温度第一热箱(H1)、第二热箱(H2). 下图为几个加工条件的关联图:

压铸机工艺参数的设定和调节方法(转载)

第四节工艺参数的设定和调节技能 压铸生产中机器工艺参数的设定和调节直接影响产品的质量。一个参数可能造成产品的多个缺陷,而同一产品的同一缺陷有可能与多个参数有关,要求在试压铸生产中要仔细分析工艺参数的变化对铸件成形的影响。压铸生产厂家通常由专人设定和调节机器参数。下面以力劲机械厂有限公司生产的DCC280卧式冷室压铸机为例,说明压铸生产中主要工艺参数的设定和调节技能。 一、主要工艺参数的设定技能 DCC280卧式冷室压铸机设定的内容及方法如下: (1)射料时间:射料时间大小与铸件壁厚成正比,对于铸件质量较大、压射一速速度较慢且所需时间较长时,射料时间可适当加大,一般在2S以上。射料二速冲头运动的时间等于填充时间。 (2)开型(模)时间:开型(模)时间一般在2S以上。压铸件较厚比较薄的开型(模)时间较之要长,结构复杂的型(模)具比结构简单的型(模)具开型(模)时间较之要长。调节开始时可以略为长一点时间,然后再缩短,注意机器工作程序为先开型(模)后再开安全门,以防止未完全冷却的铸件喷溅伤人。 (3)顶出延时时间:在保证产品充分凝固成型且不粘模的前提下,尽量减短顶出延时时间,一般在0.5S以上。 (4)顶回延时时间:在保证能顺利地取出铸件的前提下尽量减短顶回延时时间,一般在0.5S以上。 (5)储能时间:一般在2S左右,在设定时操作机器作自动循环运动,观察储能时间结束时,压力是否能达到设定值,在能达到设定压力值的前提下尽量减短储能时间。 (6)顶针次数:根据型(模)具要求来设定顶针次数。 (7)压力参数设定 在保证机器能正常工作,铸件产品质量能合乎要求的前提下,尽量减小工作压力。选择、设定压射比压时应考虑如下因素: 1)压铸件结构特性决定压力参数的设定。 ①壁厚:薄壁件,压射比压可选高些;厚壁件,增压比压可选高些。 ②铸件几何形状复杂程度:形状复杂件,选择高的比压;形状简单件,比压低些。 ③工艺合理性:工艺合理性好,比压低些。 2)压铸合金的特性决定压力参数的设定 ①结晶温度范围:结晶温度范围大,选择高比压;结晶温度范围小,比压低些。 ②流动性:流动性好,选择较低压射比压;流动性差,压射比压高些。 ③密度:密度大,压射比压、增压比压均应大;密度小,压射比压、增压比压均选小些。 ④比强度:要求比强度大,增压比压高些。 3)浇注系统决定压力参数的设定 ①浇道阻力:浇道阻力大,主要是由于浇道长、转向多,在同样截面积下、内浇口厚度小产生的,增压比压应选择大些。 ②浇道散热速度:散热速度快,压射比压高些;散热速度慢,压射比压低些。 4)排溢系统决定压力参数的设置 ①排气道分布:排气道分布合理,压射比压、增压比压均选高些。 ②排气道截面积:排气道截面积足够大,压射比压选高些。 5)内浇口速度 要求速度高,压射比压选高些。 (⑥温度 合金与压铸型(模):温差大,压射比压高些;温差小,压射比压低些。 8)压射速度的设定

注塑成型工艺参数说明

注塑成型注塑成型工艺参数工艺参数工艺参数说明说明说明 一.干燥温度 定义:为保证成型质量而事先对聚合物进行干燥所需要的温度 作用:1.去除原料中的水份.2.确保成品质量 设定原则: 1.聚合物不致于分解或结块(聚合) 2.干燥时间尽量短,干燥温度尽量低而不致于影响其干燥效果. 3.干燥温度和时间因不同原料而异. 注:1,A 表示用热风干燥机. 2,D 表示用除湿干燥机. 3,*表示通常不需干燥. 4,**表示干燥依条件类别而定,最好材料供货商确认. 二.料温 定义: 为保证成型顺利进行而设加在料管上之温度. 作用: 保证聚合物塑化(熔胶)良好,顺利充模,成型. 设定原则: (1)不致引起塑料分解碳化. (2)从加料断至喷嘴依次上升. (3)喷嘴温度应比料筒前断温度略低. (4)依材料种类不同而所需温度不同. (5)不至对制品产生坏的质量影响. 三.模温 定义: 制品所接触的模腔表面温度 作用: 控制影响产品在模腔中的冷却速度,以及制品的表观质量. 设定原则: (1)考虑聚合物的性质. (2)考虑制品大小和形状. (3)考虑模具的结构.浇道系统. 四.注射速度 定义: 在一定压力作用下,熔胶从喷嘴注射到模具中的速度 . 作用: (1)注射速度提高将使充模压力提高. (2)提高注射速度可使流动长度增加,制质量量均匀. (3)高速射出时粘度高,冷速快,适合长流程制品. (4)低速时流动平稳,制品尺寸稳定.

设定原则: (1) 防止撑模及避免产生溢边. (2)防止速度过快导致烧焦. (3)保证制品质量的前提下尽量选择高速充填,以缩短成型周期. 五.熔胶速度 定义: 塑化过程中螺杆熔胶时的转速 . 作用: 影响塑化能力,塑化质量的重要参数,速度越高,熔体温度越高,塑化能力越强 . 设定原则: (1)熔胶速度调整时一般由低向高逐渐调整. (2)螺杆直径大于50MM之机台转速应控制在50RPM以下,小于50MM之机台应控制在100RPM以下为宜. 六.射压 定义: 螺杆先端射出口部位发生之最大压力,其大小与射出油缸内所产生油压紧密关连 . 作用: 用以克服熔体从喷嘴--流道--浇口--型腔的压力损失,以确宝型腔被充满,获得所需的制品. 设定原则: (1)必在注塑机的额定压力范围内. (2)设定时尽量用低压. (3)尽量避免在高速时采用高压,以免异常状况发生 七.背压 定义: 塑料在塑化过程建立在熔腔中的压力 . 作用: (1)提高熔体的比重. (2)使熔体塑化均匀. (3)使熔体中含气量降低.提高塑化质量 设定原则: (1)背压的调整应考虑塑料原料的性质. (2)背压的调整应参考制品的表观质量和呎寸精度 八.锁模压力 定义: 合模系统为克服在注射和保压阶段使模具分开的胀模力而施加在模具上的闭紧力. 作用: (1)保证注射和保压过程中模具不致于被胀开 (2)保证产品的表观质量. (3)保证产品的尺寸精度. 设定原则: (1)合模力的大小依据产品的大小,机台的大小而定. (2)一般来说,在保证产品不出毛头的情况下,合模力 要求越小越好. (3)合模力的设定不应超出机台之额定压力.

焊接工艺参数设定流程

5#闪光焊机工艺参数调整流程图 夹紧长度设定 第一步:将调节开关置于设置档上 第二步:缓慢调节夹紧长度(名义链 径)旋钮,当显示屏显示规定值即可 第三步:扳动向前开关,将其打到 向前位置 第四步:缓慢调节最终长度旋钮, 当显示屏显示规定值即可 闪光长度设定 第一步:扳动返回开关,将其打到 返回位置 第二步:将调节档置于闪光长度档 第三步:扳动向前开关,将其置于 向前位置,并调整零位 第四步:缓慢调节闪光长度旋钮,调 到规定(0.188*名义链径)值即可 第五步:扳动返回开关,将其置于 返回位置 第六步:将调节档置于设置档位 上,参数调整完毕

参数控制面板图片说明 顶锻电流周波 数调节旋钮 焊接等分时间 调节旋钮 冷却时间调节 旋钮 参数显示屏 参数调节档位 旋钮 向前及返回开关 零位调节旋钮 滑动速度已设置 好,无须调节 闪光长度调 节旋钮 夹紧长度调 节旋钮 最终长度调 节旋钮 需设置 需设置 需设置 需设置 均衡时间显示灯 极限电流电位调节器

当焊接变压器电压档发生变动时,极限电流就要作相应的调整,以保证产品的焊接质量 具体调节方法如下: 1. 将焊接与加热转换档转到加热档位上。 2. 选择一已编好的冷环。 3. 将环一侧置于电极上,踏下夹紧开关 4. 用手顺时针及逆时针转动极限电流电位调器,同时观察均衡时间指示灯,不断来回转动电位器时,此灯应不断闪烁 5. 待环背温度达到编环温度时,约700左右,此时应停止加热,同时按下焊接停止开关 6. 观察极限电流电位调节器上的刻度,在此基础上加上此数值的20%作为修正值,并修正电位器读数,同时将电位器刻度调整到修正后刻度即可。 焊接与加热转换档 焊接与拉环转换档 焊接启动开关 焊接停止开关 电极夹紧与复位转换档 应急按钮

制定合理的剑杆织机工艺参数

制定合理的剑杆织机工艺参数应用到牛津纺生产织造的探讨 武汉裕大华集团股份有限公司张颜新 机织物是由经纬纱在织机上交织布而形成的,在织造过程中经纱与经纱之间,经纱与纬纱之间,经纬纱与织机上各种物件之间反复发生着纵向,横向的磨擦和曲折。为了使纱线有足够的强度,耐磨性和弹性,确保纱线在织造过程中不致因上述各种破坏力的作用而发生断裂,为了使纱线减少疵点,提高光洁度,以确保织造生产效率,获得优质的产品,为了增加纱线的卷绕伸长,利于连续生产必须对经纬纱进行前准备,以达到适应织机生产的工艺调整。 剑杆织机在完成经纬纱线的交织,始终由五大运动完成,分别是开口、引纬、打纬、送经、卷取。 1、开口机构是由电子提花龙头或电子多臂机完成 2、引纬是四连杆机构或独特的螺旋推进式引纬方式,使纬纱的加速度控制在最小范围,最低限度减少对纬纱的伤害。 3、打纬是采用CAM BOX方式,独立的共轭凸轮或双侧共轭凸轮,使打纬力更大,震动更小,维护更方便。 4、送经和卷取采用的无刷异步伺服电机,采用微中心电脑控制,可以使经轴由满轴到完轴经纱张力的恒定完美控制。 基于前面对剑杆织机的认识,如何正确选择上机工艺参数?一、送纬剑与接纬剑交接时纬纱时间配合 送、接纬剑要实现准确,平稳的交接纬纱应满三个条件 a.送纬剑和接纬剑钳口部分的位移应有适当的重叠(冲程)区段。 b.两剑交接时,送进足,接出慢,应有适当的转角差。 c.交接纬纱过程中,纬纱受到来自接纬剑钳口的冲击要尽可能小。为了满足以上三条,一般接纬剑进入时间早于送剑进入时间3°~5°,这样安排的优点是接纬时两剑相对运动速度较小,纬纱保持较大的紧张状态,有利于增加接纬的可靠性。如果待送纬剑退剑时交接纬纱就会因为纬纱松弛而引起交接失误。一般送纬剑进梭口的时间在55°~75°接纬剑出梭口时间为290°~305°之间为较理想值区间。 二、开口时间 从工艺理论上讲,开口早,打纬时梭口开得大,经纱张力也大,打纬区小,经纱对纬纱的交叉包围角大,有利于构成紧密丰满的织物;开口迟打纬后经纱对纬纱的抱合力小,钢筘对经纱的摩擦亦小,断头减小,但此时纬纱易于反拔后退,使织物表面稀疏,出现上、下层经纱张力差异小,上层经纱不易作侧向移动而产生筘痕、方眼,对织物外观质量和物理性能均有一定影响。 由于剑杆引纬的特殊性,普遍存在一个经纱对剑头的挤压度问题。所以对布面丰满和纬缩需要考虑外,更重要的是考虑经纱对剑头剑带及导剑钩的挤压和磨损。故剑杆织机开口时间较迟,一般配置在主轴转角305°~330°之间,这是因为剑杆织机采用两侧进剑中央交接,然后退剑的二次运动,使经纱在引纬过程中受剑头进剑和退剑时两次摩擦,特别是在退剑时,经纱对剑头的挤压约占织机引纬过程的70%左右,所以开口时间在305°~330°之间选择。 三、上机张力 上机张力是指综平时经纱的静态张力,其大小对经纱断头率,梭口的清晰程度,打纬顺利与否,织物外观效应都产生显著影响。它是贯穿整个织造工程的工艺参数。剑杆织机梭口一般采用“小梭口、大张力”。 上机张力对经纱断头率影响较大,随着上机张力有逐渐增大,开始阶段,由于开口清晰

280T力劲压铸机工艺参数设定和调节技能

?280T力劲压铸机工艺参数设定和调节技能 ?发布时间:2013-7-8 11:23:07 来源:互联网文字【大中小】 ? 工艺参数的设定和调节技能 压铸生产中机器工艺参数的设定和调节直接影响产品的质量。一个参数可能造成产品的多个缺陷,而同一产品的同一缺陷有可能与多个参数有关,要求在试压铸生产中要仔细分析工艺参数的变化对铸件成形的影响。压铸生产厂家通常由专人设定和调节机器参数。下面以力劲机械厂有限公司生产的DCC280卧式冷室压铸机为例,说明压铸生产中主要工艺参数的设定和调节技能。 一、主要工艺参数的设定技能 DCC280卧式冷室压铸机设定的内容及方法如下: (1)射料时间:射料时间大小与铸件壁厚成正比,对于铸件质量较大、压射一速速度较慢且所需时间较长时,射料时间可适当加大,一般在2S以上。射料二速冲头运动的时间等于填充时间。 (2)开型(模)时间:开型(模)时间一般在2S以上。压铸件较厚比较薄的开型(模)时间较之要长,结构复杂的型(模)具比结构简单的型(模)具开型(模)时间较之要长。调节开始时可以略为长一点时间,然后再缩短,注意机器工作程序为先开型(模)后再开安全门,以防止未完全冷却的铸件喷溅伤人。 (3)顶出延时时间:在保证产品充分凝固成型且不粘模的前提下,尽量减短顶出延时时间,一般在0.5S 以上。 (4)顶回延时时间:在保证能顺利地取出铸件的前提下尽量减短顶回延时时间,一般在0.5S以上。 (5)储能时间:一般在2S左右,在设定时操作机器作自动循环运动,观察储能时间结束时,压力是否能达到设定值,在能达到设定压力值的前提下尽量减短储能时间。 (6)顶针次数:根据型(模)具要求来设定顶针次数。 (7)压力参数设定 在保证机器能正常工作,铸件产品质量能合乎要求的前提下,尽量减小工作压力。选择、设定压射比压时 应考虑如下因素: 1)压铸件结构特性决定压力参数的设定。 ①壁厚:薄壁件,压射比压可选高些;厚壁件,增压比压可选高些。 ②铸件几何形状复杂程度:形状复杂件,选择高的比压;形状简单件,比压低些。 ③工艺合理性:工艺合理性好,比压低些。 2)压铸合金的特性决定压力参数的设定 ①结晶温度范围:结晶温度范围大,选择高比压;结晶温度范围小,比压低些。 ②流动性:流动性好,选择较低压射比压;流动性差,压射比压高些。 ③密度:密度大,压射比压、增压比压均应大;密度小,压射比压、增压比压均选小些。 ④比强度:要求比强度大,增压比压高些。 3)浇注系统决定压力参数的设定 ①浇道阻力:浇道阻力大,主要是由于浇道长、转向多,在同样截面积下、内浇口厚度小产生的,增压比 压应选择大些。 ②浇道散热速度:散热速度快,压射比压高些;散热速度慢,压射比压低些。

注塑成型工艺流程及工艺参数

注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。 在保压阶段,由于压力相当高,塑料呈现部分可压缩特性。在压力较高区域,塑料较为密实,密度较高;在压力较低区域,塑料较为疏松,密度较低,因此造成密度分布随位置及时间发生变化。保压过程中塑料流速极低,流动不再起主导作用;压力为影响保压过程的主要因素。保压过程中塑料已经充满模腔,此时逐渐固化的熔体作为传递压力的介质。模腔中的压力借助塑料传递至模壁表面,有撑开模具的趋势,因此需要适当的锁模力进行锁模。涨模力在正常情形下会微微将模具撑开,对于模具的排气具有帮助作用;但若涨模力过大,易造成成型品毛边、溢料,甚至撑开模具。因此在选择注塑机时,应选择具有足够大锁模力的注塑机,以防止涨模现象并能有效进行保压。 3.冷却阶段 在注塑成型模具中,冷却系统的设计非常重要。这是因为成型塑料制品只有冷却固化到一定刚性,脱模后才能避免塑料制品因受到外力而产生变形。由于冷却时间占整个成型周期约70%~80%,因此设计良好的冷却系统可以大幅缩短成型时间,提高注塑生产率,降低成本。设计不当的冷却系统会使成型时间拉长,增加成本;冷却不均匀更会进一步造成塑料制品的翘曲变形。 根据实验,由熔体进入模具的热量大体分两部分散发,一部分有5%经辐射、对流传递到大气中,其余95%从熔体传导到模具。塑料制品在模具中由于冷却水管的作用,热量由模腔中的塑料通过热传导经模架传至冷却水管,再通过热对流被冷却液带走。少数未被冷却水带走的热量则继续在模具中传导,至接触外

相关主题