搜档网
当前位置:搜档网 › 温度测量仪表

温度测量仪表

温度测量仪表
温度测量仪表

过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。

温度仪表通常分接触式测量仪表与非接触式测量仪表,接触式测量仪表通常为:热电偶、热电阻、双金属温度计、就地温度显示仪等。非接触式测量仪表通常为温度记录仪、温度巡检仪、温度显示仪、温度调节仪、温度变送器等。

3.温度测量仪表的具体介绍

3.1温度测量仪表的构成

一般的温度测量仪表都有检测和显示两个部分。在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。

3.2温度测量仪表的分类

按测量方式,温度测量仪表可分为接触式和非接触式两大类。按接触式温度测量仪表一般有热电偶、热电阻、双金属温度计等,非接触式一般有远红外测温仪等。具体分类如下:

测量时,其检测部分直接与被测介质相接触的为接触式温度测量仪表;非接触温度测量仪表在测量时,温度测量仪表的检测部分不必与被测介质直接接触,因此可测运动物体的温度。例如常用的光学高温计、辐射温度计和比色温度计,都是利用物体发射的热辐射能随温度变化的原理制成的辐射式温度计。

按其工作原理可以分下列几种类型。 (1)直读式物位仪表这类仪表主要有玻璃管液位计、玻璃板液位计等。它们是利用连通器的原理工作的。 (2)差压式物位仪表这类仪表又可分为压力式物位仪表和差压式物位仪表。它们是利 用液柱或物位堆积对某定点产生压力的原理而工作的。 (3)浮力式物位仪表这类仪表又可分为浮子带钢丝绳或钢带的、浮球带杠杆的和沉筒 式的几种。它们是利用浮子的高度随液位变化而改变或液体对浸沉于液体中的浮子(或沉筒)的浮力随液位高度而变化的原理来工作的。 (4)电磁式物位仪表这类仪表可分为电阻式(即电极式)、电容式和电感式等几种。它们是把物位的变化转换为一些电量的变化,通过测出测温仪表 接触式 非接触式

膨胀式 压力表式 热电阻式: 热电偶式: Pt10、Pt100 B 、S 、K 、E 、

T 液体膨胀式: 固体膨胀式: 水银温度计

双金属温度计

光学高温计 辐射高温计 比色高温计

这些电量的变化来测知物位的。另外,还有利用压磁效应工作的物位仪表。 (5)核辐射式物位仪表这类仪表是利用核辐射透过物料时,其强度随物质层的厚度而变化的原理而工作的,目前应用较多的是7射线。 (6)声波式物位仪表这类仪表可以根据它的工作原理分为声波遮断式、反射式和阻尼式几种。它们的原理是:由于物位的变化引起声阻抗的变化、声波的遮断和声波反射距离的不同,测出这些变化就可以测知物位。 (7)光学式物位仪表这类仪表是利用物位对光波的遮断和反射原理而工作的。它利用的光源可以是普通白炽灯光,也可以是激光。

由于电子器件的发展,便携式数字温度计已逐渐得到应用。它配有各种样式的热电偶和热电阻探头,使用比较方便灵活。便携式红外辐射温度计的发展也很迅速,装有微处理器的便携式红外辐射温度计具有存贮计算功能,能显示一个被测表面的多处温度或一个点温度的多次测量的平均温度、最高温度和最低温度等。

此外,现代还研制出多种其他类型的温度测量仪表,如用晶体管测温元件和光导纤维测温元件构成的仪表;采用热象扫描方式的热象仪,可直接显示和拍摄被测物体温度场的热象图,可用于检查大型炉体、发动机等的表面温度分布,对于节能非常有益;另外还有利用激光,测量物体温度分布的温度测量仪器等。

3.3温度测量仪表的特点

特点:通常来说接触式测温仪表比较简单、可靠,测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,帮需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。

非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。

4.温度测量仪表的测量方法

4.1热电阻温度仪表

热电阻温度计的原理是利用导体或半导体的电阻随温度变化这一特性。热电阻温度计的主要优点有:测量精度高,复现性好;有较大的测量范围,尤其是在低温方面;易于使用在自动测量中,也便于远距离测量。同样,热电阻也有缺陷,在高温(大于850℃)测量中准确性不好;易于氧化和不耐腐蚀。

目前,用于热电阻的材料主要有铂、铜、镍等,采用这些材料主要是它们在常用温度段的温度与电阻的比值是线性关系,我们这里主要介绍铂电阻温度计。

铂是一种贵金属,它的物理化学性能很稳定,尤其是耐氧化能力很强,它易于提纯,有良好的工艺性,可以制成极细的铂丝,与铜,镍等金属相比,有较高的电阻率,复现性高,是一种比较理想的热电阻材料,缺点是电阻温度系数较小,在还原介质中工作易变脆,价格也较贵。铂的纯度通常用百度电阻比来表示: W(100)=R100/R0 R100表示100℃时的电阻值;R0表示0℃时的电阻值

根据IEC标准,采用W(100)=1.3850 初始电阻值为R0=100Ω(R0=10Ω)的铂电阻为工业用标准铂电阻,R0=10Ω的铂电阻温度计的阻丝较粗,主要应用于测量600℃以上的温度。铂电阻的电阻与温度方程为一分段方程:

Rt=R0[1+At+Bt2+C(t-100℃)t3] t 表示在-200~0℃

Rt=R0(1+At+Bt2) t表示在0~850℃

解此方程,则可根据电阻值已知温度值,但实际工作中,我们可以查热电阻分度表来根据电阻值确定温度值。

根据标准规定,铂热电阻分为A级和B级,A级测温允许误差±(0.15℃+0.002|t|), B级测温允许误差±(0.3℃+0.005|t|)。

现场使用的热电阻一般都是铠装热电阻,它是由热电阻体、绝缘材料、保护管组成,热电阻体和保护管焊接一起,中间填充绝缘材料,这样能够很好的保护热电阻体,耐冲击,耐震,耐腐蚀。

三线制铂热电阻测量方法:

铂热电阻有两线制,三线制,四线制几种,两线制在测量中误差较大,已不使用,现在工业用一般是三线制的,实验室用一般为四线制。这里主要介绍下三线制铂热电阻的接线。如下图2所示,三线制铂热电阻是在电阻的a端并联一个c端,从而实现电阻引出a,b,c三个接线端子,这样,由b导线引入的测量导线本身的电阻,可以由c导线来补偿,使引线电阻不随温度变化而引入的引线电阻误差的影响减小很多。在秦山二期使用的三线制伯热电阻,在二次仪表中,均有可变阻值的电桥,根据所配合的铂热电阻的量程不同,可以对二次仪表的电桥中的铂热电阻进行微调,能进行更精确的测量。

4.2 热电偶温度仪表

热电偶温度计是利用热电效应来测量温度的,热电效应:两种不同材料的导体组成一个回路时,如果两端结点温度不同,则回路中就将产生一定大小的电流,这个电流的大小与导体材料以及结点温度有关。两个结点一个为T端,测量端,一个为T0端,参比端,在实际测量中,热电偶产生的毫伏信号要用较精密的毫伏表或I/O卡件测量。热电偶工作原理如图所示:

图4-2热电偶原理简图

当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,并规定在冷端,当电流由A流向B时,称A为正极,B为负极。

最新5温度测量仪表汇总

5温度测量仪表

第五章 温度测量仪表 第一节 概述 在化工生产中温度是个最常见和非常重要的物理参数。由于物体的很多物理及化学性质都与温度有关,很多生产过程都必须在适当的温度下才能进行,因此,对温度进行精确的测量和控制十分重要。 一、 概念 1、 什么是温度? 温度是反映物体冷热程度的一个状态参数,也可以说是对物体冷 热程度的一种度量。 2、 温标:是温度的数值表示方法,是温度的标尺。常用温标有摄氏温 标(℃)、华氏度(℉)和凯氏温标(K )三种,且℃=5/9 (℉- 32);℉=9/5 ℃+32;℃=K-273.15。 二、测温仪表的分类 测温仪表根据其在使用时感温元件是否与被测介质直接接触,可分为接触式和非接触式两大类: 第二节 热电阻 热电阻温度计的测温原理是根据导体(或半导体)的电阻值随温度变化而变化的性质,再用显示仪表把电阻值的变化显示出来。 测温仪 接触非接触式 膨胀压力表热电阻热电偶Pt10、B 、S 、K 、液体膨胀固体膨胀水银温度计 双金属温度光学高温辐射高温比色高温

工业使用热电阻可检测-200~+500℃范围的温度,其使用特点是:测量精度高,尤其适用于低温测量;常用热电阻有铂、铜热电阻。 一、热电阻的材料 用作热电阻的材料必须具有以下性质: ①具有较大的电阻温度系数;②电阻率要大;③电阻与温度近于线性关系;④热容量 小;⑤物理化学性质稳定;⑥易加工、复制性强,价格便宜。 二、铂热电阻。 1、铂的纯度:是用电阻比R100/R0来表示;R100是铂在标准大气压下, 水的沸点时阻值;R0是铂在水三相点的电阻值。 2、连接方式:采用三线制连接,目的是在与电桥构成测温仪表时,可 从减小一、二次仪表间连接导线因环境温度变化而引起的测量误 差。 三、热电阻的测温原理。 热电阻阻值随温度的变化关系式:R t=R0〔1+∝0(t-t0)〕; R0—温度为t0时的电阻值;∝0—温度为t0时的电阻温度系数。 热电阻测量的温度的变化,通过测量电路(平衡电桥)转换成相应的电压信号,经放大器放大后,指示或记录被测介质的温度。 第三节热电偶 热电偶温度计使用范围广,可以完成-100~1600℃范围内的温度测量,且便于远距离传送与集中检测。 一、测温原理: E AB(T,T0)=E AB(T,0)-E AB(T0,0)

温度常用测量方法及原理

温度常用测量方法及原理 (1)压力式测温系统是最早应用于生产过程温度测量方法之一,是就地显示、控制温度应用十分广泛的测量方法。带电接点的压力式测温系统常作为电路接点开关用于温度就地位式控制。 压力式测温系统适用于对铜或铜合金不起腐蚀作用场合,优点是结构简单,机械强度高,不怕振动;不需外部电源;价格低。缺点是测温范围有限制(-80~400℃);热损失大,响应时间较慢;仪表密封系统(温包,毛细管,弹簧管)损坏难以修理,必须更换;测量精度受环境温度及温包安置位置影响较大;毛细管传送距离有限制。 (2)热电阻热电阻测量精度高,可用作标准仪器,广泛用于生产过程各种介质的温度测量。优点是测量精度高;再现性好;与热电偶测量相比它不需要冷点温度补偿及补偿导线。缺点是需外接电源;热惯性大;不能使用在有机械振动场合。 铠装热电阻将温度检测元件、绝缘材料、导线三者封焊在一根金属管内,它的外径可以做得很小,具有良好的力学性能,不怕振动。同时,它具有响应快,时间常数小的优点。铠装热电阻可制成缆状形式,具有可挠性,任意弯曲,适应各种复杂结构场合中的温度测量。 (3)双金属温度计双金属温度计也是用途十分广泛的就地温度计。优点是结构简单,价格低;维护方便;比玻璃温度计坚固、耐振、耐冲击;示值连续。缺点是测量精度较低。 (4)热电偶热电偶在工业测温中占了很大比重。生产过程远距离测温大多使用热电偶。优点是体积小,安装方便;信号远传可作显示、控制用;与压力式温度计相比,响应速度快;测温范围宽;测量精度较高;再现性好;校验容易;价

低。缺点是热电势与温度之间是非线性关系;精度比电阻低;在同样条件下,热电偶接点易老化。 (5)光学高温计光学高温计结构简单、轻巧、使用方便,常用于金属冶炼、玻璃熔融、热处理等工艺过程中,实施非接触式温度测量。缺点是测量靠人眼比较,容易引入主观误差;价格较高。 (6)辐射高温计辐射高温计主要用于热电偶无法测量的超高温场合。优点是高温测量;响应速度快;非接触式测量;价格适中。缺点是非线性刻度;被测对象的辐射率、辐射通道中间介质的吸收率会对测量造成影响;结构复杂。(7)红外测温仪(便携式)特点是非接触测温;测温范围宽(600~1800℃ /900~2500℃);精度高示值的1%+1℃;性能稳定;响应时间快(0.7s);工作距离大于0.5m。

5温度测量仪表

第五章 温度测量仪表 第一节 概述 在化工生产中温度是个最常见和非常重要的物理参数。由于物体的很多物理及化学性质都与温度有关,很多生产过程都必须在适当的温度下才能进行,因此,对温度进行精确的测量和控制十分重要。 一、概念 1、 什么是温度? 温度是反映物体冷热程度的一个状态参数,也可以说是对物体冷热程度的一种度量。 2、 温标:是温度的数值表示方法,是温度的标尺。常用温标有摄氏温标(℃)、 华氏度(℉)和凯氏温标(K )三种,且℃=5/9 (℉-32);℉=9/5 ℃+32;℃=K-273.15。 二、测温仪表的分类 测温仪表根据其在使用时感温元件是否与被测介质直接接触,可分为接触式和非接触式两大类: 第二节 热电阻 热电阻温度计的测温原理是根据导体(或半导体)的电阻值随温度变化而变化的性质,再用显示仪表把电阻值的变化显示出来。 工业使用热电阻可检测-200~+500℃范围的温度,其使用特点是:测量精度高,尤其适用于低温测量;常用热电阻有铂、铜热电阻。 一、热电阻的材料 用作热电阻的材料必须具有以下性质: ①具有较大的电阻温度系数;②电阻率要大;③电阻与温度近于线性关系;④热容量小;⑤物理化学性质稳定;⑥易加工、复制性强,价格便宜。 二、铂热电阻。 1、 铂的纯度:是用电阻比R 100/R 0来表示;R 100是铂在标准大气压下,水的沸点 时阻值;R 0是铂在水三相点的电阻值。 2、 连接方式:采用三线制连接,目的是在与电桥构成测温仪表时,可从减小一、 二次仪表间连接导线因环境温度变化而引起的测量误差。 三、热电阻的测温原理。 热电阻阻值随温度的变化关系式:R t =R 0〔1+∝0(t-t 0)〕; R 0—温度为t 0时的电阻值;∝0—温度为t 0时的电阻温度系数。 测温仪表 接触式 非接触式 膨胀式 压力表式 热电阻式: 热电偶式: Pt10、Pt100 B 、S 、K 、E 、T 液体膨胀式: 固体膨胀式: 水银温度计 双金属温度计 光学高温计 辐射高温计 比色高温计

常用温度测量仪表分类

温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠,测量精度较高;但受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 按工作原理分为膨胀式、电阻式、热电式,辐射式。 玻璃管温度计是根据液体热膨胀原理测温,双金属温度计是根据固体热膨胀原理测温,热电阻根据热阻效应原理测温,热电偶根据热电效应原理测温,辐射高温计根据热辐射原理测温。 一、热电偶 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高、热惯性小。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。 ④输出信号为电信号,便于远传。 1.热电偶测温基本原理

将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在 回路中形成一个电流,这种现象称为热电效应。热电偶就是利用这一效应来工 S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 工业用热电偶的测温范围见下表: 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃,B偶不用补偿导线,用普通的屏蔽线。

温度测量仪表检修规程

温度测量仪表检修规程 1.围 本规程给出了温度测量系统一次、二次测量设备及氧化锆测量系统的检修工艺、检修方法,使用于华润热电生产现场的温度测量元件、仪表和回路的现场维护、检修。 2. 热电偶的检修 2.1 检修项目 2.1.l 清扫接线端子盒,及套管外部灰尘、锈垢。 2.1.2 检查绝缘、电极和接线情况。 2.1.3 热偶工作端清理、检查、焊接。 2.1.4 热电偶的校验。 2.1.5 保护套管检查。 2.2 技术要求和质量标准 2.2.1 热偶套管、端子盒部和外部不得有灰垢,接线端子螺丝密封圈齐全完好、紧固。 2.2.2 在环境温度为(5~35)℃,相对湿度不大于85%时,非接壳式热电偶的热偶丝对套管的绝缘电阻不小于5M--(250V摇表)。 2.2.3 新制作的热电偶电极直径均匀、平直、无裂纹、瓷套管孔光滑。工作端绞接成麻花状,其长度为电极直径的4~5倍,焊接牢固,表面光滑,无气孔、无夹灰,呈球状。 2.2.4 使用中的热偶工作端应无裂纹、脱层、腐蚀、磨损现象。套管无磨损。 2.2.5 热偶元件的正、负极应有明显标志,并有元件安装位置标牌。 2.2.6 热偶示值检定点一般按表1规定,也可按需要确定检定点,其检定周期随主设备大修进行, 2.2.7 每两次设备大修检查一次保护套管,并进行金相分析。 2.2.8 常用的热电偶的检定误差,应符合表2规定。

2.3 热电偶的焊接和处理方法 2.3.1 参考表3规定鉴别热电偶的损坏程度。 表3 热电偶的损坏程度 2.3.2 普通金属热电偶有轻度损坏时,如果长度允许,可将工作端与自由端对调重新焊接。中度以上损坏应更新:贵金属热电偶有轻度和中度损坏时,应进行清洗退火处理,损坏较严重时应报废。处理过的热电偶必须经过校验,合格后才能使用。 2.3.3 清洗和退火的方法是,首先去掉热电偶上的绝缘瓷管,用(30—50)%的硝酸水溶液,将热电偶洗涤1小时,再用蒸溜水冲洗。然后将热电偶的两根电极分开约30悬空接入电路,调整凋压器使加热电流为10.5 A—11.5A(热电偶直径为0.5mm)。用光学高温计测量热电偶温度,当温度达到1100℃~1150℃时,即用化学纯硼砂块接触热电偶的两个上端。使硼砂溶化成滴、顺热电偶下流,进行多次清洗直至电极表面发白并呈现出金属光泽为止。然后将热电偶放入蒸溜水中煮沸数次,使电极上的硼砂彻底洗净为止。最后将热电偶接入电路,通以10.5~A 11.5A电流,进行1小时退火。 2.3.4 热电偶的焊接。 2.3.4.1 用交流或直流220V或llOV的电流通过石墨电极产生弧光进行焊接。焊接前,先把应焊的一端对齐,并撒上硼砂作保护,置于电弧光中熔化,时间约(4—5)秒。待焊接点成球状后迅速取出,然后用热水洗净电极上的残渣。用此法焊接铂铑一铂时,为避免热电偶中渗进碳,不允许热电偶和石墨电极直接接触。只能在弧光中焊接(以直流电弧焊接较适宜)。 2.3.4.2 气焊。气焊就是一般的乙炔焰等火焰焊接,各种热电偶均可采用。焊时把焊接的热电偶顶端并齐或绞成麻花状,撒上硼砂后用乙炔焰焊接。焊接时必须用焰心加热,这样焊接才能焊的光滑。焊成的热电偶应放在热水中洗干净。 2.3.4.3盐水焊接。这种焊接方法适用于贵金属热电偶的焊接,焊接装置示意如图1所示。焊接前将热电偶的一端并齐或绞成麻花状(长度一般15mm),用带绝缘把手的夹持器夹住热电偶电极,接通电源后,

温度测量仪表标准作业指导书

温度测量仪表标准作业指导书 一、目的 细化和量化温度测量仪表设备的安装、故障排除和校验维护,使温度测量设备正确稳定运行。 二、范围 热电偶、热电阻、双金属温度计等温度测量仪表的安装,维护和故障排除作业 三、作业流程图 四、标准作业指导 第一部分:温度测量仪表安装----以热电偶安装为例 1、作业准备 、作业材料 、热电偶测温原理及结构 1)热电偶测温原理 热电偶测温原理是基于赛贝尔效应,即两种不同成分的导体两端相连构成回路,若两连接端温度不同,则在回路内产生热电流,形成热电势。这个回路产生 的热电势由接触电势和温差电势组成。由于导体材料一定,热电偶产生的热电势 实际上是热电偶两端温度的函数,而且只与温度有关。 2)热电偶的结构 常用的热电偶是由热电极(热偶丝)、绝缘材料(绝缘管)和保护套管等部分构成的。 常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶有国家标准的热电势与温度、容许的误差、标准分度表等。我国从1988年1月1日起,热 电偶全部按IEC国标生产,并指定S、R、B、K、E、J、T7种标准化热电偶为我国 统一设计型热电偶。非标准型热电偶则一般用于特殊场合,国家并没有统一制定 严格的标准。

、热电偶的选型 具体选型流程为:型号的选择—分度号的选择—防爆等级的选—精度等级的选择—安装固定形式的选择—保护管材质的选择—长度或插入深度的选择。 在选择热电偶的时候,要根据所要求的使用温度范围、所需精度、使用气氛、测定对象的性能、响应时间和经济效益等综合因素进行参考。 1)选择测量精度和温度测量范围。 使用温度在1300℃~1800℃,要求精度比较高时,一般选用B型热电偶; 要求精度不高,气氛又允许可用钨铼热电偶,高于1800℃一般选用钨铼热电 偶;使用温度在1000℃~1300℃要求精度又比较高可用S型热电偶和N型热电 偶;在1000℃以下一般用K型热电偶和N型热电偶,低于400℃一般用E型 热电偶;250℃以下及负温测量一般用T型电偶,在低温时T型热电偶稳定而 且精度高。 2)使用环境气氛的选择。 S型、B型、K型热电偶适合于强的氧化和弱的还原气氛中使用,J型和T型热电偶适合于弱氧化和还原气氛,J型和T型热电偶适合于弱氧化和还原气氛,若使 用气密性比较好的保护管,对气氛的要求就不太严格。 3)选择耐久性及热响应性。 线径大的热电偶耐久性好,但响应较慢一些,对于热容量大的热电偶,响应就慢,测量梯度大的温度时,在温度控制的情况下,控温就差。要求响应时间快又要 求有一定的耐久性,选择铠装热电偶比较合适。 4)测量对象的性质和状态对热电偶的选择。 运动物体、振动物体、高压容器的测温要求机械强度高,有化学污染的气氛要求有保护管,有电气干扰的情况下要求绝缘比较高。 2、热电偶的安装 、介质温度的测量 测量介质温度的热电偶通常采用插入式安装方法,配保护套管和固定装置,保护套管直接与被测介质接触。 、基本安装形式 根据固定装置结构的不同,一般采用以下几种安装形式: 1)固定装置为固定螺纹的热电偶,可将其固定在有内螺纹的插座内,它们之间的垫 片作密封用。 2)固定装置采用活动紧固装置,如无固定装置的热电偶(需另外加工一套活动紧固 装置),其安装形式如图2所示。热电偶安装前缠绕石棉绳,由紧固座和紧固螺

测温仪原理

红外测温原理简介 红外测温仪分类 红外测温仪通过物体发出的红外辐射能量大小来确定物体的温度。理论上讲,任何高于绝对零度的物体都能发出红外辐射能量。红外测温仪按测量波长的多少可分为单色测温仪、双色测温仪、多色测温仪。 单色红外测温仪原理 目前市场上的单色测温仪,多为窄波段测温仪。它的测温原理是通过物体某一狭窄波长范围内发生的辐射能量,来决定温度的大小。测温仪测量的是一个区域内的平均温度,测量值受发射率、镜头的污染以及背景辐射的影响。 物体发出辐射能量的大小与发射率有一定关系。发射率越大,物体发出的红外线能量越大。物体的发射率与物体表面的状态有一定关系,表面的粗糙度、亮暗程度、不同材质都会影响发射率。所以在使用单色测温仪时,常会有一张不同材质的发射率表。 (2)双色测温仪原理 不同大气窗口下,选用的探测器类型 窗口1 Si (硅) 窗口2 Ge (锗)InGaAs (铟镓砷) 窗口3 PbS(硫化铅) ExInGaAs (扩展型铟镓砷) 窗口4 PbSe(硒化铅) Thermopile (热电堆) 窗口5 Thermopile (热电堆) 窗口6 发射率变化、镜头的污染以及背景辐射的影响,与波长的选择有关系。选择特殊波长范围 的测温仪,能够使单色测温仪尽量克服传输介质的干扰。比如水蒸汽、各种气体等其它物质的影响。选择短波长测温,可以使红外测温仪受发射率的影响降到最低。长波长测温仪通常用来测量 低于200℃的目标或特殊介质的测量。

双色红外测温原理 比色测温仪又称双色测温仪。它是利用邻近通道两个波段红外辐射能量的比值来决定温度的大小。比值与温度的关系是线性的,这是由探测器的性能决定的。 双色测温仪能够消除水汽、灰尘、检测目标大小变化、部分被遮挡、发射率变化等的影响,双色测温仪测量绝大数灰体材料时不需要修正双色系数,双色测温仪测量一个区域内最高温度的平均值。 思捷光电的双色红外测温仪可以克服严重水汽、灰尘、检测目标大小变化、部分被遮挡、发射率变化等的影响,即使检测信号衰减95%,也不会对测温结果有任何影响。软、硬件设计适用于一百万倍信号动态范围的可靠检测,满足用户对仪器的精度和分辨率等要求。 双色测温仪与单色测温仪比较的优势 双色测温不会随物体表面的状态而变化(表面粗糙度不一样、或表面的化学状态不一样),不会影响测温的准确性,而单色测温仪就会有影响。

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

常用温度测量仪表分类

常用温度测量仪表分类文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠,测量精度较高;但受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 按工作原理分为膨胀式、电阻式、热电式,辐射式。 玻璃管温度计是根据液体热膨胀原理测温,双金属温度计是根据固体热膨胀原理测温,热电阻根据热阻效应原理测温,热电偶根据热电效应原理测温,辐射高温计根据热辐射原理测温。 一、热电偶 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高、热惯性小。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。 ④输出信号为电信号,便于远传。 1.热电偶测温基本原理

将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个电流,这种现象称为热电效应。热电偶就是利用这一效应来工S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 工业用热电偶的测温范围见下表: 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃,B偶不用补偿导线,用普通的屏蔽线。 2、热电偶的结构 一般由热电极、绝缘套管、保护管、接线盒组成。普通型热电偶按其安装时的固定形式可分为固定螺纹连接、固定法兰连接、活动法兰连接无固定装置等多种形式。 热电极:一般金属Φ~,昂贵金属Φ~,长度与被测物质有关,一般为 300~2000mm,通常在350mm左右; 绝缘管:隔离热电偶与被测物,一般在室温下要5MΩ左右; 保护套管:避免受被测介质的化学腐蚀和机械损伤; 接线盒:固定接线座,连接补偿导线。 3、非标准型热电偶 ①铠装热电偶 铠装热电偶将热电偶丝用无机物绝缘及金属套管封装,压实成可挠的坚实组合体,惯性小,挠性、机械强度及耐压性能好,结构坚实可耐强烈的振动和冲击,可用于快速测温或热熔量很小的物体的测温部位,还可用于高压设备测温。 ②钨铼系热电偶

各种温度测量的原理及特点

各种温度测量的原理及特点 刘国兵2012/6/13温度是表示物体冷热程度的物理量,最常见的物理量之一,如:气温、体温、水温、油温、锅炉温度、电器温度等。随着科学技术的发展,对温度的测量也是多种多样,以下分别做简单介绍: 1.酒精温度计 利用酒精热胀冷缩的性质制成的温度计,也是最常见的环境温度计,外壳透明,内部红色酒精温度条;其成本和安全性比水银温度计高,一般测量温度范围是-114℃~ 78℃,可满足测量体温和气温的要求。 2.水银温度计 与酒精温度计类似,利用水银的热胀冷缩制成;水银的冰点是:-39℃,沸点是:356.7℃,其冰点相对酒精要低,所以对于低温环境,北极、珠穆朗玛峰等不适用; 但其较高的沸点,高精度,通常用来做科学实验和测量人体温度等。 3.热电阻温度计 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪,医疗方面也可作为电子体温计。一般测量温度范围为-200℃~ 800℃。

4.热电偶温度计 热电偶是温度测量仪表中常用的测温元件,是由两种不同成分的导体两端接合成回路时,当两接合点热电偶温度不同时,就会在回路内产生热电流。其测温范围一般为-200℃~ 1300℃,特殊情况下可高达-270℃~2800℃。 相对于热电阻,热电偶测量精度一般不如热电阻,但是其测温范围更宽(特别是高温部分),测量速度快,能够远传4-20mA电信号,便于自动控制和集中控制。 5.红外测温仪 红外测温仪采用非接触红外传感技术对目标进行安全、准确、快速、可靠的测量。 红外测温的原理:自然界中一切温度高于绝对零度(-273.15℃)的物体都会辐射出红外线,而辐射出的红外线的能量和温度是成正比的关系,红外测温仪就是通过透镜(如菲涅尔透镜)收集并汇集红外能量到红外传感器上,将其转化成一个电压信号,标定此电压与实际温度的对应关系,即可得到所测目标温度值。 目前红外测温仪及应用系统,已广泛应用于测量机械、化工、陶瓷、轻工、食品、冶金、电力、热处理等行业高温、危险及难以接近物体表面的温度。 6.双色红外测温仪 双色红外测温仪是红外测温仪的一种。即测量物体在两个不同光谱范围内发出的红外辐射亮度并由这两个辐射亮度之比推断物体的温度。 双色红外测温仪工作原理:在选定的两个红外波长和一定带宽下,它们的辐射能量之比随着温度的变化而变化。利用两组带宽很窄的不同单色滤光片,收集两个相近波段内的辐射能量,将它们转化成电信号后再进行比较,最终由此比值确定被测目标的温度。

温度测量仪表标准作业指导书

温度测量仪表标准作业指导书

一、目的 细化和量化温度测量仪表设备的安装、故障排除和校验维护,使温度测量设备正确稳定运行。 二、范围 热电偶、热电阻、双金属温度计等温度测量仪表的安装,维护和故障排除作业 三、作业流程图 四、标准作业指导 第一部分:温度测量仪表安装----以热电偶安装为例 1、作业准备 1.1、作业材料

1.2、热电偶测温原理及结构 1)热电偶测温原理 热电偶测温原理是基于赛贝尔效应,即两种不同成分的导体两端相连构成回路,若两连接端温度不同,则在回路内产生热电流,形成热电势。这个回路 产生的热电势由接触电势和温差电势组成。由于导体材料一定,热电偶产生的热 电势实际上是热电偶两端温度的函数,而且只与温度有关。 2)热电偶的结构 常用的热电偶是由热电极(热偶丝)、绝缘材料(绝缘管)和保护套管等部分构成的。 常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶有国家标准的热电势与温度、容许的误差、标准分度表等。我国从1988年1月1日起, 热电偶全部按IEC国标生产,并指定S、 R、 B、K、 E、 J、 T 7种标准化热 电偶为我国统一设计型热电偶。非标准型热电偶则一般用于特殊场合,国家并 没有统一制定严格的标准。 1.3、热电偶的选型 具体选型流程为:型号的选择—分度号的选择—防爆等级的选—精度等级的选择—安装固定形式的选择—保护管材质的选择—长度或插入深度的选择。 在选择热电偶的时候,要根据所要求的使用温度范围、所需精度、使用气氛、测定对象的性能、响应时间和经济效益等综合因素进行参考。 1)选择测量精度和温度测量范围。 使用温度在1300℃~1800℃,要求精度比较高时,一般选用B型热电偶; 要求精度不高,气氛又允许可用钨铼热电偶,高于1800℃一般选用钨铼热电偶; 使用温度在1000℃~1300℃要求精度又比较高可用S型热电偶和N 型热电偶;在 1000℃以下一般用K型热电偶和N型热电偶,低于400℃一般用E型热电偶; 250℃以下及负温测量一般用T型电偶,在低温时T型热电偶稳定而且精度高。 2)使用环境气氛的选择。

温度测量仪表

过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 温度仪表通常分接触式测量仪表与非接触式测量仪表,接触式测量仪表通常为:热电偶、热电阻、双金属温度计、就地温度显示仪等。非接触式测量仪表通常为温度记录仪、温度巡检仪、温度显示仪、温度调节仪、温度变送器等。

3.温度测量仪表的具体介绍 3.1温度测量仪表的构成 一般的温度测量仪表都有检测和显示两个部分。在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。 3.2温度测量仪表的分类 按测量方式,温度测量仪表可分为接触式和非接触式两大类。按接触式温度测量仪表一般有热电偶、热电阻、双金属温度计等,非接触式一般有远红外测温仪等。具体分类如下: 测量时,其检测部分直接与被测介质相接触的为接触式温度测量仪表;非接触温度测量仪表在测量时,温度测量仪表的检测部分不必与被测介质直接接触,因此可测运动物体的温度。例如常用的光学高温计、辐射温度计和比色温度计,都是利用物体发射的热辐射能随温度变化的原理制成的辐射式温度计。 按其工作原理可以分下列几种类型。 (1)直读式物位仪表这类仪表主要有玻璃管液位计、玻璃板液位计等。它们是利用连通器的原理工作的。 (2)差压式物位仪表这类仪表又可分为压力式物位仪表和差压式物位仪表。它们是利 用液柱或物位堆积对某定点产生压力的原理而工作的。 (3)浮力式物位仪表这类仪表又可分为浮子带钢丝绳或钢带的、浮球带杠杆的和沉筒 式的几种。它们是利用浮子的高度随液位变化而改变或液体对浸沉于液体中的浮子(或沉筒)的浮力随液位高度而变化的原理来工作的。 (4)电磁式物位仪表这类仪表可分为电阻式(即电极式)、电容式和电感式等几种。它们是把物位的变化转换为一些电量的变化,通过测出测温仪表 接触式 非接触式 膨胀式 压力表式 热电阻式: 热电偶式: Pt10、Pt100 B 、S 、K 、E 、 T 液体膨胀式: 固体膨胀式: 水银温度计 双金属温度计 光学高温计 辐射高温计 比色高温计

智能温度测量仪表课程设计报告

课程设计报告 课程:智能测量仪表 题目:智能测量仪表 学生姓名:XXXXXX 专业年级:2009 自动化 指导教师:XXXXXX XXXX 信息与计算科学系

2013年3月25日 智能测量仪表 本次课程设计中智能温度测量仪表所采用的温度传感器为LM35DZ。其输出电压与摄氏温度成线性比例关系,无需外部校准,在0℃~100℃温度范围内精度为0.4℃~±0.75℃。,输出电压与摄氏温度对应,使用极为方便。灵敏度为10.0mV/℃,重复性好,输出阻抗低,电路接口简单和方便,可单电源和正负电源工作。是一种得到广泛使用的温度传感器。 本次课程设计的主要目的在于让学生把所学到的单片机原理、电子线路设计、传感器技术与原理、过程控制、智能仪器仪表、总线技术、面向对象的程序设计等相关专业课程的内容系统的总结,并能有效的使用到项目研发中来,做到学以致用。课程设计的内容主要分为三个部分,即使用所学编程语言(C或者汇编)完成单片机方面的程序编写、使用VB或VC语言完成PC机人机界面设计(也可以用C+API实现)、按照课程设计规范完成课程设计报告。

目录 1.课程设计任务和要求 (3)

1.1 设计任务 (3) 2.2 设计要求 (3) 2.系统硬件设计 (3) 2.1 STC12C5A60S2单片机A/D转换简介…………………………………………… 3 2.2 LM35DZ简介 (7) 2.3 硬件原理图设计 (7) 3.系统软件设计 (10) 3.1 设计任务 (10) 3.2 程序代码 (10) 3.3 系统软件设计调试 (17) 4.系统上位机设计 (18) 4.1 设计任务 (18) 4.2 程序代码 (18) 4.3 系统上位机软件设计调试 (21) 5.系统调试与改善 (22) 5.1 系统调试 (22) 5.2 系统改善 (22) 6.系统设计时常见问题举例与解决办法 (24) 7.总结 (25)

温度测量方法

温度测量方法 2011-04-17 18:47 温度测量方法 我们大家都知道温度是表征物体冷热程度的物理量。而测量温度的标尺是温度计,其按照测量方式可以分为接触式和非接触式两种。 通常来说的接触式测量仪表比较简单、可靠,测量精度高,但是因为测温元件与被测介质需要进行充分的热交换,所以其需要一定的时间才能达到热平衡,所以,存在测温延迟现象,同时受耐高温和耐低温材料的限制,不能应用于这些极端的温度测量。非接触式仪表测温仪是通过热辐射的原理来测量温度的,测温元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体发射率、测量距离、烟尘和水汽等外界因素的影响,其测量误差较大。 下面就简单介绍几种温度计: 1、气体温度计:利用一定质量的气体作为工作物质的温度计。用气体温度计来体现理想气体温标为标准温标。用气体温度计所测得的温度和热力学温度相吻合。气体温度计是在容器里装有氢或氮气(多用氢气或氦气作测温物质,因为氢气和氦气的液化温度很低,接近于绝对零度,故它的测温范围很广),它们的性质可外推到理想气体。这种温度计有两种类型:定容气体温度计和定压气体温度计。定容气体温度计是气体的体积保持不变,压强随温度改变。定压气体温度计是气体的压强保持不变,体积随温度改变。 2、电阻温度计:根据导体电阻随温度而变化的规律来测量温度的温度计。最常用的电阻温度计都采用金属丝绕制成的感温元件,主要有铂电阻温度计和铜电阻温度计,在低温下还有碳、锗和铑铁电阻温度计。精密的铂电阻温度计是目前最精确的温度计,温度覆盖范围约为14~903K,其误差可低到万分之一摄氏度,它是能复现国际实用温标的基准温度计。我国还用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型的温度计。分为金属电阻温度计和半导体电阻温度计,都是根据电阻值随温度的变化这一特性制成的。金属温度计主要有用铂、金、铜、镍等纯金属的及铑铁、磷青铜合金的;半导体温度计主要用碳、锗等。电阻温度计使用方便可靠,已广泛应用。它的测量范围为-260℃至600℃左右。 3、温差电偶温度计:利用温差电偶来测量温度的温度计。将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生。因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计。若在温差电偶的回路里再接入一种或几种不同金属的导线,所接入的导线与接触点的温度都是均匀的,对原电动势并无影响,通过测量温差电动势来求被测的温度,这样就构成了温差电偶温度计。这种温度计测温范围很大。例如,铜和康铜构成的温差电偶的测温范围在200~400℃之间;铁和康铜则被使用在200~1000℃之间;由铂和铂铑合金(铑10%)构成的温差电偶测温可达千摄氏度以上;铱和铱铑(铑50%)可用在2300℃;若用钨和钼(钼25%)则可高达2600℃ 4、高温温度计:是指专门用来测量500℃以上的温度的温度计,有光测温度计、比色温度计和辐射温度计。高温温度计的原理和构造都比较复杂,这里不再讨论。其测量范围为500℃至3000℃以上,不适用于测量低温。 5、指针式温度计:是形如仪表盘的温度计,也称寒暑表,用来测室温,是用金属的热胀冷缩原理制成的。它是以双金属片做为感温元件,用来控制指针。双金属片通常是用铜片和铁片铆在一起,且铜片在左,铁片在右。由于铜的热胀冷缩效果要比铁明显的多,因此当温度升高时,铜片牵拉铁片向右弯曲,指针在双金属片的带动下就向右偏转(指向高温);反之,温度变低,指针在双金属片的带动下就向左偏转(指向低温)。

常用温度测量仪表分类

常用温度测量仪表分类文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠,测量精度较高;但受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测温元件不需与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 按工作原理分为膨胀式、电阻式、热电式,辐射式。 玻璃管温度计是根据液体热膨胀原理测温,双金属温度计是根据固体热膨胀原理测温,热电阻根据热阻效应原理测温,热电偶根据热电效应原理测温,辐射高温计根据热辐射原理测温。 一、热电偶 热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高、热惯性小。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。 ④输出信号为电信号,便于远传。 1.热电偶测温基本原理

将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A 和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个电流,这种现象称为热电效应。热电偶就是利用这一效应来工S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 工业用热电偶的测温范围见下表: 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃,B偶不用补偿导线,用普通的屏蔽线。 2、热电偶的结构 一般由热电极、绝缘套管、保护管、接线盒组成。普通型热电偶按其安装时的固定形式可分为固定螺纹连接、固定法兰连接、活动法兰连接无固定装置等多种形式。 热电极:一般金属Φ~,昂贵金属Φ~,长度与被测物质有关,一般为 300~2000mm,通常在350mm左右; 绝缘管:隔离热电偶与被测物,一般在室温下要5MΩ左右; 保护套管:避免受被测介质的化学腐蚀和机械损伤; 接线盒:固定接线座,连接补偿导线。 3、非标准型热电偶 ①铠装热电偶 铠装热电偶将热电偶丝用无机物绝缘及金属套管封装,压实成可挠的坚实组合体,惯性小,挠性、机械强度及耐压性能好,结构坚实可耐强烈的振动和冲击,可用于快速测温或热熔量很小的物体的测温部位,还可用于高压设备测温。 ②钨铼系热电偶

DSB温度检测仪表数码管显示

目录 第1章绪论 (1) 1.1 选题目的 (1) 1.2 设计要求 (1) 第2章电路结构及工作原理 (2) 2.1 电路方框图 (2) 2.1.1 电路图 (2) 2.1.2 系统流程 (3) 2.2芯片介绍 (5) 2.2.1 DS18B20 (5) 2.2.1.1 DS18B20的工作原理 (5) 2.2.1.2 DS18B20的使用方法 (6) 2.2.2 AT89C51 (8) 2.2.2.1 AT89C51简介 (8) 第3章整机工作原理 (10) 第4章系统调试与分析 (12) 4.1 系统的调试 (12) 4.2系统的分析 (12) 结论 (13) 收获和体会 (14) 致谢 (15) 参考文献 (16) 附录一元件清单 (17)

课程设计任务书 年月日

第1章绪论 1.1 选题目的 随着人们生活水平的不断提高,单片机技术已经普及到我们生活,工作,科研等各个领域。单片机控制无疑是人们追求的目标之一,它所给人带来的方便是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。本文利用单片机结合传感器技术开发设计,把传感器理论与单片机实际应用有机结合,详细地讲述了利用温度传感器DS18B20测量环境温度,设置上下报警温度,当温度不在设置范围内是,可以报警。同时51单片机在现代电子产品中广泛应用以及其技术已经非常成熟,DS18B20可以直接读出被测温度值,而且采用一线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。 1.2 设计要求 (1)设计题目和设计指标 测量温度范围为0-100℃。并通过数码管显示 (2)设计功能 利用DS18B20实现温度采集,并用数码管显示

锅炉附件及安全技术要求——温度测量仪表(四)

https://www.sodocs.net/doc/4f12084130.html,专业的论文在线写作平台 锅炉附件及安全技术要求——温度测量仪表(四) 温度是热力系统的重要状态参数之一。在锅炉和锅炉房热力系统中,给水、蒸汽和烟气等介质的热力状态是否正常,风机和水泵等设备轴承的运行是否良好,都依靠温度测量仪表来进行监视。常用的温度测量仪表是玻璃温度计、压力式温度计、热电偶温度计和光学高温计等多种形式,在工业锅炉中使用最多的是水银玻璃管温度计。压力式温度计,适用于远距离测量非腐蚀性气体蒸汽或液体的温度,热电偶温度计在工业锅炉上常用来测量蒸汽温度、炉膛火焰温度和烟囱内的烟气温度。为了测量蒸汽锅炉的下列温度,应在相应部位装置测温仪表:过热器出口的气温,由几段平行管组成的过热器的每段出口的气温;减温汽的前后气温;铸铁式省煤器出口水温;燃油锅炉空气预热器烟气出口的烟温;再热器和过热器的入口烟温;燃油炉的燃油温度;工作压力大于和等于10MPa的锅筒的上下壁温。在省煤器入口或锅炉的水管道上,应装设温度计插座。热水锅炉的进出水口均应设温度计。表盘式温度计比玻璃管式温度计目视清晰,便于观察。亦可使用压力式温度计,其量程应为正常温度的1.5~2倍。为防止汽化水击现象的发生,锅炉出口应装设超温报警器。测温仪表的校验、维护应符合国家计量部门的规定,装用后每年至少校验一次。为了防止在某些不正常运行状况下出现事故,除安装必需的测量仪表和安全阀外,还必须加装一些自动保护装置,以便出现某些事故苗头时,能及时报警和自动停止运行等。根据《蒸汽锅炉安全技术监察规程》的规定,额定蒸发量大于或等于2t/h的锅炉,应装设高低水位报警器(高、低水位警报信号须能区分)、低水位联锁保护装置;额定蒸发量大于或等于6t/h

温度测量仪表

温度测量仪表 1 温标及其换算 1.填空 1)温度是衡量()的一个物理量。温度不能直接测量,只能通过其他物体()的物理量来间接地进行测量。例如水银的体积(),故可用水银的()来衡量温度。 2)温标是一个量度温度的()。温度规定了温度的读数起点(零点)和测温基本单位。例如摄氏温标规定的读数起点是(),测量的基本单位为()。 3)温标的种类很多,除摄氏温标外,还有()、()、()等。 2.什么是国际实用温标? 3.常用的温标有哪3种?它们之间有何关系? 4.填空 1)摄氏100°C,相当于华氏()°F。 2)绝对温度273.15K,相当于摄氏()°C。 3)摄氏-182.962°C,相当于绝对温度()K。 4)华氏98.6°F,相当于摄氏()°C。 5.选择 1)气、液两相之间的平衡温度称()。 2)固、液两相之间的平衡温度称()。 3)固、液、气三相之间的平衡温度称()。 4)冰和空气饱和水的平衡温度称()。 (熔点,凝固点,融点,沸点,三相点,冰点) 6.填空 1)绝对零度是()°C。 2)水的三相点是()K或()°C。 3)水的冰点是()K或()°C。 4)水的沸点是()K或()°C。 2 热电偶 1.填空 1)在热电偶测温回路中,只要显示仪表和连接导线两端温度相同,热电偶总电势值不会因它们的接入而改变。这是根据()定律而得出的结论。 2)热电偶产生热电势的条件是:();()。 3)热电偶的热电特性由()所决定。热电势的大小与()及()有关,与热偶丝的()和()无关。 2.判断 热电偶的热电势E(200°C,100°C)等于E(100°C,0°C)。

3.为了测量塔壁温度,是否可以把一对热电偶丝分别焊接在塔壁上进行测量(如图1所示)为什么? 图 2 图1 4.求如图2所示的各回路的热电势; 5.在S 、K 、E3种热电偶中,100°C 时的热电势哪种最大?哪种最小? 6.当补偿导线类型和极性混淆不明时如何判别? 7.填空 1)铠装热电偶是把( )、( )和金属套管三者加工在一起的坚实缆状组合体。 2)按热电偶支数分,铠装热电偶有( )和( )两种。 3)铠装热电偶可以做得很细,国产铠装热电偶最细的为( )。 4)最短的铠装热电偶为50mm ,最长的为( )。 8.铠装热电偶有何优点? 9.什么是吹气热电偶?使用中应注意哪些问题/ 0.用热电偶测量多点的平均温度,应如何连接,各热电偶的冷点应如何设置,请用图示并 图3 1加以说明。

相关主题