搜档网
当前位置:搜档网 › (完整word版)遥感影像变化检测.doc

(完整word版)遥感影像变化检测.doc

(完整word版)遥感影像变化检测.doc
(完整word版)遥感影像变化检测.doc

遥感影像变化检测报告

学院:

专业:

指导老师:

小组成员:

2013年 5月

1、遥感影像变化检测的概念

遥感影像变化检测指利用多时相获取的覆盖同一地表区域的遥感影像及其它辅助数据

来确定和分析地表变化。它利用计算机图像处理系统,对不同时段目标或现象状态的变化进

行识别、分析;它能确定一定时间间隔内地物或现象的变化,并提供地物的空间分布及其变化的定性与定量信息。

由此可知,遥感影像变化检测是从不同时期的遥感图像中,定量地分析和确定地物变化的特征和过程。它涉及到变化的类型、分布状况及变化信息的描述,即需要确定变化前后的地物类型、界限和分析变化的属性。变化检测的研究对象为地物,包括自然地物和人造地物,其中人造地物在军事上常被称为目标。描述地物的特性包括:空间分布特性、波谱反射与辐射特性、时相变化特性。遥感影像的变化检测在土地覆盖变化监测、环境变迁动态监测、自

然灾害监测、违章建筑物查处、军事目标打击效果分析以及国土资源调查等方面拥有广泛的

应用价值和商业价值。

变化检测通常包括以下4个方面的内容:

(1)判断是否发生了变化,即确定研究区域内地物是否发生了变化;

(2)标定变化发生的区域,即确定在何处发生了变化,将变化像元与未变化像元区

分开来;

(3)鉴别变化的性质,给出在每个变化像元上所发生变化的类型,即确定变化前后

该像元处的地物类型;

(4)评估变化的时间和空间分布模式。

其中,前两个方面是变化检测所要解决的基本问题,而后两个方面则根据应用要求决定是

否需要做。

2、遥感影像变化检测的三个层次

遥感图像分析过程中通常包括数据层处理、特征层处理和目标层处理三个过程。依据这三个层次划分,可将变化检测分为:像元级变化检测、特征级变化检测和目标级变化检测。

(1)像元级变化检测是指直接在采集的原始图像上进行变化检测。尽管基于像元的变化

检测有它一定的局限性,但由于它是基于最原始的图像数据,能更多地保留图像原有的真实

感,提供其它变化检测层次所不能提供的细微信息,因而目前绝大多数的变化检测方法都是像

元级变化检测。

(2)特征级变化检测是采用一定的算法先从原始图像中提取特征信息,如边缘、形状、

轮廓、纹理等,然后对这些特征信息进行综合分析与变化检测。由于特征级的变化检测对特征进行关联处理,把特征分类成有意义的组合,因而它对特征属性的判断具有更高的可信度

和准确性。但它不是基于原始数据而是特征,所以在特征提取过程中不可避免地会出现信息

的部分丢失,难以提供细微信息。

(3) 目标级变化检测主要检测某些特定对象( 比如道路、房屋等具有明确含义的目标) ,是在图像理解和图像识别的基础上进行的变化检测,它是一种基于目标模型的高层分析方法。

变化检测的三个层次在实现上各有优缺点,在具体的变化检测中究竟检测到哪个层次是

根据任务的需要确定的。像元级的变化检测保持了尽可能多的原始信息,具有特征级和目标级层次上所不具备的细节信息,但像元级变化检测仅考虑像素属性的变化,而未考虑其空间等特征属性的变化;特征级变化检测不仅考虑到空间形状的变化,而且还要考虑特征属性的变化,但特征级的变化检测依赖于特征提取的结果,但特征提取本身比较困难;目标级的变化检测最大的优点是它接近用户的需求,检测的结果可直接应用,但它的不足之处在于目标提取的困难性。

3、遥感影像变化检测的一般流程

遥感影像变化检测的一般处理流程包括图像预处理、变化检测及检测结果输出三个部分。如下图所示:

前一时相变确定变化变

两期

检遥感影像化化

遥感

特信

影像辅助信息

征息

预处

果后一时相提分

遥感影像取非确定变化析

图一遥感影像变化检测一般流程图

(1)预处理

由于获取条件的差异, 多时相遥感图像中存在非地物变化而造成的图像变化。因此,消

除非地物变化是变化检测中不可缺少的步骤,在图像预处理的过程中,最重要的两个过程是几何

校正和辐射校正。

(2)变化信息获取

变化信息获取是变化检测处理中的关键步骤。在这个过程中,先根据变化检测对象,进行变化特征提取( 包括光谱特征及结构特征) 。提取的变化特征,有些可以直接用于变化分析

称为确定变化特征;有些不能直接用于变化分析,需要结合辅助信息( 如在目标级的变化检测中,需要结合目标的模型来描述变化) 称为非确定变化特征。最后对变化信息进行分析与

描述得到检测结果。

(3) 检测结果后处理及输出

变化检测的后处理是指对得到的检测结果进行再次处理以满足实际需求。主要方法包括滤波处理、数学形态学处理等。变化检测的结果根据用户的需要可以以报表的形式输出,也可以以变化图的形式输出,还可以存储在数据库中。通常情况下,像元级的变化检测是将变

化和未变化的区域以二值图的方式进行表示。在特征级和目标级的变化检测中,不仅需要标注出变化的特征或目标,而且需要输出描述特征或目标变化的各种参数。

4、遥感影像变化检测的主要方法及特点

遥感影像变化信息提取是变化检测过程中的核心和关键,目前所出现的各种变化检测方

法也都是为了解决这一问题。从不同的角度出发,可以进行不同的分类。按照是否要进行分类可分为直接比较法和分类后比较法;按照选取对象的粒度可分为像素级、特征级和对象级三种检测方法;按照是否需要先验信息可分为监督比较法和非监督比较法;按照采取的数学方法不同可分为代数运算法、变换法、分类法、GIS法、高级模型法等七种。下面介绍一些

常用的变化检测算法。

(1) 图像差值法

这种方法是目前应用最广泛的遥感变化检测方法。它将两个时相的遥感图像按波段进行逐

像元相减,从而生成一幅新的代表两个时相间光谱变化的差值图像。即在理想的情况下,

对其差值分析确定合适的阈值即可得到反映地表变化的结果。这种方法的数学形式如下式:

式中为两个时相影像波段k 在第i 行第j 列像素差值,分别为两个时相的影像k 波段 (i ,j) 像素点的像素值,为选择的阈值。

图二前一时期遥感影像图三后一时期遥感影像

图四经差分法处理后的影像

这种方法的特点在于简单、直接,便于解释结果。它的不足之处在于只能提供变化和未变化得信息,不能提供具体的地物变化信息。其次,这种方法需要选择合适的阈值。另外,

由于两组不同的绝对数值能产生相同的差值,使得差值法有时无法适当地处理检测中所涉及到

的所有因素。

(2) 图像比值法

图像比值法与图像差值法原理类似,也是一个可以快速得到变化区域的方法。法是计算多时相图像对应像素灰度值的比值。如果在一个像素上没有发生变化,1,如果在此像素上发生变化,则比值远大于或远小于l ,数学表达式如下:

图像比值则比值接近

图五经比值法处理后的影像

相比于图像差值法,比值法对于图像上的乘性噪声是不敏感的。如果每一幅图像的对应

像素灰度值相同,则有,表示没有变化发生;对于变化区域,根据变化方向的不同,

比值会远大于 l 或远小于 l 。这种方法在一定程度上能减少影像间因太阳高度角,阴影和地形

不同造成的影响。

(3)变化矢量分析

变化矢量分析法(Changer Vector Analysis,CVA)是一种研究输入数据辐射变化的方法。

这种方法的基本思想是将两个时相的多光谱遥感影像中对成像元光谱值视为多维光谱空间

中的一对点,用这对点所构成的向量来描述该像元在两时相间发生的变化,称这个向量为光谱变化矢量。利用该方法可以检测出所有包含在不同时相多光谱数据中的变化信息。该方法对不同传感器的数据也有很好的应用效果。

图六经变化矢量分析法处理后的影像

跟算术运算法一样,变化强度阈值的确定也是变化向量分析法的关键问题之一。常用的方法大都局限在仅通过变化强度这一种特征本身来确定分割阈值:一些方法是采用反复试验或个人经验来确定,主观性较强;一些方法是采用变化强度图的均值和标准差的线性组合来

表示阈值。变化矢量分折法可以利用较多甚至全部的波段来探测变化像元,凶此避免了单一波段比较所带来的信息不完整,而且可以通过变化矢量的方向提供变化类型信息。但是随着波段数的增加,变化类型的判断会很困难。

(4) 图像的分类比较

分类后比较方法用于对多时相图像的每-N图像单独进行分类,然后对分类结果图像进行

比较。如果对应像素的类别标签相同,则认为该像素没有发生变化,否则认为该像素发生了

变化。分类的方法可以是监督分类方法也可以是非监督分类方法。一般前者比后者的分类精

度高。对于分类后比较变化检测来说,多采用监督分类方法。

我们组采用的方法是监督分类方法中的LQ2神经网络分类法。将图像进行 AOI(Automatic Optic Inspection )编辑,采样,设置水体为蓝色,建筑为红色,林地为绿色,裸地为灰色。

如图:

图九前一时期影像 LQ2神经网络分类后图十后一时期影像LQ2神经网络分类后

图十一经分类后比较法处理后的影像

变化检测报告:

结合图像和变化检测报告可知:

建筑增多,林地和裸地减少,在黄色圈圈中可以明显的看到后一时期图像较前一时期图

像多了一个码头。不同时期的遥感图像所发生的变化受各种因素影响,如:时间分辨率,空间分辨率,光谱分辨率,辐射分辨率,大气状况,土壤湿度状况,物候特征等。两幅原始图

像中后一时期图像很明显受到天气状况的影响。建筑,林地,裸地等的变化还可能由时代的

推移,社会的发展引起。

分类后比较法在使用时也会受到自身的一些限制。这些限制因素包括:

1)对不同时相影像分别做分类,会导致工作量很大,而通常变化区域在研究区域中所占的

比率相对较小,使得针对未变化区域的分类形成了大量的重复工作。

2)分类后比较法对于类别的合理划分要求比较高:类别划分得过细就会产生大量的边缘

点,从而造成检测误差的增加,类别划分得过粗又会忽略一些类别之间的差异,不能很好的反映

实际情况。

3)分类和变化检测步骤的分离:当分类与变化检测成为相对独立的两个过程时,比较分析的数据就是从原始的两幅图像中得到的处理后的数据而不是原始数据,造成信息的丧失。

4)分类后比较法对于分类错误比较敏感:分类后比较法需要对用于变化检测的多幅图像分

别分类,任何一幅图像的分类错误都会造成结果的错误,相当于增加了错误发生的几率。

尽管分类后比较法存在着精度方面的缺陷,但由于其方法简单,同时具有可以回避多时

相影像获取环境条件和传感器不同所带来的辐射归一化问题,可以直接获取变化的类型,可以进行两个时相以上的遥感影像的变化检测分析等优点,故仍然被经常使用。

(5) 植被指数差值法

植被指数差值法是将两个时相的植被指数来代替原始图像灰度,因而该方法主要用于检测植被覆盖的变化。此方法是通过比较影像的植被指数值来确定变化的一种检测方法。利用光学传感器近红外波段与红光波段对植被的显著的响应差,通过比值突出植被信息,再通过阈值提取植被信息和非植被信息。由于植物普遍对红光强烈吸收,对近红外光强烈反射,因此红光和近红外波段之间的比值有利于提高光谱差异。

根据实际需要,在进行变化检测时可采用不同的植被指数,如比值植被指数(RVI) ,归一化植被指数 (NDVI) ,转换植被指数 (TVI) 等。这种方法的特点在于增强了植被在不同波段

的波谱相应的差异,抑止了传感器、大气、地形和光照等因素引起的伪变化的干扰;但是植

被指数的运算增加了随机噪声和相干噪声的影响,主要应用于植被覆盖的变化检测。另外,这

种方法需要一定的经验知识选择何种方式的植被指数和阈值以便能达到较好的运算结果。

(6)图像回归法

在图像回归变化检测方法中,假设T2 时相图像上每个像素灰度值都是Tl时相上对应像素灰度值的线性函数,那么就可以通过最小二乘方法算出线性函数的系数。通

过解出的回归方程,用Tl 时相图像上的像素值就可以计算出T2 时相图像上对应像素

的灰度值,定义为与之间的差值,表达式如下:

当有变化发生时的绝对值会比较大。

图像回归方法表明了不同时期像素的均值与方差不同,可减少了由于大气状况和太阳高度角的不同带来的不利影响。但对于特定的卫星数据,建立高精度的回归关系,往往比较困难,计算量大。

(7) 主成分分析

主成分分析 (PCA: principal components analysis) 图像波段间相关性,同时又不丢失信息的一种正交变换。又称 K— L变换,是一种去除多光谱该方法是对多时相数据按一般主成

分分析研究或标准主成分分析的方法进行线性变换,得到反映各种变化的分量,这些变化分量互

不相关,而且按其强度及影响范围顺序排列。通过对进行主成分变换后的变化分量进行分析就可

以总结变化规律,揭示变化原因。

通过 PCA可以压缩冗余信息,消除多光谱图像波段间的相关性,减少了处理数据量。PCA

变化检测方法也存在着缺陷:作为变换结果的主成分与原始图像相关,这就要求不同时相的数据

是同一传感器,相同分辨率的图像;主成分影像往往失去了原来数据的物理光谱特性,

对地物的解译往往只能依赖其几何、纹理信息。

5、遥感影像变化检测的发展趋势及研究前沿

随着各种光学卫星及雷达卫星运行服务 , 各种遥感数据的不断积累 , 各级空间数据库也相继

建立 , 地球表面不同空间尺度的数据得以全面记录。如何从这些遥感数据中提取和检测变化信息已

成为遥感应用技术研究的重要课题。

遥感变化检测方法可为土地利用、植被、土壤侵蚀、环境变化等提供多时相、大范围的

实时信息 , 帮助我们更好的研究地球资源、环境。为了满足研究项目的特定需求, 研究人员将

遥感信息科学、统计学、计算机技术等科学技术结合, 研发出不同的遥感变化检测平台。

遥感应用与新技术发展互相促进。20世纪 70年代数字遥感的出现,发展了遥感数字图像

处理系统,数字处理与分析促进了资源环境填图,生态系统结构和作用研究;90年代早期 GIS

技术的发展促进了遥感数字图像处理与GIS的一体化,发展了遥感数据与其它辅助数据的叠

合、融合技术,形成更为强大、有用的数据集。国内外运用遥感变化检测技术已取得了一批

面向应用的成果,90 年代中期开始, 包括 MODIS 数据植被变化检测, ETM 土地覆盖土地利用项

目(LCLUC) 的地表覆盖变化检测 , 水资源质量的变化检测 , 多光谱遥感的数据变化检测 , 多光谱遥感

数据变化自动检测技术 , IKONOS 军事目标的变化检测 , 利用干涉雷达检测地震等一批面向应用的遥

感变化检测研究成功。

随着我国气象资源海洋环境减灾等系列卫星发射, 我国正迈向航天强国, 遥感应用技术

得以不断发展 , 遥感技术为我国各省、市、行业、各层次国土资源和城市土地调查、森林资

源检测、环境变化检测、灾害预报与评估、国家重大生态工程监理等方面取得重大成就, 更好的服务各决策部门。

遥感变化检测技术经过几十年的发展,在各方面都取得了一定进展。从数据源角度看,

变化检测已不再局限于使用单一的遥感影像,而是综合利用多来源、多平台、多分辨率的遥

感影像、 GIS数据及一些辅助数据检测变化信息;从技术角度看,传统的变化检测方法日趋

完善,新方法不断涌现,变化检测已经从像素级的检测方法向面向对象的检测方法过渡。此

外,一些新知识和模型也不断引入到变化检测领域,如马尔科夫随机场、人工神经网络等;

从影像处理平台角度看,各种商业和开源软件的不断出现,使得变化检测更易于实现。

目前新的遥感变化信息检测方法:

( 1)基于影像分割的变化检测方法

基本思路是将影像分割为若干具有相同影像特征( 光谱特征、形状特征等) 的图斑单元

( 或影像对象 ) ,通过对相应图斑单元的比较确定变化信息。

( 2)组合法

是相对于单一的变化检测法而言的,是综合两种或两种以上的变化检测法检测遥感变化

信息。组合法的优点是显而易见的,可弥补单一方法的局限性,使各种方法优势互补;缺点是组合形式和规则不固定,需根据具体应用选择合适的组合模式。

( 3)基于马尔科夫随机场模型的变化检测方法

该方法从统计模型的角度描述了当前像元与周围像元之间的关系,基本思想是将差值后

的图像看作是一个马尔科夫随机场,估计每个像元变化和未变化的先验概率,依据最小错误

率的贝叶斯准则提取变化区域。优点在于顾及了像元领域的相关信息,且对噪声不敏感;缺点是模型复杂,计算量大。

但目前的遥感变化检测还存在一些不足之处。首先,遥感变化检测的自动化程度较低。

遥感变化检测是一个复杂的综合过程,涉及图像配准、影像分割、图像分类、信息提取等过程,在现有技术水平下,各个子过程尚不能实现智能化处理,还需要较多的人工干预;其次,遥感变化检测方法的局限性。大多数方法只能适用于特定的数据源、应用背景和数据质量,

缺乏一种通用的变化检测方法,例如,变化向量法只能用于多波段影像,植被指数法需要数据源中含有近红外和红波段,还有一些检测方法要求数据服从高斯分布。最后,遥感变化检测结果的评价方法单一。目前只能通过构造分类误差矩阵,得到总体精度、Kappa系数等指标。另外,变化检测流程中各步骤产生的误差对检测结果影响的大小及该误差传播过程和机

理尚不能确定。

希望今后,遥感变化检测除了继续研究面向对象检测方法外,还能致力于解决自动化检测、检测方法的普遍性等问题。随着各种光学卫星及雷达卫星运行服务, 各种遥感数据的不断积累 , 各级空间数据库也相继建立, 地球表面不同空间尺度的数据得以全面记录。如何从这些遥感数据中提取和检测变化信息已成为遥感应用技术研究的重要课题。

参考文献:

陈鑫镖 . 遥感影像变化检测技术发展综述[J]. 测绘与空间地理信息, 2012,35(9).

梅洋,陆苗.基于遥感影像的变化检测研究动态[J] .地理信息世界, 2006,4(2):42

— 47.

佃袁勇.基于遥感影像的变化检测研究[D] .武汉:武汉大学, 2005.

陈颖 . 多时相遥感影像变化检测方法研究[D]. 苏州大学, 2011.

马建文 , 等 . 遥感变化检测技术发展综述[J]. 地球科学进展 ,2004 (4).

吴芳,等 . 遥感变化检测技术及其应用综述[J]. 地理空间信息 ,2007.

孟繁烁 . 基于遥感影像的变化检测方法综述[J]. 科技创新与应用 ,2012.

遥感变化监测 流程

多时相土地利用/覆盖变化监测研究 方法及数据选取 土地是一个综合的自然地理概念,它处于地圈-生物圈-大气圈相互作用的界面,是各种自然过程和人类活动最为活跃的场所。地球表层系统最突出的景观标志就是土地利用和土地覆盖( Land Use and Land Cover)。由于土地利用和土地覆盖与人类的生活、生产息息相关,而人类活动正以空前的速度、幅度和空前规模改变着陆地环境。人类对土地资源的利用引起的土地利用和土地覆盖的变化是全球环境变化的重要因素之一,也是地球表面科学研究领域中的一个重要分支。因此,土地利用和土地覆盖的动态监测(Land Use and Land Cover Monitoring)是国内外研究的热点,也是当前全球变化研究计划的重要组成部分。 由多时相遥感数据分析地表变化过程需要进行一系列图像处理工作,大致包括:一、数据源选择,二、几何配准处理,三、辐射处理与归一化,四、变化监测算法及应用等。 一、遥感数据源的选取 不同遥感系统的时间分辨率、空间分辨率、光谱分辨率和辐射分辨率不同,选择合适的遥感数据是变化监测能否成功的前提。因此,在变化监测之前需要对监测区域内的主要问题进行调查,分析监测对象的空间分布特点、光谱特性及时相变化的情况,目的是为分析任务选择合适的遥感数据。同时,考虑到环境因素的影响,用于变化监测的图像最好是由同一个遥感系统获得,如果由于某种原因无法获得同一种遥感系统在不同时段的数据,则需要选择俯视角与光谱波段相近的遥感系统数据。 1时间分辨率 这里需要根据监测对象的时相变化特点来确定遥感监测的频率,如需要一年一次、一季度一次还是一月一次等。同时,在选择多时相遥感数据进行变化监测时需要考虑两个时间条件。首先,应当尽可能选择用每天同一时刻或者相近时间的遥感图像,以消除因太阳高度角不同引起的图像反射特性差异;其次,应尽可能选用年间同一季节,甚至同一日期的遥感数据,以消除因季节性太阳高度角不同和植物物候差异的影响。 2空间分辨率 首先要考虑监测对象的空间尺度及空间变异的情况,以确定其对于遥感数据的空间分辨率的要求。变化监测还要求保证不同时段遥感图像之间的精确配准。因此,最好是采用具有相同瞬时视场(IFOV)的遥感数据,如具有同样空间分辨率的TM图像之间就比较容易配准在一起。当然也可以使用不同瞬时视场遥感系统获取的数据,如某一日期的TM图像(30m ×30m)与另一日期的SPOT图像(20m×20m),来进行变化监测,在这种情况下需要确定一个最小制图单元20m×20m,并对这两个图像数据重采样使之具有一致的像元大小。 一些遥感系统按不同的视场角拍摄地面图像,如SPOT的视场角能达到±27°,在变化监测中如果简单采用俯视角明显不同的两幅遥感图像,就有可能导致错误的分析结果。例如,对一个林区,不均匀地分布着一些大树,以观测天顶角0°拍摄的SPOT图像是直接从上向下观测到树冠顶,而对于一幅以20°观测角拍摄的SPOT图像所记录的是树冠侧面的光谱反射信息。因此,在变化监测分析中必须考虑到所用遥感图像观测角度的影响,而且应当尽可能采用具有相同或相近的俯视角的数据。 3光谱分辨率 应当根据监测对象的类型与相应的光谱特性选择合适的遥感数据类型及相应波段。变化监测分析的一个基本假设是,如果在两个不同时段之间瞬时视场内地面物质发生了变化,则不同时段图像对应像元的光谱响应也就会存在差别。所选择的遥感系统的光谱分辨率应当足

ENVI遥感影像变化检测

1.森林开采监测 打开实习数据0-森林开采监测下的实习数据。 ?Compute Difference Map 选择basic tools/change detection/ Compute Difference Map,分别选择原始的影像july_06与july_00,在弹出的Compute Difference Map input parameters窗口下,查看define class thresholds,no change表示没有变化, change(-1)表示减少,change(+1)表示增加;其他默认选项不变, 勾选normalize data range[0-1],选择输出路径与文件名为com_diff。 选择classification/post classification/classification to vector,在输入图层中选择上一步生成的结果,弹出窗口中选择全部,保存路径生成结果, 转化为矢量。(由于耗时过多,故可以不做) ?Image Difference 打开ENVI Zoom 4.8,将原始的影像导入到其中,在ENVI Zoom窗口下的toolbox 中选择image change,弹出image change detection的对话框,将time 1classification image file选择为00年影像,点击OK,time2 classification image file中选择06年影像数据,点击OK,选择下一步,保持默认设置,选择下一步,选择image difference,选择下一步,选择difference of

遥感影像变化检测

遥感影像变化检测报告 学院: 专业: 指导老师: 小组成员: 2013年5月

1、遥感影像变化检测的概念 遥感影像变化检测指利用多时相获取的覆盖同一地表区域的遥感影像及其它辅助数据 来确定和分析地表变化。它利用计算机图像处理系统,对不同时段目标或现象状态的变化进行识别、分析;它能确定一定时间间隔内地物或现象的变化,并提供地物的空间分布及其变化的定性与定量信息。 由此可知,遥感影像变化检测是从不同时期的遥感图像中,定量地分析和确定地物变化的特征和过程。它涉及到变化的类型、分布状况及变化信息的描述,即需要确定变化前后的地物类型、界限和分析变化的属性。变化检测的研究对象为地物,包括自然地物和人造地物,其中人造地物在军事上常被称为目标。描述地物的特性包括:空间分布特性、波谱反射与辐射特性、时相变化特性。遥感影像的变化检测在土地覆盖变化监测、环境变迁动态监测、自然灾害监测、违章建筑物查处、军事目标打击效果分析以及国土资源调查等方面拥有广泛的应用价值和商业价值。 变化检测通常包括以下4个方面的内容: (1)判断是否发生了变化,即确定研究区域内地物是否发生了变化; (2)标定变化发生的区域,即确定在何处发生了变化,将变化像元与未变化像元区分开来; (3)鉴别变化的性质,给出在每个变化像元上所发生变化的类型,即确定变化前后该像元处的地物类型; (4)评估变化的时间和空间分布模式。 其中,前两个方面是变化检测所要解决的基本问题,而后两个方面则根据应用要求决定是否需要做。 2、遥感影像变化检测的三个层次 遥感图像分析过程中通常包括数据层处理、特征层处理和目标层处理三个过程。依据这三个层次划分,可将变化检测分为:像元级变化检测、特征级变化检测和目标级变化检测。 (1)像元级变化检测是指直接在采集的原始图像上进行变化检测。尽管基于像元的变化检测有它一定的局限性,但由于它是基于最原始的图像数据,能更多地保留图像原有的真实感,提供其它变化检测层次所不能提供的细微信息,因而目前绝大多数的变化检测方法都是像元级变化检测。 (2)特征级变化检测是采用一定的算法先从原始图像中提取特征信息,如边缘、形状、轮廓、纹理等,然后对这些特征信息进行综合分析与变化检测。由于特征级的变化检测对特征进行关联处理,把特征分类成有意义的组合,因而它对特征属性的判断具有更高的可信度和准确性。但它不是基于原始数据而是特征,所以在特征提取过程中不可避免地会出现信息的部分丢失,难以提供细微信息。 (3)目标级变化检测主要检测某些特定对象(比如道路、房屋等具有明确含义的目标),是在图像理解和图像识别的基础上进行的变化检测,它是一种基于目标模型的高层分析方法。 变化检测的三个层次在实现上各有优缺点,在具体的变化检测中究竟检测到哪个层次是根据任务的需要确定的。像元级的变化检测保持了尽可能多的原始信息,具有特征级和目标级层次上所不具备的细节信息,但像元级变化检测仅考虑像素属性的变化,而未考虑其空间等特征属性的变化;特征级变化检测不仅考虑到空间形状的变化,而且还要考虑特征属性的变化,但特征级的变化检测依赖于特征提取的结果,但特征提取本身比较困难;目标级的变化检测最大的优点是它接近用户的需求,检测的结果可直接应用,但它的不足之处在于目标提取的困难性。

生态环境遥感监测方案

生态环境遥感监测方案 遥感技术作为目前一种先进的信息采集方式,具有信息量大、成本低和快速的特点,是生态环境监测中非常重要的技术手段。遥感集市运用遥感技术进行矿区生态环境动态监测,为合理开发矿产资源提供基础性数据资料,实现矿产资源的可持续发展,是生态环境领域研究的重要课题。 矿区生态环境问题包括:对地表的破坏、对土地的占用和破坏,对自然景观的影响和破坏,造成“三废”污染,破坏水资源、造成水土流失,诱发或孕育滑坡、泥石流、冲击地压、矿震等动力地质、环境地质问题,噪声和振动污染,热污染等。目前,国内外已有许多科学工作者利用遥感技术对矿区生态环境监测做了研究:一方面,是利用不同时相的波段组合图、指数变化图和土地覆盖类型变化图来体现地表信息的变化,从而进行矿区生态环境动态监测,但往往是定性或半定量分析,并且多是单个大面积的矿区,对于大范围分布零散的矿区研究甚少;另一方面,是将遥感信息与其他调查数据(如土质、水质等数据)相结合,具体研究采矿引起的土质变化、水质变化、地表变形等,虽然细致、透彻,但费时、费力。 针对湖北大冶矿区分布零散的特点,应该采用多时相陆地卫星遥感数据,首选遥感集市高分数据,在不同波段组合和各种指数运算应用的基础上,分析各类地表地物具体光谱特征和空间特征,用基于知识的决策树的方法进行分类,得到具有高精度的分类结果图,然后基于不同时相分类结果的变化检测,通过对研究区水体污染、矿区复垦、耕地变化等的定量分析,进行了湖北大冶矿区生态环境监测的研究。 遥感数据的获取和预处理 湖北大冶面积为1400km2,属亚热带季风气候区。由于20世纪的 80年代到90年代是矿区开采的相对高峰期,并且由此引起的生态环境问题有一定滞后效应,同时为了减少季节上产生的误差,而夏季植被丰富,易于区分矿区和植被类型,本文从现有的资料中选取有代表性的1986年7月底、1994年11月的TM 影像和2002年 9月初的ETM 影像进行处理和分析比较(其中1994年 TM影像因季节差异仅作矿区的比较)。 由于地面站在接收信号时根据遥感平台、地球、传感器的各种参数进行的几何校正,还不能满足专业解译和综合分析的需要,本文以 !,- 万比例尺的地形图作为参考坐标,对湖北大冶矿区的遥感影像进行几何精校正。纠正时在图像和地形图上分别均匀

遥感变化检测实验报告

遥感影像变化检测实验报告 目录 1 遥感影像变化检测概述 (2) 1.1 遥感影像变化检测的内容 (2) 1.2 影响变化检测的因素 (2) 1.3 遥感影像变化检测步骤 (3) 1.4 评判遥感影像检测方法优劣的标准 (3) 2 实验过程(基于ERDAS软件) (3) 2.1 影像数据 (3) 2.2 处理步骤 (3) 2.3 ERDAS操作步骤 (3) 2.3.1 2003年影像配准 (3) 2.3.2 2005年影像配准 (10) 2.3.3 相对大气校正 (11) 2.3.4 差分检测 (15) 3 结语 (16)

1 遥感影像变化检测概述 遥感影像变化检测就是对目标或现象在不同时间观测到的状态的差异的识别过程。常用用于遥感影像变化检测的领域有:土地利用/土地覆被变化;森林或植被变化;森林死亡、落叶和灾害评价;森林采伐、再生和选择性砍伐;湿地变化;森林火灾以及林火影响区域检测;地表景观变化;城市变化;环境变化;如农作物检测、轮垦检测、道路分段、冰川总量平衡和表面变化等。 1.1 遥感影像变化检测的内容 遥感影像变化检测的内容为: (1)检测并判断某一研究区域内感兴趣的目标或现象在所研究的时间段内是否发生了变化; (2)确定发生变化区域的位置; (3)遥感影像变化检测结果精度评估; (4)分析、鉴别变化类型,确定变化前后地物类型; (5)分析、评估变化在时间和空间上的分布模式,对其变化规律进行描述和解释; (6)对未来的变化进行预测,为科学决策提供依据。 1.2 影响变化检测的因素 一般来说,影像遥感影像变化检测的因素主要有: (1)多时相影像间的精确几何配准; (2)多时相影像间的定标或规一化; (3)高质量地面真实数据的获取; (4)研究区地面景观和环境的复杂度; (5)变化检测的方法和算法; (6)分类和变化检测的主题(目标); (7)分析人员的技术水平和经验; (8)对研究区的认知和熟悉程度; (9)时间和成本限制。 为此,数据选择时,尽量选择同一传感器、相同辐射和光谱分辨率,并在时间周期上相同或相近的数据,目的是为了能消除外部环境的影响,如太阳高度角、季节和物侯的差异等。在进行变化检测前我们应进行的准备工作主要有: (1)多时相影像必须精确配准; (2)多时相影像间必须精确辐射定标和大气校正或规一化; (3)多时相影像间要有相似的物候状态;

遥感图像的分类与变化监测最终版

遥感图像的分类与变化监测 1.数据准备 1.1研究区域概况 向10度至30度长有210公里,东西宽有15公里至20公里,是川西断陷带和川东隆起带 泉驿区总面积的39.07%、3.86%、57.07%。2009年,龙泉驿区土地总面积5.5698万公顷,其中耕地7367.83公顷,占土地总面积的13.23%;园地2.5295万公顷,占土地总面积的45.42%;林地7628.2公顷,占土地总面积的13.70 %;其他农用地3295.85公顷,占土地总面积的5.92%;居民点及工矿用地1.0742万公顷,占土地总面积的19.29%;交通运输用地539.83公顷,占土地总面积的0. 97%;水利设施用地553.30公顷,占土地总面积的0.99 %;未利用地274.93公顷,占土地总面积的0.49%。 1.2数据下载 在地理空间数据云中先搜索2000年---2005年的数据,选择云量较少,图像 质量高的进行下载;搜索2009年---2015年图像选择质量高的下载,最终选定2001年和2009年龙泉驿区的图像(landsat4--5)。 两期影像的像元信息: 影像 数据 类型 卫星名称 传感 器 条带 号 太阳 高度角 太阳 方位角 平均 云量 数据标示 2001 TM landsat4--5 TM 129 37.5708 141.1516 5.45 LT5129039200104 2009 TM landsat4--5 TM 129 51.3982 133.2621 0 LT5129039200908 2001年影像

2009年图像 2.数据处理 2.1图像格式的转换 2.1.1格式转换 利用Import工具,将下载的TIFF影像转换为后缀为img图像,并选择存储的路径。 2.1.2多波段图像的融合 在interpreter工具中利用image interpreter中的layer stack进行1--7图像的融合, 为后面的处理提供基础。

多时相遥感影像变化检测技术的研究

龙源期刊网 https://www.sodocs.net/doc/4f17127112.html, 多时相遥感影像变化检测技术的研究 作者:张德慧杨勇宋凯 来源:《科技创新与应用》2014年第34期 摘要:针对多时相遥感影像的变化检测技术进行研究,根据图像的变化推出研究目标的 变化信息,完成对研究目标的动态监测,该技术无论在理论上还是在各个领域的应用中都具有重要的研究意义和广泛的应用前景。文章根据多时相遥感影像变化检测流程对遥感影像的预处理、遥感影像变化信息的提取和精度评价等关键技术展开一些积极的探索和研究,旨在经过创新和改进,在一定程度上克服现有方法存在的困难,提高变化检测的精度和效率。 关键词:多时相遥感影像;变化检测;精度评价 遥感是通过遥感器“遥远”地采集目标对象的数据,并通过对数据的分析来获取有关地物目标、或地区、或现象的信息的一门科学和技术[1]。随着卫星技术的发展,通过将各种传感器 搭载至卫星平台,对地遥感观测累积了海量的地表对时间变化的数据,如何加快对这些遥感数据的充分处理和利用,促进其转化为更有价值的知识,为有关部门做出相应的、准确的、快速的决策提供丰富且有益的辅助信息,促使了多时相遥感影像变化检测技术的产生和发展。 1 多时相遥感影像变化检测的技术路线 多时相的遥感影像变化检测技术是指给定同一个地区的多个时相的单波段或多波段遥感图像,采用图像处理的方法快速而高效地检测出该地区的地物是否发生变化,若发生变化则进一步分析变化的特点和原因,从而实现对遥感图像的分析与理解。 首先选择同一地区的多时相遥感影像作为数据源,然后通过对遥感影像的辐射校正和图像配准实现数据的预处理,接着通过变化检测算法得到变化结果生成图或生成表实现变化信息的提取,再次通过分析变化检出率和检测虚警率对变化检测结果做出科学的精度分析实现精度评价。 2 关键技术分析 2.1 多时相遥感影像的预处理 辐射校正和图像配准是变化检测中两项关键的预处理过程,处理精度将直接影响变化检测的精度。 2.1.1 辐射校正 由于遥感器本身的光电系统特征、太阳高度、地形以及大气条件使得通过遥感器得到的测量值与目标物的光谱反射率或光谱辐射亮度等物理量是不一致的,也就是说通过变化检测算法

遥感图像变化检测

遥感图像变化检测方法(简称变化检测)根据处理目标要求可以分为三类:特定类目标的变化检测,如机场、桥梁、港口、导弹基地等目标的变化检测;线性体目标的变化检测,如道路、机场、桥梁和一般建筑物等目标的变化检测;大面积目标的变化检测,如某地域的植被变化、城市的发展、洪水灾害评估等。本文系统地研究了基于模式识别知识检测特定类目标、线性体目标和大面积目标变化的变化检测方法。 为了实现对特定类目标的变化检测,本文提出了一种基于目标检测的变化检测方法。该变化检测法的工作流程为:多时相图像配准、特定类目标建模、检测特定类目标、确定特定类目标的位置、比较特定类目标在参考图像和检测图像中的位置、报告变化情况。本文提到的特定类目标建模,是对某类特定目标的共同属性进行建模,即一般模型,而不是针对某个具体目标进行详细的状态描述。本论文提出的机场检测法在试验中达到了100%的正确检测率。确定了检测图像中的机场位置后,就可以将检测结果与参考图像中的机场位置进行比较,从而实现机场位置变化的检测。 对于检测线性体目标的变化,本论文提出了一种基于边缘检测的变化检测方法。该变化检测法的工作流程为:多时相图像配准、图像标准化、提取参考图像及检测图像的边缘、匹配边缘图像中的边缘并获得边缘差分图像、标注变化情况。边缘检测算子的性能直接影响变化检测结果。本论文提出了一种全新的边缘检测算子—正弦算子。本论文详细分析了边缘算子的三个性能准则:检测性能、定位性能和响应唯一性,在此基础上提出了正弦算子。正弦算子不但具有较好的容噪能力,并且能够检测到灰度变化较小的边缘。理论结果和试验结果都证明正弦算子是一个性能卓越的边缘检测算子。 本文提出了一种中高分辨率遥感图像的聚类方法。该聚类方法的过程分为两部分:学习过程和识别过程。学习过程为:选取图像特征、使用已知类别的特征训练BPC网络;识别过程为:输入待分类图像、预处理滑动窗口中图像、计算滑动窗口的图像特征、使用BPC网络判断滑动窗口中心像素的类别、在图像中逐点移动滑动窗口、完成整个图像的分类。试验结果表明,本文的特征提取法和图像聚类法能获得较好的图像聚类精度。 遥感图像数据获取系统近期发展的主要方向是提高空间和时间分辨率,这使遥感图像数据量有了巨大的增加。大量的数据和有限的人工分析员必将导致有很多图像无法被浏览。而在实际中,我们却非常需要分析员浏览相关图像。如果我们知道需要浏览的具体图像和图像中的具体目标,这个问题就很容易解决了。然而,大多数情况下,我们并不知道哪个图像中包含了我们需要寻找的信息。但是,我们可以利用数字图像的许多性质,通过计算机浏览所有的图像并把我们的注意力引导至相关的图像。实现这一目的主要有两个方法:使用计算机对图

eCognition遥感信息变化监测

eCognition产品 eCognition套件提供了三种不同的组件,它们可以单独或结合起来解决影像分析任务。特点与优点 1.优良的基于对象的影像分析工具和算法集合 2.针对特定的用户的不同客户端版本 3.直观的开发环境 4.现有的工作流程的完全整合 5.从单一的桌面版扩展到企业产品工作流程 6.软件开发工具包(SDK) 7.在线访问规则集资源 8.易于使用的工作流程向导 9.全面的管理工具集 eCognition Developer eCognition的基础 eCognition Developer是一个强大的面向对象的影像分析开发环境。它用来在地球科学领域开发规则集(或为eCognition Architect开发应用程序)以做到遥感数据的自动分析。 特点与优点 1.优良的面向对象的影像分析工具和算法的集合 2.分析栅格、矢量和点云数据 3.两种启动模式——快速使用的QuickMap模式与传统的Developer模式

4.直观的开发环境 5.从单一的桌面版扩展到企业产品工作流程 6.软件开发工具包(SDK) 7.在线访问规则集资源 产品亮点 优良的面向对象的影像分析工具和算法 针对图像分析的不同方面,Definiens Developer提供了一个全面的算法集合。用户能从各种分割算法中进行选择,如多分辨率分割、四义树分割或棋盘分割。分类算法的范围包括基于采样的最邻近法、模糊逻辑隶属函数或专门上下文驱动分析。层操作算法允许应用面对象元的过滤器,如坡度、坡向、边缘提取或用户自定义的层计数。 直观的开发环境 图形用户界面灵活地显示了任何影像数据源。简单的拖放功能,能够让那些没有任何编程技能的用户为标准化分析进行快速开发规则集和应用软件。即使是最高级的任务,高级用户也能利用强大的工具来解决。 自动化和生产 在eCognition Architect中建立一个应用程序后,它可以被存储,并能扩展eCognition

遥感_变化监测实习报告

变化监测实习报告 实习名称变化监测 实习课程遥感图像处理姓名班级 实习时间学号得分 实习原理:非监督分类运用1SODATA算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时。原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 实习数据: 遥感影像:LS5_TM_20100725_023435_023501_121040_FASTB_L2 LS5_TM_20081210_022812_022837_121040_FASTB_L2 简析:影像为江西省鄱阳湖地区,在影像生成时间内。时值夏/冬季,但江西地区植被多常绿。 实习内容:就所下载遥感影像,采用非监督分类的方法,对影像中所放映的信息进行分类。 实习目的:掌握非监督分类的方法与过程,加深对非监督分类方法的理解。 实习步骤:

第一步:调出非监督分类对话框 在ERDAS 图标面板工具条中点击Classifier 图标 →C1assification →Unsupervised Classification →Unsupervised classification。对话框如下: 第二步:进行非监督分类 在Unsupervised classification对话框输入数据(如上图右所示)。 确定输出文件(Input Raster File):caijianhou_40.img(要被分类的图像)→确定输出文件(Output File):非监督分类_caijianhou 4001.img即将产生的分类图像)

遥感影像基于像素的变化检测方法简介

表2 基于像素得变化检测方法简介 方法 简介 图像差值 使用两个精确配准得图像来产生表示变化得差值图像。可以直接从像素得辐射值或 者在提取得/导出得/变换得图像(如纹理或植被指数)上测量差异。在数学上,差异图像 得表示就是:12(,)(,)(,)d I x y I x y I x y =-,其中I 1与I 2就是时间t 1与t 2得图 像,(x,y )就是坐标,I d 就是差分图像。没有辐射变化得像素分布在均值周围(Lu 等,2005), 而变化得像素分布在分布曲线得尾部(Singh,1989)。 由于变化可能出现在两个方向 上,因此决定由那个图像减去那个图像(Gao,2009)。 图像比值 计算两个共同配准得图像之间得比率。数学上:12(,)(,) r I x y I I x y =,与图像差值不同,图像得顺序并不重要,因为变化结果以比率表示,未变化得区域在理论上应该为1。 回归分析 假定从时间(t 2)开始得图像I 2就是从时间(t 1)开始得图像I 1得线性函数。 图像I 2被视 为“参考”图像。 然后调整I 1图像以匹配参考图像得辐射测量条件。回归分析(如最小 二乘回归)可以通过对I 1图像进行辐射度量归一化以匹配参考图像来帮助识别增益与 偏移量(Lunetta,1999)。 变化(I d )图像由检测到从第一次日期图像中减去回归图像。 数学上:?(,)(,)d d I x y aI x y b =+; ?(,)(,)(,)d d d I x y I x y I x y =- 植被指数差值 植被在红光与近红外波段光谱反射率间得显著差异,通过波段组合,形成植被指数。通 常,对于变化检测,两个图像分别产生植被指数,然后应用基于标准像素得变化检测(例 如差值或比值)。 现有得植被指数有:基于比值得植被指数(RVI ),归一化植被指数(NDVI )与土壤调整植 被指数(SAVI )等。 变化向量分析(CVA ) 可以同时分析变化检测得多个图像波段。 CVA 背后得想法就是,随着时间得推移,具 有不同值得特定像素位于特征空间中基本不同得位置(Jensen,2005)。像素值被视为光 谱波段得矢量,通过减去不同日期所有像素得矢量(Malila,1980)计算变化矢量(CV )。 CV 得方向描绘了变化得类型,而变化得大小对应于CV 得长度。 也可以对转换后得 数据执行CVA (例如,Kauth-ThomasTransformation,KTT )。 主成分分析(PCA ) PCA ,数学上就是基于“主轴转换”,就是将多元数据转换为一组新得成分,从而减少了数 据冗余(Lillesand et al 、,2008)。 PCA 使用协方差矩阵或相关矩阵将数据转换为独立 不相关得数据。结果矩阵得特征向量按降序排序,其中第一主成分(PC)表示大部分数 据变化。随后得分量定义下一个最大得变化量,并且与前面得主分量就是独立得(正交 得)。在PCA 中,假定没有变化得区域就是高度相关得,而变化得区域则不就是。在多 时相图像分析中,PC1与PC2倾向于代表未改变得区域,而PC3与后来得PCs 包含改 变信息(Byrne 等,1980; Ingebritsen 与Lyon,1985; Richards,1984)。使用两种基于PCA 得变化检测方法。第一个,单独得旋转,就是分别从图像获取PC ,然后使用其她变化检 测技术(如图像差值)。第二种就是合并方法,其中双时间图像被合并为一个集合并且 PC 被应用。与双时间数据具有负相关性得PCs 对应于变化。 Coppin 与Bauer(1996)

相关主题