搜档网
当前位置:搜档网 › (整理)均值极差控制图与均值标准差控制图的选用0411

(整理)均值极差控制图与均值标准差控制图的选用0411

(整理)均值极差控制图与均值标准差控制图的选用0411

-------------

------------- 均值极差控制图与均值标准差控制图的选用

时间:2014-4-11

关键词:均值极差控制图,均值标准差控制图

对计量值控制图,在确定选用均值标准差或者均值极差控制图时应考虑以下几个因素:

对每批数据计算极差要比计算标准偏差简单得多,因此使用均值极差控制图比使用均值标准差控制图简单方便。这一优点在计算机和计算机未广泛采用之前,对控制图的推广使用有很大影响。但是在计算机已很普及的今天,特别是使用控制图软件的情况下,这一优点就无关紧要了。

计算标准偏差时要使用一批样本中的每个数据,而极差只涉及一批样本中最大和最小两个数据,未能考虑该批中的其他数据信息,因此均值标准差控制图提供的信息比均值极差控制图更丰富。

通过分析可得,对不同的样本数据个数n,均值极差控制图与均值标准差控制图的相对效率之比如下表所示:

均值标准差控制图与均值极差控制图相对效率与样本量的关系总之,在每批样本数据量较小时,使用均值极差控制图或者均值标准差控制图差别不大。如果每批样本量大于10,则应该使用均值标准差控制图,而不要使用均值极差控制图。

若每批样本只有一个数据,则应选用单值-移动极差控制图。

控制图

控制图 一.前言: 为使现场的质量状况达成目标,均须加以管理。我们所说的“管理”作业,一般均用侦测产品的质量特性来判断“管理”作业是否正常。而质量特性会随着时间产生显著高低的变化;那么到底高到何种程度或低至何种状态才算我们所说的异常?故设定一合理的高低界限,作为我们分析现场制程状况是否在“管理”状态,即为控制图的基本根源。 控制图是于1924年由美国品管大师修哈特(W.A.Shewhart)博士所发明。而主要定义即是[一种以实际产品质量特性与依过去经验所研判的过程能力的控制界限比较,而以时间顺序表示出来的图形]。二.控制图的基本特性: 一般控制图纵轴均设定为产品的质量特性,而以过程变化的数据为刻度;横轴则为检测产品的群体代码或编号或年月日等,以时间别或制造先后别,依顺序点绘在图上。 在管制图上有三条笔直的横线,中间的一条为中心线(Central Line,CL),一般用蓝色的实线绘制;在上方的一条称为控制上限(Upper Control Limit,UCL);在下方的称为控制下限(Lower Control Limit,LCL)。对上、下控制界限的绘制,则一般均用红色的虚线表现,以表示可接受的变异范围;至于实际产品质量特性的点连线条则大都用黑色实线绘制。 控制状态: 96 品管七大手法 上控制界限(UCL) 中心线(CL)

三.控制图的原理: 1.质量变异的形成原因: 一般在制造的过程中,无论是多么精密的设备、环境,它的质量特性一定都会有变动,绝对无法做出完全一样的产品;而引起变动的原因可分为两种:一种为偶然(机遇)原因;一种为异常(非机遇)原因。 (1)偶然(机遇)原因(Chance causes): 不可避免的原因、非人为的原因、共同性原因、一般性原因,是属于控制状态的变异。 (2)异常(非机遇)原因(Assignable causes): 可避免的原因、人为的原因、特殊性原因、局部性原因等,不可让其存在,必须追查原因,采取必要的行动,使过程恢复正常控制状态,否则会造成很大的损失。 第七章 控制图 97 2.控制界限的构成: 控制图是以常态分配中的三个标准差为理论依据。中心线为平均 (偶然原因的变动) (异常原因的变动)

计量值控制图之均值-极差控制图

计量值控制图之均值-极差控制图

摘要:在处理一个计量值的控制图时,我们要控制的是这个质量特性的均值和变异数,其中包括均值控制图跟极差控制图,简称为X-R控制图. 均值-极差控制图 1.在处理一个计量值的控制图时,我们要控制的是这个质量特性的均值和变异数: ●要控制平均数,通常是使用均值控制图; ●而控制过程的分散或变异则使用极差控制图称R控制图; 2.同时维持过程均值和过程变异在控制状态下是很重要的 3.最常用、最基本的控制图 ●用于控制对象为长度、重量、强度、厚度、时间等计量值; ●由用于描述均值变化的均值图和反映过程波动的极差控制图组成; 4.计算均值控制图与极差控制图的上下控制界限公式: 式中:A2 ,D3,D4 ——是由样本大小n确定的系数,可由下表查得。当n≤6时,D3为负值,而R值为非负,此时LCL实质不存在。此时,可令LCL=0作为下控制线。 均值控制图 主要用于诊断过程均值的异常波动:

极差R控制图 ●均值控制图是对过程均值变化的诊断 ●如果过程波动随时间变化是不稳定的 ●那么在均值控制图上从不稳定过程中计算出的控制线,就不能反映只有随机 因素作用产生的过程波动 ●因此对均值控制图的解释就会出现误导 ●只有在稳定的过程中才可以构造控制图实施过程的诊断 ●判断过程稳定需要用R控制图 计量值控制图主要用于长度、重量、时间、强度、成份等以计量值来管理工程的控制图,利用统计手法,设定控制均值X和极差R的界限,同时利用统计手法判定导致工程质量变异是随机原因,还是异常原因的图表。均值-极差控制图是常用于SPC统计过程控制分析中,它们常用的两种控制图分析图表.

控制图计算公式

2.判断异常的准则 在讨论控制图原理时,已经知道点子出界就判断异常,这是判断异常的最基本的一条准则。为了增加控制图使用者的信心,即使对于在控制界限内的点子也要观察其排列是否随机。若界内点排列非随机,则判断异常。 判断异常的准则:符合下列各点之一就认为过程存在异常因素: (1)点子在控制界限外或恰在控制界限上控制界限内的点子排列; (2)链:连续链,连续7个点以上排列在一侧;间断链,大多数点在一侧 (3)多数点靠近控制界限(在2一3倍的标准差区域内出现) (4)倾向性与周期性。 控制图是用于确定生产或工作过程是否处于稳定状态的图形,通过它可以发现并及时消除生产和工作过程中的失控情况。 控制图是通过对过程中各特性值进行测定、记录、评估和监察过程是否处于控制状态的一种用统计方法设计的图。在控制图中有两条平行的上下控制界限和中心线,并有按时间序列排列的样本统计量数值的描点序列。如果控制图中描点落在控制界限之内,则表明过程正常;若控制图中描点落在控制界限之外或描点序列在界限之间有某一种或几种不正常的趋势,则表明过程异常。 (一)控制图的分类 控制图可以分为两类,即计量值控制图和计数值控制图。计量值控制图所依据的数据均属于由测量工具实际测量出来的数据,如长度、重量等控制特性,具有连续性,它包括: ①单值控制图; ②平均值与极差控制图; ③平均值与标准差控制图; ④中位值与极差控制图; ⑤个别值与移动极差控制图。 计数值控制图所依据的数据均属于以单位个数或次数计算,如不合格品数、不合格品率等。它包括: ①不合格品数控制图; ②不合格品率控制图; ③缺陷数控制图; ④单位缺陷数控制图。 (二)控制图的应用 控制图可用于以下几方面: ①预测,通过现有图形的分析和研究可大致预测下一步可能的位置。 ②评价与诊断,可以评价过程的变化情况,评估过程的稳定性,并能与其他方法结合,可以找到产生状况的原因。 ③控制,可对品质状况及时掌控,决定何时需要调整,何时需要保持原有状态。 ④确认,比较后确认某一过程的改进。 [例题8] 控制图可用于() A. 预测,通过现有图形的分析和研究可大致预测下一步可能的位置 B. 评价与诊断,可以评价过程的变化情况,可以找到产生状况的原因 C. 可以显示波动的状况 D. 控制,可对品质状况及时掌控,决定何时需要调整,何时需要保持原有状态1 E. 确认,比较后确认某一过程的改进 答案:ABDE (三)控制图的作法 (1)选择控制特性。 (2)选择合适的控制图。

控制图的基本特性与原理

第七章控制图95 第七章控制图 一.前言: 为使现场的质量状况达成目标,均须加以管理。我们所说的“管理”作业,一般均用侦测产品的质量特性来判断“管理”作业是否正常。而质量特性会随着时间产生显著高低的变化;那么到底高到何种程度或低至何种状态才算我们所说的异常?故设定一合理的高低界限,作为我们分析现场制程状况是否在“管理”状态,即为控制图的基本根源。 控制图是于1924年由美国品管大师修哈特(W.A.Shewhart)博士所发明。而主要定义即是[一种以实际产品质量特性与依过去经验所研判的过程能力的控制界限比较,而以时间顺序表示出来的图形]。 二.控制图的基本特性: 一般控制图纵轴均设定为产品的质量特性,而以过程变化的数据为刻度;横轴则为检测产品的群体代码或编号或年月日等,以时间别或制造先后别,依顺序点绘在图上。 在管制图上有三条笔直的横线,中间的一条为中心线(Central Line,CL),一般用蓝色的实线绘制;在上方的一条称为控制上限(Upper Control Limit,UCL);在下方的称为控制下限(Lower Control Limit,LCL)。对上、下控制界限的绘制,则一般均用红色的虚线表现,以表示可接受的变异范围;至于实际产品质量特性的点连线条则大都用黑色实线绘制。 控制状态: 96 品管七大手法 上控制界限(UCL) 中心线(CL) 下控制界限(LCL)

三.控制图的原理: 1.质量变异的形成原因: 一般在制造的过程中,无论是多么精密的设备、环境,它的质量特性一定都会有变动,绝对无法做出完全一样的产品;而引起变动的原因可分为两种:一种为偶然(机遇)原因;一种为异常(非机遇) 原因。 (1)偶然(机遇)原因(Chance causes): 不可避免的原因、非人为的原因、共同性原因、一般性原因,是属于控制状态的变异。 (2)异常(非机遇) 原因(Assignable causes): 可避免的原因、人为的原因、特殊性原因、局部性原因等,不可让其存在,必须追查原因,采取必要的行动,使过程恢复正常控制状态,否则会造成很大的损失。 第七章 控制图 97 2.控制界限的构成: (偶然原因的变动) (异常原因的变动)

均值-极差控制图(x-R)

X匀值:是通过每组样本的平均值得出的,然后把每组的平均值相加除以组数,得到总的平均值. R 匀值:是通过每组两个极端值得到的,就是每组的最大值-最小值,等于每组的极差,再通过每组的极差值来计算总的极差平均值 平均极差分布及控制图常数表 2 用EXCEL软件绘均值一极差控制图(rR图) 2.1 绘图方法 2.1.1 EXCEL软件的作用 随着计算机技术的不断发展,尤其是计算速度的不断加快,使其在办公领域得以充分应用。一些 软件不但能制表,还能绘图,使质量管理工作也上了一个新水平。近来,笔者尝试用EXCEL 绘均值一极 差控制图( R 图),以使质量管理工作更方便、更快捷。 2.1.2 应用示例 现以齿条总高为例,用EXCEL软件绘a-R 图。设共有25组数据,样本大小为5,其操作过程如下。 2.1.2.1 打开EXCEL软件中的一个工作薄,选择其中一个工作表。 2.1.2.2 在第1行输入表头。

2.1_2.3 在第l列单元格输入样本编号:选定要填充的第1个单元格A2,输入1,A3格输入2,选择 A2、A3格将鼠标移到A3格右下角的填充柄上,当鼠标指针变成小黑十字时,按鼠标左键在要填充的 区域上拖动(即从A4到A26),松开鼠标左键,填充自动完成。 2.1.2.4 在第2列单元格输入标准值:选定单元格B2,输入2.8,将鼠标移到B2格右下角的填充柄上, 当鼠标指针变成小黑十字时,按鼠标左键在B3到B26格上拖动,松开鼠标左键填充自动完成。2.1.2.5 将收集到的数据输入表中。 2.1.2.6 计算均值:选定H2,选“常用”工具栏中的“粘贴函数”(即厂 ),出现“粘贴函数”对话框,在函数分类栏中选“常用函数”,在函数名栏中选“AV—ERAGE”,点“确定”,在“Number1”栏中输入“C2:G2”,点“确定”,即求得一个均值,选定H2格,点常用工具栏中的“复制”,再选定H3到H26,选“常用”工具栏中的“粘贴”,即求出其余24个均值。 2.1.2.7 计算极差的方法与计算均值大致相同,其公式为:R=max(B2:F2)~min(B2:F2)并将单元格的位置作相应变化。 2.1.2.8 计算中心线(CL)、上控制线(UCL)、下控制线(LCL)。根据各控制界限线的计算公式得出: X图中心线:CL=AVERAGE(H2:H26)其值填人H27 上控制线:UCL =H27+0.577×127其值填入H28 下控制线:LCL=H27—0.577×I27其值填入H 29:其中0.577与样本大小有关,经查控制图控制界限系数表所得。 R 图中心线:CL=AVERAGE(I2:I26)其值填入I27; 上控制线:UCL =2.1l5×I27其值填人I28; 其中2.115系查控制界限系数表所得。 2.1.2.9 绘图:选定H2到H29,点常用工具栏中的“图表向导”; 在步骤1中,在图表类型框中选“折线图”,点“下一步”; 在步骤2中,选系列产生在“列”,点“下一步”;在步骤3中,标题栏中填写“均值控制图”,点“完成”即可。此时生成的表共有28个点,后3个点为控制线点,单击“常用”工具栏中的绘图选“直线”,按此3点画平行线并分别选用3种不同的颜色加以区分。 按上述方法同样可以绘出R图。上述步骤完成后,即生成表1及图1、图2。 2.2 控制状态的判断 标出的点如果在控制界限以内,工艺过程就处于控制状态;若越出界限,则说明工艺过程出现异常,因此质量特性就会显示出很大的波动。R控制图的标点如果越出界限,就表示工艺过程正在发生使特性分布差异幅度增大的变化;如果32控制图的标点越出界限,主要表示工艺过程正在发生使均值产生变化的原因。 3 结语 3.1 均值一极差控制图,使我们方便地观察到在生 产过程中所产生的不能控制的点,从而更准确、客观地分析生产中出现的问题,帮助企业区别产品质量的异常波动和正常波动,以便及时调整、排除影响工序的异常原因,进一步提高产品质量。 3.2 利用EXCEI 软件绘制均值一极差控制图,操作简单,使质量管理工作更方便、快捷。3.3 利用EXCEI 软件不但可绘制均值一极差控制图,还可绘制均值一标准偏差控制图和计数控制图,其中包括不合格品数控制图、不合格品率控制图、缺陷数控制图及单位缺陷数

MSA均值极差图

你测量的够“准确”吗?

7.1.5.1.1测量系统分析 应进行统计研究来分析在控制计划所识别的每种检验、测量和试验设备系统的结果中呈现的变异。所采用的分析方法及接受准则,应与测量系统分析的参考手册相一致。如果得到顾客的批准,其他分析方法和接收准则也可以应用。 替代方法的顾客接受记录应与替代测量系统分析的结果一起保留(见第9.1.1.1条)。注:测量系统分析研究的优先级应当着重于关键或特殊特性或过程特性。

今天要讲的就是AIAG 测量系统分析(MSA)手册提到的GRR分析方法。 测量系统分析AIAG 测量系统分析(MSA)ANFIA 《AQ 024CL 测量系统分析(MSA)》 附录 B:参考书目——汽车行业补充

一般在下列情况下需要进行MSA?新产品 ?新的测量员 ?新的测量设备 ?测量方法变化后 ?测量设备维修后 ?测量环境变化后 ?其它情况

第一章测量系统简介 什么是测量系统分析 P 人/程序W 零件(样品) I 测量仪器 GAUGE S 标准 E 环境

校准 ⒈确定示值误差,并可确定是否在预期的允差范围之内 ⒉得出标称值偏差的报告值,可调整测量器具或对示值加以修正⒊给任何标尺标记赋值或确定其他特性值,给参考物质特性赋值⒋确保测量器给出的量值准确,实现溯源性。 ⒌校准是在规定条件下进行的一个确定的过程,用来确定已知输入值和输出值之间的关系的一个预定义过程的执行。 测量系统分析MSA 使用数理统计和图表的方法对测量系统的分辨率和误差进行分析,以评估测量系统的分辨率和误差对于被测量的参数来说是否合适,并确定测量系统误差的主要成分。 测量系统分析与校准的区别 校正只能代表该量具在特定场合(如校准场所)的某种“偏移”状况,不能完全反映出该量具在生产制造现场可能出现的各种变差问题。 MSA代表的是整个系统的状况。

相关主题