搜档网
当前位置:搜档网 › DN1600多层直接冷激式氨合成塔结构设计

DN1600多层直接冷激式氨合成塔结构设计

DN1600多层直接冷激式氨合成塔结构设计
DN1600多层直接冷激式氨合成塔结构设计

1绪论

现今氨合成工艺在我国氮肥厂得到广泛的应用。展望国内氨合成塔内件可以说种类繁多,绝大多数的氨厂合成操作压力为31.36MP&合成塔内件为传统的冷管型内件。其中三套管、单根并流、双套管式内件占大多数。此外,另有一批冷管改进型内件:比如川J型、YD型、NC型、轴径向、副产蒸汽式等。塔内换热器大部分为列管式,还有少数为螺旋式、波纹板式。小型氨厂大部分采用? 600、? 800直径塔。日产合成氨达80t、100t、150t不等。中型氨厂大多采用? 1000、? 1200直径塔。高压筒体高度为13.5?16m日产氨200t、250t、290t不等。传统型内件氨净值大部分为9%?12%之间,改进型内件在12%?16%之间。合成塔阻力降0.6?1.2MP&配置的余热回收装作吨氨副产蒸汽为600?800kg/t NH 3, 压力为1.3?2.5MP&

下面简单介绍两种内件:

全冷激式内件全冷激式内件是一种在中小型氨厂推广使用的新型内件,它与传统内件(内冷式内件)有本质区别,将圆催化剂中的冷管取消,将一个大的催化剂反应床分割为若干个小的催化剂反应床,床层之间采取冷激换热的方式将反应热一直,以便将反应能继续进行下去。冷激式内件是多层绝热、层间换热式内件中最简单的一种。它与层间水冷式内件几乎同时应用与多种合成氨厂。它具有结构简单,运行可靠的特点。此种内件根据合成系统工作压力、催化剂活性温度、催化剂温区范围、反应热回收方式等因素以及要达到的氨净值来确定催化剂床的数量。

多层换热式内件具有三大特点:

(1)多层绝热,层间换热。用未反应的气体作为冷源,一方面将反应后的热气体热量移走;另一方面自身温度提高达到第一绝热床时的零米温度。

(2)催化剂筐采用径向型

(3)宽温区催化剂

对于整台合成塔,需设计和制造外壳,所设计的外壳具有一下特点:

(1)球形封头结构成熟,使用材料较省,若采用锻件,则将增加一倍以上的重

量。

(2)多层包扎筒体国内制造经验丰富。成熟可靠,材料也易于解决,设备安全

性高。

(3)顶部大开口大平盖便于内件安装和维修,便于催化剂装填和卸除,大盖的

安装起吊比较方便,顶部的管口易于布置。

(4)顶部筒体密封采用双锥垫结构密封使用成熟,密封可靠。

塔设备的作用是实现气(汽)-液相或液-液相之间的充分接触,从而达到相际间进行传质的目的。塔设备广泛应用于合成、蒸馏、吸收、介吸、萃取、气体的洗涤、增湿及冷却等单元操作。它的操作性能好坏,对整个装置的生产,产品产量、质量、成本以及环境保护、“三废”处理都有较大的影响。因此对塔设备的研究一直是工程界所关注的热点,随着石油、化工的迅速发展,塔设备的合理造型及设计将越来越受到关注和重视。

氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位;同时也是能源消耗的大户,世界上大约有10%勺能源用于生产合成氨。氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70%勺比例,称之为“化肥氨” 同时氨也是重要的无机化学和有机化学工业基础原料,用于生产铵、胺、染料、炸药、制药、合成纤维、合成树脂的原料,这部分约占30%勺比例,称之为“工业氨”。未来合成氨技术进展的主要趋势是“大型化、低能耗、结构调整、清洁生产、长周期运行”。

在合成氨流程中,氨合成塔是其最主要的部分。氨合成装置的结构也是种类繁多,具体情况如下。

(1)按触煤层反应热的取走方式分类

触煤层反应热的取走方式有两种:内冷式和冷激式。

(2)按触煤层气流反向分类

触煤层的气流方向也有两种:轴向——气体沿塔的轴向通过触煤层;径向一—气体在触煤层内作径向流动。

轴向合成塔

径向合成塔

轴径向合成塔

(3)按外形分类

立式合成塔

卧式合成塔

球形合成塔

(4)按合成塔氨日产量分类

大型合成塔(日产1000t以上,包括1000t)

中型合成塔(日产150t左右)

大型合成塔(日产50t左右)

三种冷激式合成塔:

(1)多层轴向冷激式合成塔

(2)三层冷激式径向合成塔

(3)两层径向冷激式合成塔(托普索型)

国内外氨合成工业的发展状况

合成氨是重要的化工产品,可以制成尿素、硝酸按和碳酸氢氨等氨素肥料。

合成氨工业是氮肥工业的基础,对农业生产起着重要作用。人们常称合成氨为高能耗产品。这有两层含义,一为氨本身热值较高,气氨的热值为22.488X 106kJ/t, 二为生产过程中损耗了大量能量。目前常规的合成氨技术能量消耗占总成本的 70%,加上合成塔的庞大及工艺流程的复杂,使合成氨工业具有投资大、能量消耗巨大、停产维修困难、运行费用高等缺点。目前,我国中小型化肥厂的能耗为 44X 106~71 X 106kJ/t;而国外先进的制氨工艺己降至 30X 106kJ/t左右。因此降低合成氨的能耗,简化工艺过程,成为合成氨研究的一个重要方向。

(1)国内合成氨工业发展的现状

在国内,七十年代之后,氨合成工艺的合成压力是逐年递增。与国外合成氨工艺的合成压力逐年降低的趋势恰恰相反。目前普遍采用31.4MPa高压操作,致使能耗高居不下。大化肥和小化肥的科技进步与技术改造过程充分表明,合成氨工业的技术进步趋势是企业上规模,研发和使用节能型低温低压高活性氨合成催化剂,降低合成压力再辅以先进的工艺和设备,才能达到节能降耗的目的。

中国合成氨生产是在20世纪30年代开始的[6],经过几十年的努力,我国现有大型(30万吨/年)合成氨厂31家、中型56家、小型828家。近几年我国合第3页共66

成氨产量约3000多万吨,2005年需求约为3500万吨,都居世界首位,是美国的2倍。合成氨工业每年消耗煤炭 4000多万吨(标煤)、电力400多亿kwh就业人数近百万人。

在大中小三类企业中,引进的大型装置的能耗接近国外水平,而中小企业(占全国总产量的52.14%)的成本远高于大型装置,其能耗则高出先进水平近一倍。巨大的经济利益始终推动着合成氨工业及其催化剂的技术进步与发展,降低能耗是合成氨工业技术进步的核心。

(2)国外合成氨工业发展的现状

自本世纪20年代第一座合成氨装置投产以来,到60年代中期,合成氨工业在欧洲、美国、日本等地区已发展到相当高的技术水平。美国Kelofgg公司首先

开发出以天然气为原料、日产干吨的大型合成氨装置,在美国投产后,使吨氨能耗达到42.OGJ的先进水平。与此同时,美国Braun公司、丹麦Topsoe公司、英国ICI公司、日本Toyo公司等世界各大制氨公司,也都积极从事制氨技术的开发工作,形成了各具特色的工艺路线,如丹麦Topsoe公司和英国Icl公司在以

轻油为原料的制氨技术方面,处于世界领先地位,这是合成氨工业发展史上第一次技术变革和飞跃。70年代中期,由于世界石油危机,能源价格不断上涨,严重冲击着世界石油危机,能源价格不断上涨,严重冲击着合成氨工业,造成成本上升、经济效益下降,在这种严峻的形势下,世界上各合成氨大公司都以节能为目标,竞相开发出各具特色的节能型新工艺流程,合成氨工业在80年代又经历

了第二次突破性的技术变革。如美国Kellgog公司、Braun公司、KTI公司、丹

麦Topsoe公司、英国ICI公司、德国Uhde公司、意大利Mnoetdsno公司等都积极开发新流程及与新流程相适应的高效催化剂和新设备,借以提高制氨技术在世界上的竞争能力。

近年来,为了节能降耗、增加产量,在传统工艺的基础上,国内外均推出了一系列节能型氨合成工艺技术及流程,其主要改进的目的是增加氨合成转化率(提高氨净值)、降低合成压力、减小合成回路压降、合理利用能量。

(3)合成氨工业的发展

近年来,氨合成工艺技术已取得长足进步。特别是市场经济体制的建立,各

氮肥企业为了在市场竞争中走在前列,纷纷围绕节能降耗,加大技改力度,为氨

第4页共66页

氨合成塔 (2)

氨合成塔 在高压、高温下用来使氮气和氢气发生催化反应以进行氨合成的设备。氨合成塔是合成氨厂的心脏,是一种结构复杂的反应器。 目录 ?1基本资料 ?2技术原理 ?内部换热 ?间断换热式 氨合成塔- 基本资料 在高压、高温下用来使氮气和氢气发生催化反应以进行氨合成的设备。氨合成塔是合成氨厂的心脏,是一种结构复杂的反应器。 现在工业上氨合成是在压力15.2~30.4MPa、温度400~520℃下进行的,为防止高压、高温下氢气对钢材的腐蚀,氨合成塔由耐高压的封头、外筒和装在筒体内耐高温的内件组成。内件外有保温层,操作时进塔的冷气体流过内、外筒间的环隙,从而避免外筒温度过高。这样,外筒只承受高压,可用低合金高强度钢制作。内件虽然是在高温下操作,但是只承受氨合成塔进出口的压力差,可用耐热镍铬合金钢制作。内件包括催化剂筐和换热器两个主要部分,筐内装铁催化剂,氨合成反应在此进行。从催化剂筐出来的热气体温度通常在460℃

以上,进氨合成塔的冷气体温度根据流程的不同,有的为20~30℃,有的可达140℃以上。为了使进氨合成塔的气体能加热到反应温度,同时又能冷却反应后气体,在塔内还设有换热器。换热器有列管式、螺旋板式和波纹板式,其中以列管式采用最多。氨合成催化剂在开车之前必须还原(见氨合成),还原需要提供一定的热量,为此中小型氨合成塔内部装有电加热器,大型氨合成塔则采用塔外设置开工加热炉的办法来解决。在给定的铁催化剂和压力下,氨合成温度不同,反应速度也不同。对于一定的氨含量,氨合成反应速度最大时的温度称为最佳温度,此最佳温度随着氨含量增大而降低。由于氨合成为放热反应,催化剂床层的温度将随着反应进行而不断升高。为使氨合成反应能在接近最佳温度下进行,需要采取措施移走多余的热量。工业上按传热方式区分催化剂筐的类型。[1] 氨合成塔- 技术原理 内部换热 式又称连续换热式。特点是在催化剂床层中设置 冷却管,通过冷却管进行床层内冷热气流的间接 换热,以达到调节床层温度的目的。冷却管形式 有单管、双套管和三套管之分,根据催化剂床层 和冷却管内气体流动方向的异同,又有逆流式和 并流式冷却管之分。以并流双套管式氨合成塔为 例(图1),气体从塔顶部进入,在环隙中沿塔壁

布朗氨合成流程及合成氨培训教材

布朗氨合成流程及合成氨培训教材由于布朗工艺{4}的特殊流程,合成气最终要经过深冷精制以除去其中所含多余的氮气,因而气体质量与其他冷法精制流程的氮洗大体相当,即不含微量水分及二氧化碳。这种高质量的合成补充气,系所有深冷净化法的一大优点。它对氨合成系统十分有利,可有效地提高合成系统的能力,降低消耗。 图(4-19-9)为布朗三台合成塔,三台废热锅炉的氨合成工艺流程。补充气经过压缩冷却后 在循环段中与循环气相混合,然后经过预热去合成塔(1),(2),(3)。每台合成塔出口都设有废热锅炉,副产12.5MPa

高压蒸汽。合成塔的出口气,经过废热锅炉和预热器回收热量后,再经水冷器,冷交换器,二级氨冷器,降温至4.4℃并分离掉冷凝液氨,然后进冷交换器回收冷量,并升温至32℃,进入透平压缩机循环段与补充合成气混合去氨合成塔,从而构成氨合成的循环回路。 此氨合成流程的合成压力为15MPa。第三氨合成塔出口气中含氨可达21%,入塔气中含氨4%左右。 四、卡萨里法合成氨流程 卡萨立高压法也是高压法的一种,意大利人卡萨里所创。氢氮混合气被压缩到50~90MPa后进入循环系统,催化剂在500℃操作,采用的空间速度为12000,出塔气中氨含量15%,虽然用循环法生产,但不用循环压缩机而用气体喷射泵,只需将补充进入系统的3:1的氢氮混合气压力提高一点,就可作为动力源而带动整个系统的气体进行循环。此法最大的特点在与催化剂床层的温度控制,在高温高压下催化剂活性很易衰老,为此卡萨里对循环系统氨的分离使用冷凝的方法,出合成塔的气体被冷却到一定的温度,其中反应生成的氨就被冷凝分离掉。由于这种冷凝的做法,使得气体中残留一定量的氨分压,参见图(1-2-5)3.气体在60MPa下冷凝之后还有大约2%到3%的氨保留在气相中,这就使得循环到合成塔催化剂层进口处时可以减慢氨的生成反应,因此也就避免了产生过热现象。而哈伯法是用水洗分氨。合成塔进口处氨含量接近于0。而克劳德法则更是用新鲜氢氮气一次通过,故这两种工艺对催化剂的反应确实是要剧烈的多。据报道,同样的催化剂在卡萨里法可用6到12个月。每千克的催化剂产率为0.5到0.6的氨。

合成塔的设计

合成塔的设计

合成塔的设计 一、概述 合成氨是世界上较为重要的基础化学品之一,氨既是主要最终产品,也是重要的中间体。氨的用途,无论是直接应用还是作为中间体,主要均在化肥领域。在无机和有机化学品制造中,氨也有许多其他较次要的用途,例如制造**和丙烯晴。 氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位;同时也是能源消耗的大户,世界上大约有10 %的能源用于生产合成氨。氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70 %的比例,称之为“化肥氨”;同时氨也是重要的无机化学和有机化学工业基础原料,用于生产铵、胺、染料、炸药、制药、合成纤维、合成树脂的原料,这部分约占30 %的比例,称之为“工业氨”。未来合成氨技术进展的主要趋势是“大型化、低能耗、结构调整、清洁生产、长周期运行”。 从20 世纪20 年代世界第一套合成氨装置投产,到20 世纪60 年代中期,合成氨工业在欧洲、美国、日本等国家和地区已发展到了相当高的水平。美国Kellogg 公司首先开发出以天然气为原料、日产1 000 t 的大型合成氨技术,其装置在美国投产后每吨氨能耗达到了4210 GJ 的先进水平。Kellogg 传统合成氨工艺首次在合成氨装置中应用了离心式压缩机,并将装置中工艺系统与动力系统有机结合起来,实现了装置的单系列大型化(无并行装置) 和系统能量自我平衡(即无能量输入) ,是传统型制氨工艺的最显著特征,成为合成氨工艺的“经典之作”。之后英国ICI、德国Uhde 、丹麦Topsoe 、德国Braun 公司等合成氨技术专利商也相继开发出与Kellogg 工艺水平相当、各具特色的工艺技术,其中Topsoe 、ICI 公司在以轻油为原料的制氨技术方面处于世界领先地位。这是合成氨工业历史上第一次技术变革和飞跃。传统型合成氨工艺以Kellogg 工艺为代表,其以两段天然气蒸汽转化为基础,包括如下工艺单元:合成气制备(有机硫转化和ZnO 脱硫+ 两段天然气蒸汽转化) 、合成气净化(高温变换和低温变换+ 湿法脱碳+ 甲烷化) 、氨合成(合成气压缩+ 氨合成+ 冷冻分离) 。 传统型两段天然气蒸汽转化工艺的主要特点是:①采用离心式压缩机,用蒸汽轮机驱动,首次实现了工艺过程与动力系统的有机结合。②副产高压蒸汽, 并将回收的氨合成反应热预热锅炉给水。③用一段转化炉烟道气预热二段空气,提高一段转化压力,将部分转化负荷转移至二段转化。④采用轴向冷激式氨合成塔和三级氨冷,逐级将气体降温至- 23 ℃,冷冻系统的液氨亦分为三级闪蒸。在传统型两段蒸汽转化制氨工艺中,Kellogg 工艺技术应用最为广泛,约有160 套装置,其能耗为3717~41. 8 GJ / t 。经过节能改造后平均能耗已经降至3517 GJ / t 左右。 我国目前有大型合成氨装置共计34 套,生产能力约1 000 万t/ a ;其下游产品除1 套装置生产硝酸磷肥之外,均为尿素。按照原料类型分:以天然气 (油田气) 为原料的17 套,以轻油为原料的6 套,以重油为原料的9 套,以煤为原料的2 套。除上海吴泾化工厂为国产化装置外,其他均系从国外引进,按照专利技术分:以天然气和轻油为原料的有Kellogg传统工艺(10 套) 、Kellogg - TEC 工艺(2 套) 、Topsoe工艺(3 套) ,及20 世纪90 年代引进的节能型AMV工艺(2 套) 、Braun 工艺(4 套) 、KBR 工艺(1 套) ;以渣油为原料的Texaco 工艺(6 套) 和Shell 工艺(3套) ;以煤为原料的Lurgi 工艺(1 套) 和Texaco 工

合成氨毕业设计任务书

本科毕业设计 任务书 题目年产20万吨合成氨变换工段及换热器的设计 学院化学与材料工程专业化学工程与工艺班级06化工学号0611401110学生姓名范重泰指导教师乔迁 温州大学教务处制

温州大学本科毕业设计任务书 一、设计的主要任务与目标: 主要任务: 1.阅读资料,了解国内外合成气和CO变换工艺 2.根据实习地—巨化集团合成氨厂的资料,确定CO变换工艺 3.完成设计说明书及相应的图纸 主要目标: 年产20万吨合成氨变换工段工艺以及换热器的设计 1.完成带控制点的工艺流程图 2.完成换热器的设备图 二、设计的主要内容与基本要求: 主要内容: 1.确定合成氨变换工段的工艺路线,生产方法的论证 2.根据规定的年产量准确的进行车间的物料和热量衡算。 3.根据确定的生产工艺条件并结合物料横算对换热器进行衡算。 4.计算换热器设备的体积、主要尺寸和进出口管径及材质规格。在设计中,记录各个过程的详细计算过程。 5.设计图纸的绘制,工段工艺流程图和设备图.

基本要求: 1.完成对生产工艺的设计及工艺流程图 2.完成换热器的设计及相应的设备图 三、计划进度: 1、2010.2.14-2010.2.19 查阅相关资料、确定论文的题目、资料收集并整 理。 2、2010.2.20-2010.2.27 确定设计方案,并做开题报告、任务书。 3、2010.2.28-2010.5.10 进行设计 4、2010.5.11-2010.5.19 进行总结、撰写论文并上交 5、2010.5.20-2010.5.27 导师审阅论文及修改 6、2010.5.28 准备论文答辩

四、主要参考文献: [1] 陈声宗. 化工设计[M] .北京: 化学工业出版社, 2001: 15-81. [2] 胡建生,江会保. 化工制图[M].北京:化学工业出版社 [3] 贺匡国.化工容器及设备简明设计手册[M].北京:化学工艺出版社. [4] 赵军,张有忱,段成红.化工设备机械基础[M].北京:化学工业出版社. [5] 陈英南,刘玉兰. 常用化工单元设备的设计[M].上海:华东理工大学出版社. [6] 董大勤. 化工设备机械基础[M].北京: 化学工业出版社, 2002: 164-202, 247-308. [7] 贾绍义, 柴诚敬. 化工原理课程设计[M].天津: 天津大学出版社, 2002(2007.重印): 101-134. [8] 谢端绶, 苏元复. 化工工艺算图(第一册)[M].北京: 化学工业出版社, 1982(1985.重印): 1-158. [9] 胡建生,江会保. 化工制图[M].北京:化学工业出版社. [10] 陈声宗.化工过程开发与设计[M].北京:化学工业出版社,2005 [11] 茅晓东,李建伟.典型化工设备机械设计知道[M].上海:华东理工大学出版社. [12] 崔小明. 国外聚丙烯生产工艺及催化剂技术进展[J].科技经纬.2005年第一期. [13] 崔小明聚丙烯的供需现状及发展前景[J].化学工业.2008年5月第26卷第5期. [14] 孙涛,张宝森,刘田库. 聚丙烯生产工艺进展[J].辽宁化工.2007年6月第36卷第6期 指导教师(签名): 年月日学院审核意见: 签名: 年月日注:任务书必须由指导教师和学生互相交流后,由指导老师下达并交学院本科毕业设计领导小组审核后发给学生,最后同学生毕业论文等其它材料一起存档。

GC型φ1800三轴一径氨合成塔的设计及运行总结

GC型φ1800三轴一径氨合成塔的设计及运行总结 1概述 江苏灵谷化工有限公司总部原有合成氨系统两套,一套为老合成系统(φ1000合成系列),规模为年产8万吨合成氨(于1998年10月份投产),简称老系统;另一套为新合成系统(φ1200合成系列),规模为年产12万吨合成氨(2002年4月投产),简称新系统。两套系统生产能力为20万吨合成氨。老系统(φ1000合成)设备陈旧、管路复杂、系统阻力大,尤其是触媒已严重老化(设计寿命为3年,实际已使用了5年半),严重影响了生产力,也不利于安全与节能。为进一步增加市场竞争能力,为取得经济效益的最大化和发展空间,实现我公司的战略要求,公司于2003年10月份决定在合成工段再扩建一套18万吨合成氨系统(即φ1800合成)。同时将拆除下来的φ1000合成塔、高压管道及附属设备等移至姜堰重组公司,配套了姜堰重组公司扩能技改工程。公司领导和有关技术人员经过各方调研和细致分析、论证后,确定南京国昌公司作为设计、制造“GC型φ1800三轴一径合成塔内件及系统配套设备”单位。合成塔外筒制造,选定由上海化机厂制作;所有高压管件均选定浙江工业大学设计、生产、制造,并交送现场安装;安装单位选定江苏省工业设备安装公司。 φ1800合成系统终于在2004年3月29日一次开车投运成功。投运至今已有5个多月,从运行情况及各项技经数据显示,基本达到了设计的预期效果,为本公司的健康发展奠定了基础。 2合成系统设计: 2.1设计参数及技术特性: 合成系统压力25-28Mpa 入塔气量295600Nm3/h 新鲜气量72000Nm3/h 冷却水温度34℃ 气氨总管压力0.2Mpa 氨产量25TNH3/h 合成塔阻力≤0.8Mpa 系统压差≤2.0Mpa 2.2工艺流程选择: 由透平循环机出口油分来的气体分为两股,一股约占入塔总气量30%的气体通过塔主阀送至塔上部沿合成塔环隙自上而下,约升至86℃出塔后再分为两股,一股作为冷激气直接送至塔顶作为控制径向段触媒层温度。另外还有一股与约占总气量70%的气体合并,进入加热器通过加热至180℃后的气体又分为两股,一股直接从合成塔底部入塔,通过下部换热器管层与两次出塔气换热,温度升至380℃-400℃由合成塔中心管引入触媒层。另一股作为冷激气通过f0、f1、f2调节阀分别控制塔内上面一、二、三层触媒层温度,经反应后的气体通过合成塔下部换热器壳层与两次进塔气(管程)换热后出塔,出合成塔后气体约340℃进入废热锅炉,从废热锅炉出来的气体温度约223℃进入循环换热器热气入口,换热后温度约87℃-95℃的气体进入水冷器,经冷却后的气体温度约37℃进入冷交换器管外。由水冷器、冷交中冷凝的液氨在此分离(约分离掉70%的液氨),分离后的气体再进入氨冷器,气体中氨进一步得到冷凝,然后出来的气液温度约-3℃--5℃进入氨分离器,冷凝后的液氨进一步得到分离,然后出来后的气体进入冷交换热器冷气入口,出冷交

毕业设计任务书及范本

2008级毕业设计任务书 专业名称:模具设计与制造 指导老师: 班级名称: 教研室:模具教研室 系(部):机械制造工程系 二O 一O 年十月日

一、目的与要求: 毕业设计是在模具设计与制造专业理论教学之后进行的实践性教学环节。是对所学知识的综合应用能力检验: 1.培养学生认真负责、实事求是的科学态度和严谨求实作风。 2.培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能。 3.培养学生调查研究,收集资料,熟悉有关技术文件,运用国家标准、手册、资料等工具书进行模具相关设计计算的能力、编写技术文件等独立工作能力。 4.培养学生熟悉工厂设计流程,为从事相关工作奠定基础。 二、选题: 1.选题要求 设计题目一般由指导老师根据教学计划、教学大纲和专业培养目标确定。机械制造与自动化专业选题原则: (1)课题要具有真实性; (2)围绕模具设计与制造的培养,可以选择典型零件模具设计。 (3)对已从事专业相关岗位的学生,设计的题目可结合从事的工作考虑。 (4)每1-2人为一课题组,每人课题设计的内容不允许雷同。允许一大课题下分若干小课题,但必须说明每人所承担的部分。多人合写一份论文应为不合格; (8)毕业设计课题一经确认,不得更改。 2.自主选题 根据学生本人实践实习所在单位的具体情况,尽可能结合生产实际,学生可自主选题,自主选题必须通过指导教师审查认可。 3、参考选题 根据企业生产实际情况、专业培养目标和专业教学计划特点,拟定以下课题作为毕业设计参考课题: 冲压模具设计课题如下: (1)压线卡冲压模具设计(2)保护罩冲压模具设计 (3)支架冲压模具设计(4)电极板冲压模具设计 (5)托架冲压模具设计(6)靠板冲压模具设计

合成氨车间二氧化碳吸收塔设计毕业设计

摘要 在工业合成氨的生产过程中,粗原料气经过一氧化碳变换以后,变换气中除氢气外,还有二氧化碳和甲烷等成分,其中二氧化碳含量多达15%-35%。二氧化碳不仅降低氨合成催化剂的活性,又是制造尿素、碳酸氢铵等氮肥的原料,因此要想法除去。 本设计的目的是根据所给技术特性参数,合理设计Ι段二氧化碳吸收塔,用来脱除变换气中的二氧化碳气体。根据《GB150-1998钢制压力容器》、《JBT4710-2005钢制塔式容器》等标准,通过常规设计方法步骤进行设计,包括塔体的筒体和封头壁厚计算和水压试验,接管、接管法兰、人孔法兰和塔内件的选取,裙座的计算和设计,开孔补强计算,风载荷和地震载荷的计算和校核,以及筒体和裙座的应力分析等。强度校核时,大部分情况下将受压元件的应力限制在材料的需用应力以内,用来确保设计的安全性和经济性。 关键词:二氧化碳合成塔;填料塔;合成氨

引言 塔设备又称塔器,塔设备有许多种类型,塔设备是化工、石油化工和炼油生产中最重要的设备之一。用以使气体与液体、气体与固体、液体与液体或液体与固体密切接触,并促进其相互作用,以完成化学工业中热量传递和质量传递过程。 二氧化碳吸收塔,是利用碳酸钾溶液来脱去变换气中的二氧化碳气体,要保证较高的脱碳效率和设备的安全性能,必须对吸收塔系统进行合理的设计,包括吸收塔的尺寸设计,吸收塔材料的选择以及塔部件的选取。吸收塔的主要部件有外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体、液体进出口接管等。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。塔内件是填料塔的组成部分,它与填料及塔体共同构成一个完整的填料塔。塔内件的作用是使气液在塔内更好地接触,以便发挥填料塔的最大效率和最大生产能力,因此塔内件设计的好坏直接影响填料性能的发挥和整个填料塔的性能。另外,填料塔的“放大效应”除填料本身因素外,塔内件对它的影响也很大。填料塔的内件主要有:填料支撑装置、填料压紧

整体锻焊式氨合成塔主要设备材料的选择及论证

整体锻焊式氨合成塔主要设备材料的选择及论证 1.1 氨合成塔材料的选择原则 在氨合成塔设计过程中,选择材料是重要的一环。材料选择的正确与否,将直接影响到设备的成本、订货、材料消耗量以及设备能否长期安全运行等。 通常选材时应当考虑以下几个方面: 1.材料的资源符合国情、价格便宜、容易获得; 2.使用安全,具有良好的综合机械性能。即强度高、塑性和抗断性好,以及有较低的冷脆倾向、缺口和时效敏感性; 3.制造和加工性能良好; 4.具有良好的抗氢、氮腐蚀的能力。 由于氨合成塔的制造方法不同,各个组成部分工作条件不同,因而对材料的要求也不相同,例如对层板包扎式的内筒主要要求是:组织严密、质量好、强度高、延伸率大、冲击韧性好、可焊性好以及耐腐蚀等,而对层板则首先要求机

械性能高及焊接性能良好。 一般对筒体和内件以及废热锅炉用材还有如下具体要求: 1.宜用电炉、平炉或氧气顶吹转炉冶炼的镇静钢; 2.有良好的可焊性; 3.除了要求在使用温度下有较高强度外,还应有良好的塑性(内筒的材料通常要比层板或钢带有更好的塑性),一 般要求内筒 s 16% δ≥、层板及钢带s14% δ≥,单层筒体s15% δ≥;同时还须有良好的冲击韧性和较低的缺口敏感性; 4.和介质直接接触的材料(如内筒和单层容器等),还必须具有抗氢、氮、氨腐蚀的性能; 5.热稳定性好。 1.2 外筒材料的选择与论证 1.2.1 筒体材料的选择与论证 整体锻焊式筒体常用材料有Q235-B,16Mn,Cr-Mo-V 钢,SAE3230,SAE6130,AOS1135E等。

本设计氨合成塔外筒的材料选择16Mn锻造用钢。由查机械设计手册(第一卷)第3篇可知16Mn的许用应力及机械性能如表4-1和表4-2。 表4-1 16Mn的许用应力 表4-2 16Mn的力学性能

年产10万吨合成氨合成工段设计_毕业设计

年产10万吨合成氨合成工段设计毕业设计 年产10万吨合成氨合成工段设计 1引言 氮是植物营养的重要成分之一,大多数的植物不能直接吸收存在于空气中的游离氮,只有当氮与其他元素化合以后,才能被植物吸收利用。将空气中的游离氮转变为化合态氮的过程称为“固定氮”。 20世纪初,经过人们的不懈探索,终于成功的开发了三种固定氮的方法:电弧法、氰氨法、和合成氨法。其中合成氨法的能耗最低。1913年工业上实现了氨合成以后,合成氨法发展迅速,30年代以后,合成氨法已成为人工固氮的主要方法。 1.1氨的性质 氨化学式为NH3常温下为无色有刺激性辛辣味的恶臭气体,会灼伤皮肤、眼睛,刺激呼吸道器官粘膜,空气中氨的质量分数占0.5% ~ 1.0%就会使人在几分钟内窒息。氨的主要物理性质见表0-1。氨在常温加压易液化,称为液氨。氨易溶于水,与水反应形成水合氨(NH3 + H2O=NH3·H2O)简称氨水,呈弱碱性,氨水极不稳定,受热分解为氨气和水,氨含量为1%的水溶液PH为11.7。浓氨水氨含量为28% ~ 29%。氨的化学性质比较活泼,能与酸反应生成盐,如与盐酸反应生成氯化铵;与磷酸反应生成磷酸铵;与硝酸反应生成硝酸铵;与二氧化碳反应生成甲基甲酸铵,脱水后生成尿素等等。 表1-1氨的主要物理性质[1]

年产10万吨合成氨合成工段设计 1.2氨的用途 氨主要用于制造化学肥料,如农业上使用的所有氮肥、含氮混合肥和复合肥等;也作为生产其他化工产品的原料,如基本化学工业中的硝酸、纯碱、含氮无机盐,有机化学工业的含氮中间体,制药工业中磺胺类药物、维生素,化纤和塑料工业中的己酰胺、己二胺、甲苯二异氰酸酯、人造丝、丙烯腈、酚醛树脂等都需要直接或间接地以氨为原料。另外在国防工业尖端技术中,作为制造三硝基甲苯、三硝基苯酚、硝化甘油、硝化纤维等多种炸药的原料。氨还可以做冷冻,冷藏系统的制冷剂。 1.3合成氨的发展历史 1.3.1氨气的发现 十七世纪30年代末英国的牧师、化学家S.哈尔斯(HaLes,1677~1761),用氯化铵与石灰的混合物在以水封闭的曲颈瓶中加热,只见水被吸入瓶中而不见气体放出,1774年化学家普利斯德里重做该实验,用汞代替水来密封,制得了碱空气(氨),并且他还研究发现了氨的性质,发现氨极易溶于水、可以燃烧,还发现该气体通以电火花时其容积增加,而且分解为两种气体:H2和N2,其后H.戴维(Davy,1778~1829)等化学家继续研究,进一步证明了2体积的氨通过电火花放电后,分解为1体积的氮气和3体积的氢气[2]。 1.3.2合成氨的发现及其发展 19世纪以前农业上所需的氮肥来源主要来自于有机物的副产物和动植物的废物,如粪便、腐烂动植物等等,随着农业和军工生产的发展的需要,迫切的需要建立规模巨大的探索性的研究,化学家们设想,能不能把空气中大量的氮气固定下来,从而开始设计以氮和氢为原料的合成氨流程。19世纪,大量的化学家开始试图合成氨,他们试图利用高温、高压、电弧、催化剂等手段试验直接合成氨,均未成功。19世纪末,随着化学热力学、动力学和催化剂等领域取得一定进展后,对合成氨反应的研究有了新的进展。1901年法国物理化学家吕·查得利开创性地提出氨合成的条件是高温、高压,催化剂存在。1912

本科毕业设计任务书(范本)

(说明:请把红色字体部分根据个人题目的不同进行更改) 广州大学华软软件学院 本科毕业设计任务书 设计题目浅析计算机病 毒的免杀技术 系别网络技术系 专业网络工程 班级10网络设计与管理(1)班 学号1040217901 学生姓名郑天骄 指导教师田宏政 下发时间:2014年10月28日

毕业设计须知 1、认真学习和执行广州大学华软软件学院学生毕业论文(设计)工作管理规程; 2、努力学习、勤于实践、勇于创新,保质保量地完成任务书规定的任务; 3、遵守纪律,保证出勤,因事、因病离岗,应事先向指导教师请假,否则作为缺席处理。凡随机抽查三次不到,总分降低10分。累计缺席时间达到全过程l/4者,取消答辩资格,成绩按不及格处理; 4、独立完成规定的工作任务,不弄虚作假,不抄袭和拷贝别人的工作内容。否则毕业设计成绩按不及格处理; 5、毕业设计必须符合《广州大学华软软件学院普通本科生毕业论文(设计)规范化要求》,否则不能取得参加答辩的资格; 6、实验时,爱护仪器设备,节约材料,严格遵守操作规程及实验室有关制度。 7、妥善保存《广州大学华软软件学院本科毕业设计任务书》。 8、定期打扫卫生,保持良好的学习和工作环境。 9、毕业设计成果、资料按规定要求装订好后交指导教师。凡涉及到国家机密、知识产权、技术专利、商业利益的成果,学生不得擅自带离学校。如需发表,必须在保守国家秘密的前提下,经指导教师推荐和院领导批准。

课题名称浅析计算机病毒的免杀技术 完成日期:2015年4月30日 一、题目来源及原始数据资料: 随着计算机技术的飞速发展,信息网络已经成为社会发展的重要保证。有很多是敏感信息,甚至是国家机密。所以难免会吸引来自世界各地的各种人为攻击,窃取、篡改、删添等。随着时代的发展,网络已经成为了一个我们生活的必需品。而Web站点已经随处可见,其应用也是遍及各个领域,并已和我们日常生活息息相关。但是针对站点的渗透攻击也是缕缕出现,给我们带来了很大的危胁。因此我们必须展开对Web站点渗透技术的研究。 教师根据学生对站点的内部结构研究结果,分析可能成功的渗透技术,通过模拟攻击过程展示渗透成功之后的效果并寻求解决办法,进而提出一套行之有效的防护措施,顺利完成本次毕业设计任务。 二、毕业设计要求: 要求:详细的Web站点渗透技术的研究。大致可分为以下七部分: 1、网络安全现状的分析; 2、常见的站点结构组成; 3、常见的渗透技术分析; 4、模拟主要的攻击技术; 5、提出防范思路并设计解决方案; 6、必要的实现过程展示; 7、总结与未来工作的展望; 具体要求如下: 1、分析国内、国外的网络安全现状,了解网络安全方面主要存在的问题。 2、了解常见的Web站点结构、机制和原理。 3、了解针对站点的渗透技术。 4、分析主流的渗透攻击技术; a、文件与内存特征码定位; b、压缩整容,加壳免杀;

ⅢJD2000型-φ2200氨合成塔

概述 湖南安淳高新技术有限公司(以下简称安淳公司)从上世纪80年代起,在分析了国际国内氨合成塔内件优缺点的基础上,独创了ⅢJ型氨合成塔内件,取得了国家专利,是国内数种氨合成塔内件中唯一经原化工部鉴定的内件,鉴定结论是,该内件为国内首创,主要技术指标取得突破性进展,达到国际先进水平。安淳公司不断创新、不断进取,随后又推出了ⅢJ99型氨合成内件,包含3个新的国家专利技术。ⅢJ型、ⅢJ99型氨合成内件经由φ800、φ1000到φ1200;后又开发了ⅢJD2000型φ1400、φ1600、φ1800、φ2000氨合成内件。单塔年产氨能力由20 kt(φ600塔)发展到180 kt、200 kt。近几年开发的ⅢJD2000型-φ2200氨合成塔,在技术上又有较大的提升;单塔生产能力日均达850~910 t,受到了用户的青睐。 2 ⅢJD2000型-φ2200氨合成塔的设计思想 为实现单系统生产能力规模化和进一步降低能耗,安淳公司在ⅢJD2000型-φ1800、φ2000氨合成内件的基础上,引入新的理念,设计了ⅢJD2000型-φ2200氨合成内件,具体如下。 (1)充分发挥第一绝热层的作用。进入零米未反应气氨含量低,距离反应平衡很远,反应速度很快,尽量在开始反应的第一层多产氨,使第一层之氨净值达到8%~9%,即第一绝热层温升110~133 ℃。具体措施如下。 ①增加第一绝热层的高度,第一绝热层设计高度2.5~3.1 m。 ②降低零米温度,提高热点温度。进第一绝热层零米点的循环气,氨含量最低(约2.16%),温度低(370~380 ℃),离反应平衡点最远;如零米温度为380 ℃,将第一绝热层反应终点温度设计为490~513 ℃,则第一绝热层的氨含量增加8%~9%(氨净值),即第一绝热层完成氨合成反应的50%。 (2)第一层绝热反应后的热气体,不再采取冷激,而是用塔内换热器间接冷却后再进入第二层,这样更有利于氨合成反应温度接近最适宜温度曲线。 (3)冷管束(段间冷却器)的气体出口设在催化剂床层表面,使进塔气体100%地通过第一层催化剂,有利于降低零米温度,提高氨净值。 (4)分流气占到近50%,使通过中心管和换热器的气体由原来的65%~70%减少至50%,降低塔阻力。 (5)提高出塔温度。设计最高出塔温度为380 ℃,产生3.0~4.0 MPa过热蒸汽,使回收蒸汽的利用价值更高。 (6)大幅度提高出塔氨含量。 3 ⅢJD2000型-φ2200氨合成塔的结构特点

万吨年合成氨合成工段工艺设计毕业设计

万吨年合成氨合成工段工艺设计毕业设计

四川理工学院毕业设计 9万吨/年合成氨合成工段工艺设计 四川理工学院材料与化学工程学院

摘要 氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位。氨主要用于农业,合成氨是氮肥工业的基础。氨的合成主要有脱硫、转化、净化、合成几个工段。合成氨合成工段的设计,原料采用氮气和氢气,以合成塔为主要设备,在氨冷器、水冷器、气—气交换器、循环机、分离器、冷凝塔等辅助设备的作用下制得液氨,工艺条件为:A201为催化剂,480℃,31Mpa。本设计进行了物料衡算,热量衡算,设备选型计算。 关键词:合成工艺参数衡算设备计算

-Ⅰ- ABSTR Ammonia is one of the most important basic chemical products in the world,Its output of various kinds of chemicals rank first in the world. Ammonia mainly used in agriculture and synthetic ammonia is the basis of nitrogen fertilizer industry. Ammonia synthesis is mainly from the four sections of desulphurization, conversion, decontamination, and synthesis. With using nitrogen and hydrogen as materials and synthesis converter as main equipment, under the action of the auxiliary equipments of ammonia air conditioning, water-cooling device, gas to gas exchanger, circulator, separator, and condenser and so on, in the end, the design of the ammonia synthesis section makes ammoniacalliquor, The process conditions are determined as following:A201 as catalyst, 480℃,31Mpa .The design is be designed to material balance, heat balance and calculation of Devices type. KEY WORDS:synthesis process parameter balance calculation of Devices

年产30万吨合成氨工艺设计毕业论文

年产30万吨合成氨工艺设计毕业论文 目录 摘要........................................................................ I Abstract................................................................... II ...................................................................... IV 1 综述.................................................................. - 1 - 1.1 氨的性质、用途及重要性.......................................... - 1 - 1.1.1 氨的性质................................................... - 1 - 1.1.2 氨的用途及在国民生产中的作用............................... - 1 - 1.2 合成氨生产技术的发展............................................ - 2 - 1.2.1世界合成氨技术的发展....................................... - 2 - 1.2.2中国合成氨工业的发展概况................................... - 4 - 1.3合成氨转变工序的工艺原理......................................... - 6 - 1.3.1 合成氨的典型工艺流程介绍................................... - 6 - 1.3.2 合成氨转化工序的工艺原理................................... - 8 - 1.3.3合成氨变换工序的工艺原理................................... - 8 - 1.4 设计方案的确定.................................................. - 9 - 1.4.1 原料的选择................................................. - 9 - 1.4.2 工艺流程的选择............................................. - 9 - 1.4.3 工艺参数的确定............................................ - 10 - 1.4.4 工厂的选址................................................ - 11 - 2 设计工艺计算......................................................... - 1 3 -

年产10万吨合成氨合成工艺设计毕业设计论文

年产10万吨合成氨工艺设计 摘要:合成氨是化学工业的基础,也是我国化学工业发展的重要先驱,其中氨合成工段是合成氨工艺的中心环节。本设计目的在于对年产10万吨合成氨进行设计,并简要介绍了氨的用途、现状和未来发展趋势。 在中压法和催化剂的条件下,设计合成氨合成工段的生产工艺流程,将精制的氢氮混合气直接合成为氨,然后将所得的气氨从未合成为氨的混合气中冷凝分离出来,最后在未反应的混合气中补充一定量的新鲜气继续循环反应。 在物料衡算中出塔气氨含量达到16.50%,合成氨27.778t/h,合成率为29.133%,由热量衡算得到合成塔、中置锅炉和塔外换热器的热量变化。并根据设计任务及操作温度、压力按相关标准对换热器的尺寸和材质进行选择。塔外换热器采用换热面积为546.97m2的立式列管式换热器。 关键词:氨合成物料衡算能量衡算

The Process Design of 200kt/a Synthetic Ammonia Synthesis Abstract: Ammonia is the basis of the chemical industry, but also an important pioneer of China chemical industry,in which ammonia synthesis section is the central part of the synthetic ammonia process. is to optimize outputting 200,000 t/a of synthetic ammonia synthesis is as the purpose of the design,and the use of ammonia, current situation and future development trend is briefly introduced. The production process of synthetic ammonia synthesis is designed in the medium pressure and catalyst.The refined hydrogen and nitrogen mixture is made into synthesis ammonia by the design,then took the synthesis ammonia gas out of the mixture that has not been become ammonia.At last,the mixture of not reacting is supplied a certain amount of fresh gas to continue to cyclic response. The design of raw material of gas refining section in production process the synthetic ammonia content that gets out from synthetic ammonia tower is made rich to 16.50% in material balance calculations,synthetic ammonia 27.778 t /h,synthetic rate 29.133% in this design of raw material of gas refining section in production process.The heat change of the synthesis tower,the boiler and the heat exchanger is attained by the heat balance,also we selected piping size and material according to the design operation of temperature,pressure and relevant standards.The heat exchanging area of 546.97m2 of vertical tube type exchanger is used as external heat exchanger of tower. Keywords: ammonia synthesis section;material balance accounting;energy balance accounting

合成氨合成工段工艺12

毕业论文(设计) 2012 届 题目合成氨合成工段工艺 专业 学生 学号 小组成员 指导教师 完成日期 2012-04-10

毕业论文(设计)任务书班级日期2012-04-10 1、论文(设计)题目:合成氨合成工段工艺 2、论文(设计)要求: (1)学生应在教师指导下按时完成所规定的容和工作量,最好是独立完成。(2)选题有一定的理论意义与实践价值,必须与所学专业相关。 (3)主题明确,思路清晰。 (4)文献工作扎实,能够较为全面地反映论文研究领域的成果及其最新进展。(5)格式规,严格按系部制定的论文格式模板调整格式。 (6)所有学生必须在月日之前交论文初稿。 3、论文(设计)日期:任务下达日期2011年12月10日 完成日期 2012 年 4 月 10日 4、指导教师签字:

毕业论文(设计)成绩评定 报告

毕业论文答辩及综合成绩

合成氨合成工段工艺 摘要:在氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位; 同时也是能源消耗的大户,世界上大约有10 %的能源用于生产合成氨。氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70 %的比例,称之为“化肥氨”;同时氨也是重要的无机化学和有机化学工业基础原料,这部分约占30 %的比例,称之为“工业氨”。 世界合成氨技术的发展经历了传统型蒸汽转化制氨工艺、低能耗制氨工艺、装置单系列产量最大化三个阶段。根据合成氨技术发展的情况分析, 未来合成氨的基本生产原理将不会出现原则性的改变, 其技术发展将会继续紧密围绕“降低生产成本、提高运行周期, 改善经济性”的基本目标, 进一步集中在“大型化、低能耗、结构调整、清洁生产、长周期运行”等方面进行技术的研究开发。 合成氨生产过程中,换热器应用十分广泛,主要用于热量的交换和回收。变换工段中主要涉及一氧化碳的转化和能量的回收利用,列管换热器在传热效率,紧凑性和金属耗量不及某些换热器,但它具有结构简单,坚固耐用,适用性强,制造材料广泛等独特优点,因而,在合成氨变换工段选择列管式换热器,而本设计主要对该换热器进行相关选计算。 关键词:氨,合成氨,反应热,氢气

相关主题