搜档网
当前位置:搜档网 › 常数项级数的审敛法-正项级数及其审敛法

常数项级数的审敛法-正项级数及其审敛法

正项级数的常用审敛法和推广比值审敛法的比较

正项级数的常用审敛法和推广比值审敛法的比较 摘 要 数项级数是数的加法从有限代数和到无限和的自然推广.由于无限次相加,许多有限次相加的性质便在计算无限和时发生了改变.首先,有限次相加的结果总是客观存在的,而无限次相加则可能根本不存在有意义的结果。 这就是说,一个级数可能是收敛或发散的.因而,判断级数的敛散性问题常常被看作级数的首要问题。 在通常的微积分学教程中,审敛正项级数的敛散性有许多有效的方法,比如达朗贝尔审敛法,拉贝审敛法等,本文就达朗贝尔审敛法和拉贝审敛法与几个新审敛法进行一些适当的比较总结,另对其应用做一些举例验证。 关键词 数学分析 正项级数 推广比值审敛法 一.预备知识 1.正项级数的定义 如果级数1n n x ∞ =∑的各项都是非负实数,即0,1,2,, n x n ≥= 则称 此级数为正项级数 2..收敛定理 正项级数收敛的充分必要条件是它的部分和数列有上界。 若正项级数的部分和数列无上界,则其必发散到+∞ 例 级数22(1)(1) n n n n ∞ =??-+? ∑是正项级数。它的部分和数列的通项 21 12212ln ln ln 2ln ln 2(1)(1)11n n n k k k k k n s k k k k n ++==?++??=<- =-,若1 lim n n n U L U +→∞=,当 L<1,级数收敛,当L>1,级数发散,L=1,不能审敛。

(整理)常数项级数的审敛法

§11-2 常数项级数的审敛法 一、正项级数及其审敛法 正项级数:∑∞ =1n n u 0≥n u (1) 显然,部分和数列{}n s 单调增加:.21ΛΛ≤≤≤≤n s s s {}↑n s 1.收敛准则 定理1 正项级数∑∞ =1n n u 收敛?部分数列{}n s 有界. 例1判别正项级数∑ ∞ =1 2 2sin n n n π 的收敛性 解 n n n s 22sin 2 2sin 2 12 2π π +++= Λn 2121212+++<Λ 12 1121121<-??? ??-=n 有上界 级数收敛 2.比较审敛法 定理2 设∑∞ =1 n n u 和∑∞ =1 n n v 都是正项级数,且.),2,1(Λ=≤n v u n n 若∑∞ =1 n n v 收敛, 则∑∞=1 n n u 收敛;反之,若∑∞=1 n n u 发散,则∑∞ =1 n n v 发散. 分析:σ=∑∞=1 n n v ,则∑∞ =1 n n u 的部分和 ,),2,1(2121ΛΛΛ=≤++≤+++=n v v v u u u s n n n σ 即{}n s 有界,由TH1知∑∞=1 n n u 收敛。反之,设∑∞=1 n n u 发散,则∑∞ =1 n n v 必发散.因为若 ∑∞ =1 n n v 收敛,由上面已证结论知∑∞ =1 n n u 也收敛,与假设矛盾.

推论 设∑∞ =1 n n u 和∑∞ =1 n n v 都是正项级数,如果级数∑∞ =1 n n v 收敛,且存在自然数N ,使 当N n ≥时有)0(≥≤k kv u n n 成立,则级数∑∞=1 n n u 收敛;如果级数∑∞ =1 n n v 发散,且当N n ≥时有)0(≥≥k kv u n n 成立, 则级数∑∞ =1 n n u 发散. 分析:因为级数的每一项同乘不为零的常数k ,以及去掉级数前面的有限项不会影响级数的收敛性. 例2 讨论p —级数 )2(1 1∑∞ =n p n 的收敛性,其中常数p >0. 解 设1≤p ,则 ,1 1n n p ≥但调和级数发散,故级数(2)发散. 设1>p ,当n x n ≤≤-1时,有,1 1p p x n ≤所以 ?? ? ???---=≤=----??11111)1(111111p p n n n n p p p n n p dx x dx n n ,Λ,3,2=n 考虑级数)3(,1)1(1111∑∞ =--?? ? ???--n p p n n 级数(3)的部分和 ??????+-++??????-+?????? -=-----11111)1(113121211p p p p p n n n s Λ=.)1(111-+-p n 因 .1=n s 故级数(3)收敛.由推论1知,级数(3)当p >1时收敛. 总之:p —级数(2)当≤p 1时发散,当p >1时收敛. 注:比较审敛法的:必须有参考级数。常用:几何级数,p —级数(调级数) 例3 判别下列级数的敛散性. 211(1).52 n n n n ∞ =+++∑ n n n n n u n 81 252 22=++> ∑∞ =11n n 发散, 原级数发散 1 11(2).sin 11n n n ∞ =++∑ 21n u n < ∑∞=121 n n 收敛, 原级数收敛 练习 ()∑∞ =-+13 1sin 212.n n n n ()n n n 3131sin 112≤≥-+

(整理)常数项级数的审敛法

n 1 n 1 § 11-2 常数项级数的审敛法 一、正项级数及其审敛法 正项级数: U n U n 0 ⑴ n 1 显然,部分和数列s n 单调增加:s 1 s 2 Sn . s n 1.收敛准则 定理1正项级数 U n 收敛部分数列S n 有界. n 1 n 例1判别正项级数 亠的收敛性 定理2设 U n 和 V n 都是正项级数,且U n V . (n n 1 n 1 则 U n 收敛;反之, n 1 若 U n 发散,则 V n 发散. n 1 n 1 分析: V n n 1 ,贝U U n 的部分和 n 1 S n U 1 U 2 U n V 1 V 2 V n (n 1,2, ), 即S n 有界,由TH1知 U n 收敛。反之,设 n 1 U n 发散,则 n 1 V n n 1 必发散.因为若 V n 收敛,由上面已证结论知 U n 也收敛,与假设矛盾 n 1 1 解「 sin 2 22 22 1 1 I 2n 1 1 2 2 Sin 2n 1 1 1 2n 2 22 2n 1有上界 级数收敛 1,2,).若 V n 收敛, n 1 2.比较审敛法

推论 设 U n 和 V n 都是正项级数,如果级数 V n 收敛,且存在自然数 N,使 n 1 n 1 kv n (k 0)成立,则级数 u n 收敛;如果级数 v n 发散,且当n N n 1 n 1 分析:因为级数的每一项同乘不为零的常数 k ,以及去掉级数前面的有限项不会 影响级数的收敛性. 注:比较审敛法的:必须有参考级数。常用:几何级数, p —级数(调级数) 例3判别下列级数的敛散性. 当n N 时有U n 时有 u n kv n (k 0)成立,则级数 U n 发散. n 1 例2讨论p —级数 ⑵的收敛性,其中常数p>0. 1,当n 则書 n 时, 1 丄,但调和级数发散,故级数(2)发散. n 有 1 n p I n 1 n p 2dx x (n n p 1 n 2,3, 考虑级数 (n 1) 级数(3)的部分和 s n 1 2卩 1 1 3p 1 1 =1 1 (n 1)p1 = (n 1)p 1 因S n 1 .故级数(3)收敛. 由推论 1知,级数⑶当p>1时收敛. 总之:p —级数(2)当 p 1时发散,当p>1时收敛. (1). n n 1 2 1 n 5n 2 U n n 1 2 2^2 n 5n 2n 8n 丄发散,原级数发散 n 1 n (2). 1 . 1 sin — n 〔 n 1 n 1 U n 原级数收敛

级数审敛法小结

级数审敛法小结 不好意思,又要打扰大家一下了,针对本学期期中考试而言,大致分为两大部分:级数,常微分方程。其中级数(应该都已经讲完了)占得比重相对少些大概有45%左右,还希望大家能抽空复习一下,毕竟这一章的内容有些难度.下面的内容是从一些资料书中总结的一些小内容,希望大家能抽空看一下,谢谢. 首先:针对常数项级数而言要明白它的分类:正项级数,任意项级数(其中,包含特殊的交错级数).对于不同的级数,他们有不同的审敛法. 第一节:正项级数 (当然我们有时也会遇到一些负项级数,他们的判断敛散性的方法和正项级数相同,只是需要我们在运用前,把他们所有的项全部变成正的就可以了) (注意以下方法要求大家在判断出Un的极限为0的时候用哦,若Un的极限不为0,级数发散。) A.定义法(注意这个方法适用于所有的级数,但不一定解得出.): 首先,了解一个充要条件:∑∞ Un收敛?部分和数列{Sn}有界,针对 n =1 这个东西,用的地方不多后面会有介绍。 B.比较审敛法:(这里首先强调一下这里介绍的方法完全是针对 正项级数而言,不能滥用)。对于比较审敛法,也许不要按书上的用起来会更方便一点。简单一句话:我们的目的就是要

找要判断的级数的等价无穷小,或是证明这个级数是一个已知收敛级数的高阶无穷小也可。(当然这是证明级数收敛时用的,这里就要求我们要有能一眼猜出级数敛散性的能力,下面会教大家如何第一眼就可以看出绝大多数级数的敛散性) 例1:设k ,m 为正整数,.0,000 >>b a (这里主要是保证以下的 多项式恒为正)是推导出级数 ∑ ∞ =--++++++1 1 10110......n k k k m m m b n b n b a n a n a 收敛的充要条件。 解:设k k k m m m n b n b n b a n a n a u (1) 101 10+++++= --。取m k n n v -= 1,因为0 0lim b a v u n n n = ∞ →,所以 ∑∑∞ =∞ =1 1 ,n n n n v u 具有相同的敛散性,由Vn 收敛的充要条件是k-m>1, 所以所求级数的收敛的充要条件是k-m>1. (这是一个简单的例题,可是他说明了两个问题:1,凡是一般项Un 是有理分式的,我们一眼就能看出级数是否收敛例如级数 ∑ ∞ =---+1 3 2 3 5 5 23) ()12()1(n n n n n n 是收敛的,这因为分子的最高次幂是13,分母 的是15,15-13=2>1 ,故收敛。(至于解题时,我们可以模仿本 题构造Vn 去做)2,这个例题的解法具有一般性。设0→n u ,我 们只需要找到Un 的一个同阶无穷小或是等价无穷小Vn ,如果Vn 的敛散性我们已经掌握,问题解决。 大家可以试着用等价无穷小的方法接一下以下几题: (1));1tan( )3(,,)cos 1(),2(,,sin )1(13 2 2 2112-+??? ? ??-??? ??∑∑∑∞ =∞=∞ =n N n n a n n a n a n

正项级数审敛法的比较与应用

正项级数审敛法的比较与应用 1.引言 正项级数作为数学分析中重要内容之一是我们必须要掌握的知识。因其有着几百年发展的历史,正项级数理论也已经很成熟。我们在课本中已经学习了很多种判断正项级数敛散性的法方法,但在具体的解题过程时往往不知道该选用哪种判断方法较为适宜。也就是说,不同的正项级数敛散性判断方法都有其局限性,每个正项级数定理运用在不同的题目上时会有其优缺点。那么我们在解决具体正项级数敛散性题目时到底该选用哪种方法合适呢?这是本文所讨论的。 2正项级数的相关概念 2.1定义 如果级数u n的各项都是非负实数,即 x n>0,n=1,2? 则称此级数为正项级数。 1. 1.2正项级数的收敛原理 正项级数收敛的充分必要条件是它的部分和数列有上界。若正项级数的部分和数列无上届,则其必发散到+∞。 2.2正项级数收敛判定定理 2. 2.1比较判别法 2.1.1比较判别法定理 设u n和v n是两个正项级数,如果存在某正数N,对一切n>N都有 u n≤v n, 若级数u n收敛,则级数v n收敛 若级数u n发散,则级数v n发散 2.1.2比较判别法的应用 例1判断1 的收敛性 n2+2n+2

解因为 1 2< 1 2 而由级数的柯西准则可知1 n 中 u m+1+u m+2+?+u m+p = 1 (m+1)2 + 1 (m+2)2 +?+ 1 (m+p)2 < 1 m m+1 + 1 m+1m+2 +?+ 1 m+p?1m+p <1/m 因此,对任给正数ε,取N=[1 ε ],使当m>N及对任意正整数p,由上式有 u m+1+u m+2+?+u m+p<1 <ε 则级数1 n 是收敛的。 所以由比较法可知1 n+2n+2 是收敛的。 2.1.3小结 在运用比较判别法判断正向级数收敛时,可考虑运用p级数收敛与发散的结论来简化证 明。即1 n p ,当01时,1 n p 收敛。 2.1.4比较判别法推论 设 u1+u2+?+u n+?,(1) v1+v2+?+v n+?,(2) 是两个正项级数,若lim n→∞u n v n =l, 当0

正项级数的根式判别法和比式判别法

重庆三峡学院毕业设计(论文) 题目:对正项级数敛散性判别法应用性的探讨 目录 摘要 ............................................................................................................................................................... I Abstract: ..................................................................................................................................................... I I 1 引言 . (3) 2正项级数相关概念 (3) 2.1 定义 (3) 2.2 正项级数敛散性判别的充要条件 (3) 2.3 三个重要比较级数 (4) 2.3.1 几何级数 (4) 2.3.2 调和级数 (5) 2.3.3 P-级数 (5) 3 正项级数敛散性判别法 (6) 3.1 判别发散的简单方法 (6) 3.2 比较判别法 (7) 3.2.1 定理及其推论 (7) 3.2.2 活用比较判别法 (9) 3.2.3 归纳总结 (11) 3.3 柯西判别法与达朗贝尔判别法 (12) 3.3.1 柯西判别法 (12) 3.3.2 达朗贝尔判别法 (13) 3.3.3 比值判别法和根值判别法失效的情况 (15) 3.4 拉贝判别法 (17)

3.5 积分判别法 (19) 3.6 两种新方法 (20) 3.7 判别正项级数敛散性方法的总结 (23) 4 在判别级数敛散性中的作用 (23) 4.1 证明负项级数的敛散性 (23) 4.2 证明变号级数绝对收敛 (24) 4.3 证明函数级数收敛 (25) 5 结束语 (26) 致谢 (27) 参考文献: (27)

最新常数项级数的审敛法

常数项级数的审敛法

§11-2常数项级数的审敛法 一、正项级数及其审敛法 正项级数:?Skip Record If...??Skip Record If...? (1) 显然,部分和数列?Skip Record If...?单调增加:?Skip Record If...??Skip Record If...? 1.收敛准则 定理1正项级数?Skip Record If...?收敛?Skip Record If...?部分数列 ?Skip Record If...?有界. 例1判别正项级数?Skip Record If...?的收敛性 解?Skip Record If...??Skip Record If...? ?Skip Record If...?有上界级数收敛 2.比较审敛法 定理2设?Skip Record If...?和?Skip Record If...?都是正项级数,且 ?Skip Record If...?若?Skip Record If...?收敛, 则?Skip Record If...?收敛;反之,若?Skip Record If...?发散,则?Skip Record If...?发散. 分析:?Skip Record If...?,则?Skip Record If...?的部分和 ?Skip Record If...? 即?Skip Record If...?有界,由TH1知?Skip Record If...?收敛。反之,设 ?Skip Record If...?发散,则?Skip Record If...?必发散.因为若?Skip Record If...?收敛,由上面已证结论知?Skip Record If...?也收敛,与假设矛盾. 推论设?Skip Record If...?和?Skip Record If...?都是正项级数,如果级数?Skip Record If...?收敛,且存在自然数N,使当?Skip Record If...?时有?Skip

正项级数收敛性判别法的比较及其应用

正项级数收敛性判别法的比较及其应用 一、引言 数学分析作为数学专业的重要基础课程。级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。 二、预备知识 1、正项级数收敛的充要条件 部分和数列{}n S 有界,即存在某正数M ,对0>n ?,有n S N 都有n n v u ≤, 那么 (1)若级数∑∞ =1n n v 收敛,则级数∑∞ =1n n u 也收敛; (2)若级数∑∞ =1 n n u 发散,则级数∑∞ =1 n n v 也发散; 即∑∞ =1 n n u 和∑∞ =1 n n v 同时收敛或同时发散。 比较判别法的极限形式 : 设∑∞ =1 n n u 和∑∞ =1 n n v 是两个正项级数。若l v u n n n =+∞ →lim ,则 (1)当 时,∑∞ =1n n u 与∑∞ =1 n n v 同时收敛或同时发散; (2)当0=l 且级数∑∞ =1 n n v 收敛时,∑∞ =1 n n u 也收敛;

(3)当∞→l 且∑∞=1 n n v 发散时,∑∞ =1 n n u 也发散。 2.2 比值判别法 设∑∞ =1n n u 为正项级数,若从某一项起成立着 11 ,成立不等式 q u u n n ≤+1,则级数∑∞ =1i n u 收敛; (2)若对一切0N n >,成立不等式11≥+n n u u ,则级数∑∞ =1 i n u 发散。 比值判别法的极限形式: 若∑∞ =1 n n u 为正项级数,则 (1) 当1lim ,成立不等式1,成立不等式1≥n n u ,则级数∑∞ =1 i n u 收敛 根式判别法的极限形式: 设∑∞ =1 n n u 是正项级数,且l u n n n =+∞ →lim ,则 (1)当1l 时,级数∑∞ =1 n n u 发散; (3)当1=l 时,级数的敛散性进一步判断。

常数项级数判别方法

常数项级数的审敛法 定义 形如:级数 其中 即: 正、负项相间的级 数称为交错级数。 列如 莱布尼茨判别法 莱 布 尼 茨 定理:如果交错级数满足条件 则级数收敛,其其和 其余项 的绝对 值 注意:只有当级数是交错级数时,才能用此判别法,否则将导致错误 注意:莱布尼兹判别法只是充分条件,非必要条件. 使用本判别法时,关键是第一个条件的验证 是否收敛时, 要考察 与 大小 1 1 1() n n n u ∞ -=-∑n u >0 111,2,3,); n n u u n +≥=L ()(lim 0, n x u →∞ =(2)1, s u ≤n r 1. n n r u +≤0n u ≥() n u 1n u +n n u u +≥>10.()1 11111111(1) =1(1)234n n n n n ∞ --=--+-++-+∑L L ().1 1 12(1) 1234(1) n n n n n ∞--=-=-+-++-+∑L L ().

这是一个交错级数 又因为n n u u n n +=>=+1111, 且 显然收敛速度较慢. 收敛。 使用本判别法时,关键是第一个条件的验证 是否收敛时, 要考察 与 大小 比较 与 大小的方法有: 比值法 差值法 1 1 1 11111 (1) =1(1) 234 n n n n n ∞ --=--+-++-+∑1 n u n =1lim lim 0n n n u n →∞→∞==n r n ≤+1 ||.10n u ≥() n u 1n u +n n u u +≥>10.()n u 1n u +1 1n n u u +<10 n n u u +->1 1n n u u +≥()lim 0 n x u →∞=(2)则交错级数 1 1 1() n n n u ∞ -=-∑

正项级数敛散性的判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数内容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,, ,N N n N p N ε+?>?∈? >?∈有12n n n p u u u ε++++++< 。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

正项级数敛散性判别

正项级数敛散性的判别 刘 兵 军 无穷级数是高等数学的重要内容,是表示函数、研究函数的性质以及进行数值计算的一种工具。正项级数在无穷级数中占据了较大的比重,其题型丰富且灵活。本文给出了正项级数敛散性的各种判别方法,通过典型例题的讲解,使学员能以尽快掌握正项级数敛散性的判断问题。 一. 常数项级数的概念 所谓无穷级数就是把无穷多个数按照一定的顺序加起来,所得的和式。 对于数列 ,,,,21n u u u ,由此数列构成的表达式 +++++n u u u u 321 叫做无穷级数,简称级数,记为∑∞ =1 n n u ,即 +++++=∑∞ =n n n u u u u u 3211, (1) 其中第n 项n u 叫做级数(1)的一般项。 级数(1)的前n 项的和构成的数列 n n u u u s +++= 21, ,3,2,1=n (2) 称为级数(1)的部分和数列。 根据部分和数列可得级数敛散性及和的定义。 定义 如果级数(1)的部分和数列n s 有极限,即存在常数s ,使得=∞ →n n s lim s ,则称级 数(1)收敛,极限s 称为级数(1)的和;否则称级数(1)发散。 级数收敛的必要条件 如果级数(1)收敛,则其一般项n u 趋于零。 二. 正项级数敛散性的判别 由正数和零构成的级数称为正项级数。 比较审敛法是判别正项级数敛散性的一种常用且非常有效的方法。 比较审敛法 如果正项级数∑∞=1n n v 收敛,且满足),3,2,1( =≤n v u n n ,则∑∞ =1n n u 收敛; 如果正项级数∑∞=1n n v 发散,且满足),3,2,1( =≥n v u n n ,则∑∞ =1n n u 发散; 比较审敛法只适用于正项级数敛散性的判别,而寻求合适的级数∑∞=1n n v 是解题的关键。 几何级数∑∞=-11n n aq 和p-级数∑∞ =11n p n 常用来充当比较审敛法中的级数∑∞=1n n v 。

相关主题