搜档网
当前位置:搜档网 › 化工热力学第六章教案

化工热力学第六章教案

化工热力学第六章教案
化工热力学第六章教案

授 课 内 容

第六章 流动系统的热力学原理及应用

§6-1 引言

本章重点介绍稳定流动过程及其热力学原理 1 理论基础

热力学第一定律和热力学第二定律 2 任务

对化工过程进行热力学分析,包括对化工过程的能量转化、传递、使用和损失情况进行分析,揭示能量消耗的大小、原因和部位,为改进工艺过程,提高能量利用率指出方向和方法。 3 能量的级别 1)低级能量

理论上不能完全转化为功的能量,如热能、热力学内能、焓等 2)高级能量

理论上完全可以转化为功的能量,如机械能、电能、风能等 3)能量的贬值 4 本章的主要内容

1)流动系统的热力学关系式 2)过程的热力学分析 3)动力循环

§6-2 热力学第一定律

1 封闭系统的热力学第一定律

热和功是两种本质不同且与过程传递方式有关的能量形式,可以相互转化或传递,但能量的数量是守恒的

2 稳定流动系统的热力学第一定律

稳定流动状态:流体流动途径中所有各点的状况都相等,且不随时间而变化,即所有质量和能量的流率均为常数,系统中没有物料和能量的积累。 稳定流动系统的热力学第一定律表达式为:

所以得 U Q W

?=+2

2

u U g z Q W ??+

+?=+2211

其中流体所做的功S W W p V pV =+-由H U pV

=+212S

H g z u Q W

?+?+?=+

微分形式: 若忽略动能和势能变化,则有

即为封闭系统的热力学关系式

§6-3 热力学第二定律和熵平衡

1 热力学第二定律

1) Clausius 说法:热不可能自动从低温物体传给高温物体

2)Kelvin 说法:不可能从单一热源吸热使之完全变为有用的功而不引起其它变化。

实质:自发过程都是不可逆的 2熵及熵增原理 1)热机效率

2)可逆热机效率

3)熵的定义 3.1)可逆热温商

3.2)熵的微观物理意义

系统混乱程度大小的度量 对可逆的绝热过程

对可逆的等温过程

对封闭系统中进行的任何过程,都有

——热力学第二定律的数学表达式

4)熵增原理

d d d S

H g z u u Q W δδ++=+S

H Q W ?=+1

W Q η=

1212

21111

1Q Q T T T W Q Q T T η--=

===-2

211

积分得熵变rev

rev

Q dS T

Q S S S T

δδ=

?=-=?

或rev rev Q S Q T S

T

?=

=?0

S ?=Q

dS T

δ≥

()000

孤立孤立孤立系统,,则或

Q dS S δ=≥?≥

若将系统和环境看作一个大系统,即为孤立系统,总熵变ΔS t

等于封闭系统熵变Δ

S 和环境熵变ΔS 0

之和 自发进行的不可逆过程只能向着总熵增大的方向进行,最终趋向平衡态。此时总熵变达到最大值,即ΔS t

=0达到了过程的终点 。

熵增原理为判断过程进行的方向和限度提供了依据。 3 封闭系统的熵平衡

热力学第一定律无法计算由于过程不可逆引起的能量贬值的损耗,通过熵平衡关系可以精确衡量过程的能量利用效率 。 熵平衡方程

d S g —熵产生。不可逆过程中, 有序能量耗散为无序热能,并被系统吸收而导致系统熵的增加。

不是系统的性质,与系统的不可逆过程有关。可逆过程无熵产生 4 稳定流动系统的熵平衡

敞开系统的熵平衡方程式为:

ΔS f 为熵流,伴随热量流动而产生的相应的熵变化。可正、可负、可零。规定流入

体系为正,流出体系为负;

ΔS g

为熵产生

该式适用于任何热力学系统

对于不同系统可进一步简化:

对稳定流动系统

()

i i i

m S ????→∑

物流流入()

j j j

m S ????→∑物流流出敞开系统熵平衡简图

00t S S S ?=?+?≥2

1

d d g

g

Q

S S T

Q

S S T

δδ=

+?=+??

积分式为()()

f g i i j j

i

j

S S S m S m S ?=?+?+-∑∑()()

()

()0

f g i i j j i

j

g j j i i f

j

i

S S S m S m S S m S m S S ?=?+?+-=?=--?∑∑∑∑

对可逆绝热过程

对绝热节流稳流过程,只有单股流体

§6-4 理想功、损失功和有效能

1 理想功W id :

1)定义

系统的状态变化按完全可逆的过程进行时,理论上产生的最大功或者消耗的最小功。是一个理想的极限值,可作为实际功的比较标准 2)完全可逆:

完全可逆是指(1)系统的所有变化是可逆的;(2)系统与环境进行可逆的热交换。 环境通常指大气温度T 0和压力p 0=0.1013MPa 的状态

3)稳流过程的理想功

若忽略动能和势能变化,

比较理想功与实际功,可以评价实际过程的不可逆程度 2 损失功 1)定义:

损失功定义为系统在相同的状态变化过程中,实际过程所作的功(产生或消耗)与完全可逆过程所作的理想功之差。

对稳流过程表示为:

()()

0,

若为单股物流等熵过程

f g j

j

i

i

j

i

j i

S S m S m S S S ?=?===∑∑()

000f i j g j i

S S m m S m S S ?=?===?=-,,第一定律完全可逆时S

rev id id rev H Q W H Q W W Q H

?=+?=+?-=-?0将代入

rev Q T S =?00

或id id W T S H W T S H

-=?-?=-?+?L id S

W W W =-0T S H

-?+?H Q

?-000或L L W T S H H Q T S Q W T S Q

=-?+?-?+=-?+-=?-

损失功由两部分构成:

1)由过程不可逆性引起的熵增造成 2)由过程的热损失造成

表明损失功与总熵变及环境温度的关系

过程的不可逆程度越大,总熵增越大,损失功越大。

不可逆过程都是有代价的

例1:298K ,0.1013MPa 的水变成273K ,同压力冰的理想功。 273K 冰的熔化焓变为334.7kJ ?kg -1

H 1=104.897kJ?kg -1

, H 2,S 2

S 1

=0.367kJ?kg -1?K -1

1)环境温度为25℃时

是一个耗功过程,消耗的最小功是35.10kJ?kg -1

2)环境温度是268K 时

是一个做功过程,可提供的最大功是12.69kJ?kg -1

理想功的计算与环境温度有关

例2:计算损失功

298K ,0.1013MPa 的水

初态 终态 0000

00L

t g

W T S Q T S T S T S T S -=?-=?+?=?=?227311-12

20.02334.7334.72kJ.kg 334.72

1.226kJ.kg .K 273

K H H H H S T --=-?=--=--=

==-水熔化焓

02121-1

298()()35.10kJ.kg 0

id W T S H

S S H H =-?+?=--+-=02121-1

268()()12.69kJ.kg 0

id W T S H

S S H H =-?+?=--+-=-

3 有效能B :一定状态下的有效能即是系统从该状态变到基态,即达到与环境处于完

全平衡状态时此过程的理想功。

对于稳流过程,从状态1变到状态2,过程的理想功为

选定基态为(T 0,p 0),系统由任意状态变到基态时稳流系统的有效能B 为:

1)物理有效能

物理有效能指系统的温度、压力等状态不同于环境而具有的能量。

化工过程中与热量传递及压力变化有关的过程只考虑物理有效能

2)化学有效能

处于环境温度、压力下的系统,由于与环境进行物质交换或化学反应,达到与环境平衡所作的最大功为化学有效能。

因此计算化学有效能需要确定每一元素的环境状态,为简化计算,建立了环境模型。 从系统状态到环境状态需经过化学反应与物理扩散两个过程: ①

化学反应将系统物质转化成环境物质(基准物)

物理扩散使系统反应后的物质浓度变化到与环境浓度相同的过程

例:计算碳的化学有效能

C 的环境状态是CO 2纯气体,达到环境态需经过化学反应C+O 2→ CO 2

21212

S S H H H Q W H Q W H S ?=-=+?=++→()0021L W T S Q

T S S Q

-=?-=--()()()()1012020000000()()

B H T S H T S H T S H T S H H T S S =---=---=---()()

002121101202()()id W T S H

T S S H H H T S H T S -=?-?=---=---000()()

B H H T S S =---

计算基准取1mol

O 2的浓度为0.21,因此

4 有效能效率和有效能分析 1)有效能效率

从状态1 变到状态2,有效能变化为

当ΔB<0,减少的有效能全部用于做可逆功,所作的最大功为W

id 当ΔB>0,增加的有效能等于外界消耗的最小功

对可逆过程有效能守恒,不可逆过程的有效能不守恒。 有效能的平衡方程为:

D =0,可逆 D >0 ,不可逆

D <0,不可能自发进行

不可逆过程中,有效能的损失等于损失功

有效能效率定义为输出的有效能与输入的有效能之比

可逆过程 ηB =100% 真实过程 η

B <100% η

B

反映了真实过程与理想过程的差别

2)有效能的分析

计算有效能

对有效能衡算,找出有效能损失的部位、大小、原因 例1:比较计算两种余热的有效能

000()()

B H H T S S =---22

2000

00,C O CO f CO H H H H H H -=+-=-?22

0C O CO S S S S S -=+-22

ln0.21O O S S R =-()

22

22

0000

ln0.21C O CO C O CO

S S S S S S S R S -=+-=+--21210210()()

id

B B B H H T S S H T S

B W ?=-=---=?-??=或()

()

in

out

B B D

=+∑∑()000t L

D T S S T S W =?+?=?=()()

out B

in

B B η=

∑∑

例2:比较不同蒸气的有效能和放出的热 3.1)防止能量无偿降级 3.2)采用最佳推动力的工艺方案 3.3)合理组织能量梯次利用

先用功后用热,使用热能要温位匹配

总之,要按需供能,按质用能,建立合理的综合用能体系

§6-5 气体的压缩与膨胀过程

1 气体的压缩

稳流过程压缩的理论轴功计算式s W H Q =?-

()()

()111

001000110111100051

d d ln 1.5710kJ.h T T p p T T p B H H T S S C m C T T T T T m C T T T T -=---??=-??

????

=--??

?

?=???()()()2000222200041

ln 2.5510kJ.h p B H H T S S T m C T T T T -=---??

=--??

?

?=?()111105

1

3.110kJ.h

p Q m C T T -=-=?()2222051

3.110kJ.h p Q m C T T -=-=?

可逆过程

2 气体的膨胀 1)绝热节流膨胀 Q =0,W S

=0

由能量方程得ΔH =0,即等焓过程。

由于存在摩擦阻力损耗,所以节流过程不可逆,节流后熵值一定增加。

流体节流时由于压力变化而引起的温度变化称为节流效应,微小压力变化与所引起的温度变化的比值称为微分节流效应系数 μJ

对于理想气体μJ =0

对于真实气体

① μJ

>0,节流后温度降低称冷效应

② μJ =0,节流后温度不变称零效应,零效应的状态点称为转换点,转换点的温度

称为转换温度,转换点的轨迹称为转换曲线

③ μJ

<0,节流后温度升高称热效应

同一气体在不同状态下节流,可能为正、为负或零 压力变化引起的温度变化ΔT H 称为积分节流效应

p p

N 2

p/MPa

T/K

氮气转化温度示意图

2

1

d p S p W V p

=-?p

J p H

V T V

T T p C μ???- ???????==

????2

121d p H J p T

T T p

μ?=-=?

2) 可逆绝热膨胀

特征Q =0, ΔS=0,是等熵过程。

等熵膨胀过程中,压力微小的变化所引起的温度变化称为微分等熵效应系数μS

等熵膨胀,气体温度必降低,总是得到制冷效应 压力变化所引起的温度变化称积分等熵膨胀效应ΔT

S

§6-6 动力循环

S

T T 1

T 2’

S

T T T T 2

1

21d p S S p T T T p

μ?=-=?0

p

s p S

V T T T p C μ??? ?

?

?????==

????

1 朗肯循环

采用水蒸汽为工质的动力循环,称为蒸汽动力循环,也称朗肯循环。

分析动力循环的目的是研究循环中热、功转换的效果及其影响因素,提高能量转换效果。

1)循环过程能量分析

蒸汽动力循环应用稳定流动的能量方程ΔH=Q+W S (忽略流体的动能、位能变化)进

行分析

⑴工质被加热成为过热蒸汽

1→2→3→4 Q=H 4-H 1>0 ⑵过热蒸汽在透平中可逆绝热膨胀

4→5 W S =ΔH =H 5-H 4<0 ⑶乏气的冷凝

5→6 Q 0=H 6-H 5 < 0 ⑷冷凝水的泵送

6→1是将冷凝水通过水泵由p 1升压至p 2的可逆绝热压缩(等熵过程)

W p =ΔH =H 1-H 6≈V l

(p 1 - p 2)>0

整个循环过程 Q N = Q +Q 0

W N = Ws +W p ΔH =0

所以Q N = -W N ,即吸收的净热等于做出的净功

2)评价指标

⑴蒸汽动力循环的热效率η:

理想朗肯循环T-S 图

冷凝器

过热器 3 锅炉 2

1

6

5

4

蒸气动力装置示意图

透平机

它表示动力循环中锅炉所供给的热量Q 转化为净功W N 的比率。

反映了不同装置输出相同的功量时所消耗的能量的多少,是评价蒸汽动力装置的一个重要指标

⑵ 汽耗率SSC (Specific Steam Consumption ):

做出单位量净功所消耗的蒸汽量

汽耗率的大小可用来比较装置的尺寸和过程的经济性 3)实际的朗肯循环

热效率低于理想过程,汽耗率则高于理想过程。膨胀和压缩过程均为不可逆过程,向熵增大的方向进行。膨胀过程为4→7,实际做功为H 4-H 7< H 4-H

5 , 两者之比称为透平机的等熵膨胀效率或相对内部效率,用η S

表示,反映了透

平机内部所有损失 2 朗肯循环的改进

尽可能减小不可逆因素造成的损耗,特别是传热温差大的问题 1)提高蒸汽的过热温度

使平均吸热温度相应提高,循环效率提高,汽耗率下降。同时,乏气干度增加。最高不超过873K 2)提高蒸汽的压力

提高压力,平均吸热温度会相应提高,但是乏气干度下降,一般不应低于0.88。此

541645

4141

()()N H H H H H H W Q H H H H η------=

=≈--1-1-1

13600

SSC .kg.kW .h N N

kg kJ W W -=

=--

外,蒸汽压力不能超过水的临界压力22.064MPa 3)采用再热循环

高压过热蒸气在高压透平中膨胀到中间压力,然后引入再热器加热,进入低压透平做功。提高了做功能力,避免了乏气湿含量过高的缺点

再热循环热效率

4)回热循环

利用蒸气的热加热锅炉给水,减少或消除工质在预热过程的对外吸热,提高了平均吸热温度和热效率

()S

SH SL SP H RH

W Q

W W W Q Q η-=-++=

+∑∑''

456714

4

1

5

4()()()

()()

H H H H H H H H H H -+-+-=-+-

5)热电循环

工质全部做功,供热量与乏气压力有关

§6-7 制冷循环

使物系温度降到低于周围环境温度的过程称为制冷过程。其实质是利用外功将热从低温物体传至高温物体。 1 蒸汽压缩制冷循环

1)逆卡诺循环 逆卡诺循环是运行在相应的高、低温之间最有效的制冷循环

由四个可逆过程构成

⑴ 1—2:绝热可逆压缩,等熵过程,消耗外功,温度上升T 1→T

2 ⑵ 2—3:等温可逆放热,循环放热量

⑶ 3—4:绝热可逆膨胀,等熵过程,对外做功,温度下降,T 2 → T 1 ⑷ 4—1:等温可逆吸热,循环吸热量 循环过程所做净功

说明制冷循环要消耗功

T 1

T 2 1

T

冷凝器

膨胀机

压缩机

Q 2

2

3

2232()

Q T S S =-0114()

Q T S S =-021*********()()()()

N N

W Q Q

Q T S S T S S T T S S W -==+=-+-=--∑

⑸ 制冷效率的评价指标

制冷循环是逆向的热机循环,其技术经济指标用制冷系数ξ 表示:

对于逆卡诺循环

即逆卡诺循环的制冷系数仅是温度的函数,与工质无关。两温度之间的制冷循环以逆卡诺循环的制冷系数最大,是一切实际循环的比较标准 2)单级蒸汽压缩制冷循环

制冷循环中工作物质称为制冷剂,单位制冷剂的制冷量为

制冷剂的制冷能力为Q 0 kJ?h -1

,则其循环量为 压缩单位重量制冷剂所消耗的功为

制冷机的制冷系数为

制冷机所消耗的理论功率为 3)多级压缩制冷循环

ξ=

消耗的净功

Q 0

Q 2

示意图

T T

01141

121421

()()()N Q T S S T W T T S S T T ξ-=

==

-----1014

(kJ.kg )

q H H =-0

0Q G q =-121

(kJ.kg )

S W H H =-013

142121

S q H H H H W H H H H ξ--=

==

--T S

N GW =

2 吸收制冷循环原理介绍

吸收制冷就是直接利用热能制冷的冷冻循环,通过吸收和精馏装置来完成循环过程,液体为工质。 1)制冷工质

氨水溶液吸收制冷通常用于低温系统,最低可达208K(-65℃),一般为228K(-45 ℃)以上

溴化锂溶液吸收制冷通常用于大型中央空调系统,使用温度不低于273K (0℃),一般为278K(5 ℃)以上 2)吸收制冷的特点

直接利用热能制冷,所需热源温度较低,可充分利用低品位热能 3)原理

利用二元溶液中各组分蒸气压不同来进行。以挥发性大(蒸气压高)的组分为制冷剂,以挥发性小(蒸气压低)的组分为吸收剂。

7

b

节流阀

氨吸收制冷循环示意图

3 气体的液化

利用制冷循环获得低于173K 的低温称为深度冷冻(深冷),工业常用深冷技术使低沸点气体冷至其临界温度以下,以获得液体状态。 如将空气液化分离得到纯的氮气、氧气。

气体的液化(深度冷冻循环)是以Linde 循环为基本的深冷循环。主要计算气体的液化量及压缩机消耗的功率。气体的液化量计算是利用被确定的循环系统的能量平衡方程式求得。

压缩机消耗功的计算即为气体压缩功的计算方法。 1)装置的工作原理

2)气体液化量的计算

以1 kg 气体为计算基准,设液化量为x kg ,对虚线框部分进行热量衡算。

2 p 2

T

压缩机

1

2511215

1(1)H xH x H H H x H H =+--?=

-01512

1515

-112

()()

(kJ.kg )

q x H H H H H H H H H H =--=

--=-

3) 压缩机功耗

多级压缩功的总和,为计算方便,按理想气体等温压缩过程计算,再除以等温压缩效率

§6-8 热泵

1 工作原理

与制冷机完全相同,目的是制热。以消耗一部分高质量的能量为代价, 通过热力循环从自然环境或生产余热中吸取热量,并将它输送到人们需要的较高温度的物质中。为大量低品质的热能的再利用提供了可能。 2 评价指标

制热系数:消耗单位功量所得到的供热量,即 可逆热泵的制热系数为

制热系数与制冷系数的关系

供热量大于压缩机的功耗,是一种节能装置。

在解决以上动力循环和制冷循环的能量计算时,首先按照题意,在相应物质(工质)的热力学图,如T-S 图或P-H 图上,正确标出循环示意图,并查出各状态点的热力学焓、熵等值,应用稳流系统的能量衡算式,计算有关过程的功、热变化,以及相关的循环效率。

211

1

ln

T

p W RT p η=

0.6等温压缩效率,一般取左右

T η-H H

N

Q W ξ=

,卡H H H L

T T T ξ=

-0011

N

H H N

N

N

Q W Q Q W W W ξξ+=

=

=+=+T

η

化工热力学答案课后总习题答案详解

化工热力学答案_课后总习题答案详解 第二章习题解答 一、问答题: 2-1为什么要研究流体的pVT 关系? 【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。(1)流体的PVT 关系可以直接用于设计。(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。只要有了p-V-T 关系加上理想气体的id p C ,可以解决化工热力学的大多数问题。 2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。 【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。 2)临界点C 的数学特征: 3)饱和液相线是不同压力下产生第一个气泡的那个点的连线; 4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。 5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。 6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。 7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。 2-3 要满足什么条件,气体才能液化? 【参考答案】:气体只有在低于T c 条件下才能被液化。 2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素? 【参考答案】:不同。真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有 ()() () () 点在点在C V P C V P T T 00 2 2 ==?? ?

关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。 2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。为了提高计算复杂分子压缩因子的准确度。 偏心因子不可以直接测量。偏心因子ω的定义为:000.1)p lg(7.0T s r r --==ω , ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。 2-6 什么是状态方程的普遍化方法?普遍化方法有哪些类型? 【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a ,b ,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT 性质的计算。普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式 (普遍化压缩因子图法);(2)以两项virial 方程表示的普遍化第二virial 系数关系式(普遍化virial 系数法) 2-7简述三参数对应状态原理与两参数对应状态原理的区别。 【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为了提高对比态原理的精度,引入了第三参数如偏心因子ω。三参数对应态原理为:在相同的 r T 和r p 下,具有相同ω值的所有 流体具有相同的压缩因子Z ,因此它们偏离理想气体的程度相同,即),P ,T (f Z r r ω=。而两参数对应状态原理为:在相同对比温度r T 、对比压力 r p 下,不同气体的对比摩尔体积r V (或压缩因子z ) 是近似相等的,即(,) r r Z T P =。三参数对应状态原理比两参数对应状态原理精度高得多。 2-8总结纯气体和纯液体pVT 计算的异同。 【参考答案】: 由于范德华方程(vdW 方程)最 大突破在于能同时计算汽、液两相性质,因此,理论上讲,采用基于vdW 方程的立方型状态方程能同时将纯气体和纯液体的性质计算出来(最小值是饱和液体摩尔体积、最大值是饱和气体摩尔体积),但事实上计算的纯气体性质误差较小,而纯液体的误差较大。因此,液体的p-V-T 关系往往采用专门计算液体体积的公式计算,如修正Rackett 方程,它与立方型状态方程相比,既简单精度又高。 2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则? 【参考答案】:对于混合气体,只要把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,如Tr ,

《化工热力学》第三版课后习题答案

化工热力学课后答案 第1章 绪言 一、是否题 1. 封闭体系的体积为一常数。(错) 2. 封闭体系中有两个相βα, 。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相 等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态 压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 功为() f i rev V V RT W ln =(以V 表示)或() i f rev P P RT W ln = (以P 表示)。 3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则 A 等容过程的 W = 0 ,Q =() 1121T P P R C ig P ??? ? ??--, U =( )11 2 1T P P R C ig P ??? ? ? ?--,H = 112 1T P P C ig P ??? ? ??-。 B 等温过程的 W =21ln P P RT -,Q =2 1ln P P RT ,U = 0 ,H = 0 。 C 绝热过程的 W =( ) ???? ????? ? -???? ??--112 11ig P C R ig P P P R V P R C ,Q = 0 ,U = ( ) ??????????-???? ??-11211ig P C R ig P P P R V P R C ,H =1121T P P C ig P C R ig P ??????????-???? ??。

化工热力学习题集及答案

模拟题一 一.单项选择题(每题1分,共20分) T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( ) 饱和蒸汽 超临界流体 过热蒸汽 T 温度下的过冷纯液体的压力P ( ) >()T P s <()T P s = ()T P s T 温度下的过热纯蒸汽的压力P ( ) >() T P s <() T P s =() T P s 纯物质的第二virial 系数B ( ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( ) 第三virial 系数 第二virial 系数 无穷项 只需要理想气体方程 液化石油气的主要成分是( ) 丙烷、丁烷和少量的戊烷 甲烷、乙烷 正己烷 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) 饱和液摩尔体积 饱和汽摩尔体积 无物理意义 偏心因子的定义式( ) 0.7lg()1s r Tr P ω==-- 0.8lg()1 s r Tr P ω==-- 1.0 lg()s r Tr P ω==- 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ???? ?????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ????????? = ? ? ?????????? D. 1y Z x Z y y x x Z ????????? =- ? ? ?????????? 关于偏离函数MR ,理想性质M*,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. * R M M M =- D. *R M M M =+ 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。(D )强度性质无偏摩尔量 。 关于逸度的下列说法中不正确的是 ( ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体的状态方程变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 二元溶液,T, P 一定时,Gibbs —Duhem 方程的正确形式是 ( ). a. X1dln γ1/dX 1+ X2dln γ2/dX2 = 0 b. X1dln γ1/dX 2+ X2 dln γ2/dX1 = 0 c. X1dln γ1/dX 1+ X2dln γ2/dX1 = 0 d. X1dln γ1/dX 1– X2 dln γ2/dX1 = 0 关于化学势的下列说法中不正确的是( ) A. 系统的偏摩尔量就是化学势 B. 化学势是系统的强度性质 C. 系统中的任一物质都有化学势 D. 化学势大小决定物质迁移的方向 15.关于活度和活度系数的下列说法中不正确的是 ( ) (A )活度是相对逸度,校正浓度,有效浓度;(B) 理想溶液活度等于其浓度。 (C )活度系数表示实际溶液与理想溶液的偏差。(D )任何纯物质的活度均为1。 (E )的偏摩尔量。 16 组成的均相体系中,若A 的偏摩尔体积随浓度的改变而增加,则B 的偏摩尔体积将:( ) A. 增加 B. 减小 C. 不变 D. 不一定 17.下列各式中,化学位的定义式是 ( ) 18.混合物中组分i 的逸度的完整定义式是 。 j j j j n nS T i i n T P i i n nS nV i i n nS P i i n nU d n nA c n nG b n nH a ,,,,,,,,]) ([.)([.])([.)([.??≡??≡??≡??≡μμμμ

(完整word版)化工热力学((下册))第二版夏清第5章干燥答案

第5章 干燥的习题解答 1.已知湿空气的总压强为50Pa,温度为60℃,相对湿度为40%,试求: (1)湿空气中水汽的分压; (2)湿度; (3)湿空气的密度。 解:(1)湿空气的水汽分压,V S p P ?= 由附录查得60C 时水的饱和蒸汽压19.92S p KPa = 0.419.927.97V p KPa =?= (2) 湿度 0.6220.6227.970.118/507.97V V P H kg kg p P ?= ==--绝干气 (1) 密度 55 3 273 1.0131027360 1.01310(0.772 1.244)(0.772 1.2440.118)2732735010H t v H P +?+?=+??=+??? ? 32.27m =湿空气/kg 绝干气 密度 3110.118 0.493/2.27 H H H kg m v ρ++= =湿空气 2.在总压101.33KPa 下,已知湿空气的某些参数,利用湿空气的H-I 图查出本题附表中空格内的数值,并给出序号4中各数值的求解过程示意图。 习题2附表

解: 上表中括号内的数据为已知,其余值由图H I -查得。 分题4的求解示意图如附图所示,其中A 为状态点。 3.干球温度为20℃、湿度为0.009kg 水/kg 绝干气的温空气通过预热器加热到50℃后,再送至常压干燥器中,离开干燥器时空气的相对温度为80%,若空气在干燥器中经历等焓干燥过程,试求: (1)1m 3原温空气在预热过程中始的变化; (2)1m 3原温空气在干燥器中获得的水分量。 解:(1)31m 原湿空气在预热器中焓的变化 当0020,0.009/t C H kg kg ==绝干气时,由H I -图查出043/I KJ kg =绝干气。 当01050,0.009/t C H H kg kg ===绝干气时,由H I -图查出

化工热力学答案解析

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P =68.3146734.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.56 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p = =6 0.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106 = 5 8.314673 2.98710 V -?-?-0.553.224(673)( 2.98710)V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6 =0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2 =0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3 ·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为550.1cm 3 ·mol -1 所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为 Tc =304.2K Pc =7.376MPa ω=0.225

化工热力学(第三版)课后答案完整版_朱自强

第二章 流体的压力、体积、浓度关系:状态方程式 2-1 试分别用下述方法求出400℃、下甲烷气体的摩尔体积。(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。其中B 用Pitzer 的普遍化关联法计算。 [解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情 况下的摩尔体积id V 为 33168.314(400273.15) 1.381104.05310id RT V m mol p --?+= ==??? (2) 用RK 方程求摩尔体积 将RK 方程稍加变形,可写为 0.5()()RT a V b V b p T pV V b -=+-+ (E1) 其中 2 2.50.427480.08664c c c c R T a p RT b p == 从附表1查得甲烷的临界温度和压力分别为c T =, c p =,将它们代入 a, b 表达式得

2 2.5 6-20.560.427488.314190.6 3.2217m Pa mol K 4.6010 a ??==???? 53160.086648.314190.6 2.9846104.6010 b m mol --??==??? 以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 5168.314673.15 2.9846104.05310 V -?=+?? 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610) -----??-?-??????+? 355331 1.38110 2.984610 2.1246101.389610m mol -----=?+?-?=?? 第二次迭代得2V 为 3535 20.56335355 331 3.2217(1.389610 2.984610)1.38110 2.984610673.15 4.05310 1.389610(1.389610 2.984610)1.38110 2.984610 2.1120101.389710V m mol ------------??-?=?+?-??????+?=?+?-?=??1V 和2V 已经相差很小,可终止迭代。故用RK 方程求得的摩尔体积近 似为 3311.39010V m mol --=?? (3)用PR 方程求摩尔体积 将PR 方程稍加变形,可写为 ()()()RT a V b V b p pV V b pb V b -=+-++-

化工热力学第五章作业讲解

第五章 例题 一、填空题 1. 指出下列物系的自由度数目,(1)水的三相点 0 ,(2)液体水与水蒸汽处于汽液平衡 状态 1 ,(3)甲醇和水的二元汽液平衡状态 2 ,(4)戊醇和水的二元汽-液-液三相平衡状态 1 。 2. 说出下列汽液平衡关系适用的条件 (1) l i v i f f ??= ______无限制条件__________; (2)i l i i v i x y ?? ??= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。 3. 丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x 1=y 1=0.796,恒沸温度为327.6K ,已 知此温度下的06.65,39.9521==s s P P kPa 则 van Laar 方程常数是 A 12=______0.587_____,A 21=____0.717____ (已知van Laar 方程为 2 21112212112x A x A x x A A RT G E +=) 4. 在101.3kPa 下四氯化碳(1)-乙醇(2)体系的恒沸点是x 1=0.613和64.95℃,该温度下两组分 的饱和蒸汽压分别是73.45和59.84kPa ,恒沸体系中液相的活度系数 693.1,38.121==γγ。 1. 组成为x 1=0.2,x 2=0.8,温度为300K 的二元液体的泡点组成y 1的为(已知液相的 3733,1866),/(75212121==+=s s E t P P n n n n G Pa) ___0.334____________。 2. 若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要困 难是MPa P s 4.251=饱和蒸气压太高,不易简化;( EOS+γ法对于高压体系需矫正)。 3. EOS 法则计算混合物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混合物的实验数据拟合得到。 4. 由Wilson 方程计算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数A i ,B i ,C i ; Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij =-λλ,Wilson 方程的能量参数是如何得到的?能从混合物的有关数据(如相平衡)得到。

化工热力学(第三版)第二章答案

化工热力学(第三版) 习题解答集 朱自强、吴有庭、李勉编著

前言 理论联系实际是工程科学的核心。化工热力学素以概念抽象、难懂而深深印在学生的脑海之中。特别使他们感到困惑的是难以和实际问题进行联系。为了学以致用,除选好教科书中的例题之外,很重要的是习题的安排。凭借习题来加深和印证基本概念的理解和运用,补充原书中某些理论的推导,更主要的是使学生在完成习题时能在理论联系实际的锻炼上跨出重要的一步。《化工热力学》(第三版)的习题就是用这样的指导思想来安排和编写的。 《化工热力学》自出版以来,深受国内同行和学生的关注和欢迎,但认为习题有一定的难度,希望有一本习题集问世,帮助初学者更有效地掌握基本概念,并提高分析问题和解决问题的能力。为此我们应出版社的要求把该书第三版的习题解撰并付印,以飨读者。 在编写过程中除详尽地进行习题解答外,还对部分习题列出了不同的解题方法,便于读者进一步扩大思路,增加灵活程度;对部分有较大难度的习题前加上“*”号,如果教学时间较少,可以暂时不做,但对能力较强的学生和研究生也不妨一试。使用本题解的学生,应该先对习题尽量多加思考,在自学和独自完成解题的基础上加以利用和印证,否则将与出版此书的初衷有悖。 参加本习题题解编写的人员是浙江大学化工系的朱自强教授、南京大学化工系的吴有庭教授、以及李勉博士等,浙江大学的林东强教授、谢荣锦老师等也对本习题编写提供了有益的帮助。在此深表感谢。由于编写时间仓促,有些地方考虑不周,习题题解的写作方法不善,甚至尚有解题不妥之处,希望读者能不吝赐教,提出宝贵意见,以便再版时予以修改完善。

第二章 流体的压力、体积、浓度关系:状态方程式 2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。其中B 用Pitzer 的普遍化关联法计算。 [解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积id V 为 331 6 8.314(400273.15) 1.381104.05310 id RT V m mol p --?+= = =??? (2) 用RK 方程求摩尔体积 将RK 方程稍加变形,可写为 0.5 ()() RT a V b V b p T pV V b -= +- + (E1) 其中 2 2.5 0.427480.08664c c c c R T a p RT b p == 从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得 2 2.5 6-20.5 6 0.427488.314190.6 3.2217m Pa mol K 4.6010 a ??= =???? 5 3 1 6 0.086648.314190.6 2.9846104.6010 b m m ol --??= =??? 以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 5 16 8.314673.15 2.9846104.05310 V -?= +?? 35 0.5 6 3 3 5 3.2217(1.38110 2.984610)67 3.15 4.05310 1.38110 (1.38110 2.984610) -----??-?- ??????+? 3 5 5 3 3 1 1.38110 2.984610 2.124610 1.389610m m ol -----=?+?-?=?? 第二次迭代得2V 为

化工热力学答案

第二章 均相反应动力学习题 1. 【动力学方程形式】 有一气相反应,经实验测定在400℃下的速率方程式为: 2 3.66A A dP P dt = 若转化为2 (/.)A kC A r mol hl =形式, 求相应的速率常数值及其单位。 2. [恒温恒容变压定级数] 在恒容等温下,用等摩尔H 2和NO 进行实验,测得如下数据: 总压(MPa )0.0272 0.0326 0.038 0.0435 0.0543 半衰期(s ) 256 186 135 104 67 求此反应级数 3.[二级反应恒容定时间] 4.醋酸和乙醇的反应为二级反应,在间歇反应反应器中,5min 转化率可达50%,问转化率为75%时需增加多少时间? 4、【二级恒容非等摩尔加料】 溴代异丁烷与乙醇钠在乙醇溶液中发生如下反应: i-C 4H 9Br+C 2H 5Na →Na Br+i-C 4H 9 OC 2H 5 (A) (B) (C) (D) 溴代异丁烷的初始浓度为C A0=0.050mol/l 乙醇钠的初始浓度为C B0=0.0762mol/l,在368.15K 测得不同时间的乙醇钠的浓度为: t(min) 0 5 10 20 30 50 C B (mol/l) 0.0762 0.0703 0.0655 0.0580 0.0532 0.0451 已知反应为二级,试求:(1)反应速率常数;(2)反应一小时后溶液中溴代异丁烷的浓度;(3)溴代异丁烷消耗一半所用的时间。 5. [恒温恒容变压定级数] 二甲醚的气相分解反应CH 3OCH 3 → CH 4 +H 2 +CO 在恒温恒容下进行,在504℃获得如下数据: t (s ) 0 390 777 1195 3155 ∞ Pt ×103(Pa ) 41.6 54.4 65.1 74.9 103.9 124.1

化工热力学第六章教案

授 课 内 容 第六章 流动系统的热力学原理及应用 §6-1 引言 本章重点介绍稳定流动过程及其热力学原理 1 理论基础 热力学第一定律和热力学第二定律 2 任务 对化工过程进行热力学分析,包括对化工过程的能量转化、传递、使用和损失情况进行分析,揭示能量消耗的大小、原因和部位,为改进工艺过程,提高能量利用率指出方向和方法。 3 能量的级别 1)低级能量 理论上不能完全转化为功的能量,如热能、热力学内能、焓等 2)高级能量 理论上完全可以转化为功的能量,如机械能、电能、风能等 3)能量的贬值 4 本章的主要内容 1)流动系统的热力学关系式 2)过程的热力学分析 3)动力循环 §6-2 热力学第一定律 1 封闭系统的热力学第一定律 热和功是两种本质不同且与过程传递方式有关的能量形式,可以相互转化或传递,但能量的数量是守恒的 2 稳定流动系统的热力学第一定律 稳定流动状态:流体流动途径中所有各点的状况都相等,且不随时间而变化,即所有质量和能量的流率均为常数,系统中没有物料和能量的积累。 稳定流动系统的热力学第一定律表达式为: 所以得 U Q W ?=+2 2 u U g z Q W ??+ +?=+2211 其中流体所做的功S W W p V pV =+-由H U pV =+212S H g z u Q W ?+?+?=+

微分形式: 若忽略动能和势能变化,则有 即为封闭系统的热力学关系式 §6-3 热力学第二定律和熵平衡 1 热力学第二定律 1) Clausius 说法:热不可能自动从低温物体传给高温物体 2)Kelvin 说法:不可能从单一热源吸热使之完全变为有用的功而不引起其它变化。 实质:自发过程都是不可逆的 2熵及熵增原理 1)热机效率 2)可逆热机效率 3)熵的定义 3.1)可逆热温商 3.2)熵的微观物理意义 系统混乱程度大小的度量 对可逆的绝热过程 对可逆的等温过程 对封闭系统中进行的任何过程,都有 ——热力学第二定律的数学表达式 4)熵增原理 d d d S H g z u u Q W δδ++=+S H Q W ?=+1 W Q η= 1212 21111 1Q Q T T T W Q Q T T η--= ===-2 211 积分得熵变rev rev Q dS T Q S S S T δδ= ?=-=? 或rev rev Q S Q T S T ?= =?0 S ?=Q dS T δ≥ ()000 孤立孤立孤立系统,,则或 Q dS S δ=≥?≥

化工热力学(下册)第二版-夏清-第2章-吸收答案

?第二章 吸收? 1. 从手册中查得101.33 KPa 、25 ℃时,若100 g水中含氨1 g,则此溶液上方的氨气平衡分压为0.987 K Pa。已知在此组成范围内溶液服从亨利定律,试求溶解度系数H (kmol/ (m 3·k Pa))及相平衡常数m 。 解:(1) 求H 由33NH NH C P H *=.求算. 已知:30.987NH a P kP *=.相应的溶液浓度3NH C 可用如下方法算出: 以100g 水为基准,因为溶液很稀.故可近似认为其密度与水相同.并取其值为31000/kg m .则: 3333 31/170.582/1001 1000 0.582/0.590/()0.987NH NH NH a C kmol m H C P kmol m kP *= =+∴===? (2). 求m .由333 333330.9870.00974101.331/170.01051/17100/18 0.00974/0.9280.0105 NH NH NH NH NH NH NH NH y m x P y P x m y x ****=== ===+=== 2. 101.33 kpa 、10 ℃时,氧气在水中的溶解度可用p O2=3.31×106x 表示。式中:P O2为氧在气相中的分压,k Pa 、x为氧在液相中的摩尔分数。试求在此温度及压强下与空气充分接触后的水中,每立方米溶有多少克氧。 解: 氧在空气中的摩尔分数为0.21.故: 222 266101.330.2121.2821.28 6.43103.31106 3.3110O O a O O P Py kP P x -==?====??? 因2O x 值甚小,故可以认为X x ≈ 即:2266.4310O O X x -≈=? 所以:溶解度6522232()6.431032 1.1410()/()11.4118()g O kg O kg H O m H O --????==?=?????

(精选)化工热力学复习题及答案

《化工热力学》课程模拟考试试卷 A 开课学院:化工学院,专业:材料化学工程 考试形式: ,所需时间: 分钟 考生姓名: 学号: 班级: 任课教师: 题对的写T ,错的写F) 1.理想气体的压缩因子1Z =,但由于分子间相互作用力的存在,实际气体的压缩因子 。 (A) 小于1 (B) 大于1 (C) 可能小于1也可能大于1 (D) 说不清楚 2.甲烷c 4.599MPa p =,处在r 0.3p =时,甲烷的压力为 。 (A) 15.33MPa (B) 2.7594 MPa ; (C) 1.3797 MPa (D) 1.1746 MPa 3.关于建立状态方程的作用,以下叙述不正确的是 。 (A) 可以解决由于实验的p -V -T 数据有限无法全面了解流体p -V -T 行为的问题。 (B) 可以解决实验的p -V -T 数据精确度不高的问题。 (C) 可以从容易获得的物性数据(p 、V 、T 、x )来推算较难测定的数据(H ,U ,S , G )。 (D) 可以解决由于p -V -T 数据离散不便于求导和积分,无法获得数据点以外的 p -V -T 的问题。 4.对于流体混合物,下面式子错误的是 。 (A) lim i i i x M M ∞→=(B)i i i H U pV =+ (C) 理想溶液的i i V V =,i i U U = (D) 理想溶液的i i S S =,i i G G = 5.剩余性质R M 的概念是表示什么差别的 。 (A) 真实溶液与理想溶液 (B) 理想气体与真实气体 (C) 浓度与活度 (D) 压力与逸度 6.纯物质在临界点处的状态,通常都是 。 (A) 气体状态 (B) 液体状态 (C) 固体状态 (D) 气液不分状态

化工热力学第二章习题答案剖析

习题: 2-1.为什么要研究流体的pVT 关系? 答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。因此,流体的p –V –T 关系的研究是一项重要的基础工作。 2-2.理想气体的特征是什么? 答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。 理想气体状态方程是最简单的状态方程: RT pV = 2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合: ???? ??-=r s r T p 11log α 其中,c s s r p p p = 对于不同的流体,α具有不同的值。但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=s r p 这一点。对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。 Pitzer 把这一差值定义为偏心因子ω,即 )7.0(00.1log =--=r s r T p ω 任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。 2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的 升高而减小吗? 答:正确。由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。 2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗? 答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液

化工热力学部分答案

1.什么是混合规则?其主要用途是什么? 答:用纯物质的参数和混合物的组成来表示混合物参数的数学关系式称为混合规则。 一个EOS 可以使用不同的混合规则,一个混合规则也可以用于不同的EOS 。 (1)常用的混合规则 常用的混合规则是二次型混合规则: 其中,Q m 表示混合物的物性参数;y i 、y j 分别表示混合物中 i 组分和 j 组分的摩尔分数; Q ij 当下标相同时表示纯组分的物性参数,当下标不相同时表示相互作用项(或交叉项)。 二次型混合规则一般应用于非极性和弱极性混合物。 (2)混合物的第二Virial 系数 当用二项Virial EOS 计算真实流体混合物的PVT 性质时 混合物的第二Virial 系数B m 用下面的混合规则进行计算 其中y 表示混合物中各组分的摩尔分数。B ij 表示i 和j 之间的相互作用,i 和j 相同,表示同类分子作用,i 和j 不同表示异类分子作用。 (3)具有两个参数a 和b 的Cubic EOS van der Waals EOS ,RK EOS ,SRK EOS ,PR EOS 用于混合物时,混合物的参数am 和bm 可用下式计算 其中,交叉系数计算公式为 或 式中,δij 是两组分相互作用参数 2.什么是混合规则?它在处理真实流体混合物时起到什么作用? 同上回答 3.写出稳流体系的熵平衡方程,并举例说明该方程的具体应用。并说明如何用熵产生S G 判断过程的自发性。 答:稳流体系的熵平衡方程 具体应用见课本例题 热力学第二定律可知: S G >0--不可逆过程 S G =0--可逆过程 可判断过程进行的方向 S G <0--不可能过程 3.在T-S 图上画出流体经节流膨胀和对外做功绝热膨胀时的状态变化,并比较两种膨胀的降温程度大小。 ∑∑ =i j ij j i m Q y y Q ∑∑ =i j ij j i m B y y B RT P B 1Z m +=ij i j j i m a x x a ∑∑ =i i i m b x b ∑ =jj ii ij ij a a )1(a δ-=j j ii ij ij a a a δ=G j j σ,j S T Q S =-?∑

化工热力学第五章 习题解答

第五章 习题解答 1. 在一定压力下,组成相同的混合物的露点温度和泡点温度不可能相同。(错,在共沸点 时相同) 2. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,则11x y >,22x y <。 (错,若系统存在共沸点,就可以出现相反的情况) 3. 纯物质的汽液平衡常数K 等于1。(对,因为111==y x ) 4. 在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定, 则体系的压力,随着1x 的增大而增大。(错,若系统存在共沸点,就可以出现相反的情况) 5. 下列汽液平衡关系是错误的i i Solvent i v i i x H Py *,?γ?=。(错,若i 组分采用不对称归一化,该式为正确) 6. 对于理想体系,汽液平衡常数K i (=y i /x i ),只与T 、P 有关,而与组成无关。(对,可以从理想体系的汽液平衡关系证明) 7. 对于负偏差体系,液相的活度系数总是小于1。(对) 8. 能满足热力学一致性的汽液平衡数据就是高质量的数据。(错) 9. 逸度系数也有归一化问题。(错) 10. EOS +γ法既可以计算混合物的汽液平衡,也能计算纯物质的汽液平衡。(错) 二、选择题 1. 欲找到活度系数与组成的关系,已有下列二元体系的活度系数表达式,βα,为常数, 请决定每一组的可接受性 。(D ) A 2211;x x βγαγ== B 12211;1x x βγαγ+=+= C 1221ln ;ln x x βγαγ== D 2 1 2221ln ;ln x x βγαγ== 2. 二元气体混合物的摩尔分数y 1=0.3,在一定的T ,P 下,8812.0?,9381.0?21==? ?,则此时混合物的逸度系数为 。(C ) A 0.9097 B 0.89827 C 0.8979 D 0.9092 三、填空题 1. 说出下列汽液平衡关系适用的条件 (1) l i v i f f ??= ______无限制条件__________; (2)i l i i v i x y ?? ??= ______无限制条件____________; (3)i i s i i x P Py γ= _________低压条件下的非理想液相__________。

化工热力学课后部分习题答案

2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合: ??? ? ? ?-=r s r T p 1 1log α 其中,c s s r p p p = 对于不同的流体,α具有不同的值。但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压 数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=s r p 这一点。对于给定流体对 比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。 Pitzer 把这一差值定义为偏心因子ω,即 )7.0(00 .1log =--=r s r T p ω 任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及 r T =0.7时的饱和蒸气压s p 来确定。 2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗? 答:正确。由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。 2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗? 答:同一温度下,纯物质的饱和液体与饱和蒸气的Gibbs 自由能是相同的,这是纯物质气液平衡准则。气他的热力学性质均不同。 3-1 思考下列说法是否正确 ① 当系统压力趋于零时,()()0,,≡-p T M p T M ig (M 为广延热力学性质) 。(F ) ② 理想气体的H 、S 、G 仅是温度的函数。(F ) ③ 若( ) ??? ? ??+-=00ln p p R S S A ig ,则A 的值与参考态压力0p 无关。(T ) ④ 对于任何均相物质,焓与热力学能的关系都符合H >U 。(T ) ⑤ 对于一定量的水,压力越高,蒸发所吸收的热量就越少。(T ) 3-2 推导下列关系式: V T T p V S ??? ????=??? ???? p T p T V U V T -??? ????=??? ????

化工热力学习题集(附标准答案)复习-()

化工热力学习题集(附答案)复习-()

————————————————————————————————作者:————————————————————————————————日期:

模拟题一 一.单项选择题(每题1分,共20分) 本大题解答(用A 或B 或C 或D )请填入下表: 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( c ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( a ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( b ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( ) A. 0.7lg()1 s r Tr P ω==-- B. 0.8lg()1 s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ???? ?????=- ? ? ?????????? B. 1y x Z Z x y x y Z ????????? =- ? ? ?????????? C. 1y x Z Z x y x y Z ????????? = ? ? ?????????? D. 1y Z x Z y y x x Z ????????? =- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。(D )强度性质无偏摩尔量 。 12. 关于逸度的下列说法中不正确的是 ( ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体 的状态方程变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 13. 二元溶液,T, P 一定时,Gibbs —Duhem 方程的正确形式是 ( ). a. X 1dlnγ1/dX 1+ X 2dlnγ2/dX 2 = 0 b. X 1dlnγ1/dX 2+ X 2 dlnγ2/dX 1 = 0 c. X 1dlnγ1/dX 1+ X 2dlnγ2/dX 1 = 0 d. X 1dlnγ1/dX 1– X 2 dlnγ2/dX 1 = 0 14. 关于化学势的下列说法中不正确的是( ) A. 系统的偏摩尔量就是化学势 B. 化学势是系统的强度性质 C. 系统中的任一物质都有化学势 D. 化学势大小决定物质迁移的方向

相关主题