搜档网
当前位置:搜档网 › 苯乙炔基封端的聚(硅乙炔-4,4‘-二苯醚)的合成和性能

苯乙炔基封端的聚(硅乙炔-4,4‘-二苯醚)的合成和性能

苯乙炔基封端的聚(硅乙炔-4,4‘-二苯醚)的合成和性能
苯乙炔基封端的聚(硅乙炔-4,4‘-二苯醚)的合成和性能

Synthesis and properties of phenyl acetylene terminated poly (silyleneethynylene-4,

4’-phenylethereneethynylene)s1

Xu Jinfeng Shen Yongjia*

Institute of Fine Chemicals Institute of Fine Chemicals

East China University of Science and Technology East China University of Science and Technology Shanghai 200237, P. R. China Shanghai 200237, P. R. China eleven_xu@https://www.sodocs.net/doc/546281076.html, yjshen@https://www.sodocs.net/doc/546281076.html,

Wang Chengyun

Institute of Fine Chemicals

East China University of Science and Technology

Shanghai 200237, P. R. China

cywang@https://www.sodocs.net/doc/546281076.html,

Abstract

Two kinds of phenylacetylene-terminated poly(silyleneethynylene-4,4′-

phenylethereneethynylene)s, {C6H5-C≡C-[Si(R)2-C≡C-C6H4-O-C6H4-C≡

C]n-C6H5} wherein R represents methyl or phenyl, were synthesized by condensation

reaction between dichlorosilanes and 4, 4′-diethynyldiphenyl ether using organic

magnesium reagents. The polymers were characterized by NMR, IR, gel permeation

chromatography, thermogravimetric analysis, and differential scattering

calorimetries.

Keywords: phenyl acetylene, polysilanes, gel permeation chromatography,

thermogravimetric analysis, differential scattering calorimetries

1 Introduction

Organosilicon polymers have received a great deal of attention because of their alternating arrangement in an organosilicon unit, π-electron system, and potential applications as advanced materials such as, ceramics precursors[1], organic semiconductors[2], hole-transporting materials[3], thermally stable polymers[4], liquid crystalline polymers[5]. In addition, polymers having ethynylene units in the π-electron system have been extensively studied[6]. An example includes the synthesis of poly [(hydrosilylene) ethynylene (phenylene) ethynylene]s with excellent heat-resistant and flame-resistant properties, reported by Itoh and his co-workers[7], which is fusible and soluble in most common organic solvents. In this paper, we report the synthesis of two kinds of new resins

1 Support by the Specialized Research Fund for the Doctoral Program of Higher e ducation (No.

20030251001)

* Corresponding author

phenylacetylene-terminated poly(silyleneethynylene-4, 4′-phenyl etherene ethynylene)s (1a and 1b , Figure 1), which are highly heat-resistant, low moisture sensitive and highly processable polymers. Selecting appropriate monomers can further enhance specific and desirable properties.

Si O

Si R R

R R

n

1a R=Me

1b R=Ph

Figure 1: phenyl acetylene terminated poly (silyleneethynylene-4,4′-phenylethereneethynylene)s

2 Experimental Section

Materials: All chemicals and solvents were purchased from Shanghai Reagent Company and distilled or dried when necessary using standard procedures.

Instrument: IR spectra were recorded on a Nicolet spectrophotometer. 1H NMR spectra were obtained on a Bruker AVANCE 500 spectrometer operating at 500 MHz: chemical shifts were quoted downfield of TMS. Molecular weight distribution curves of polymers were determined by Gel Permeation Chromatography (GPC) using 105, 104 and 103 ? μ-Styragel columns at 35°C. Polymers were eluted with tetrahydrofuran and detected using a refractive detector (Waters. Model R4000). Polystyrene standards of molecular weight ranging from 233000 to 750 were used for calibrating GPC columns for hydrodynamic volume versus elution volume. Differential scattering calorimetries (DSC) were performed on a DSC50 Shimadzu (10°C/min). The thermo gravimetric were analysed on a Setaran TGA

24 (10°C/min).

The basic reactions used for the synthesis of phenylacetylene-terminated poly (silyleneethynylene-4, 4′-phenylethereneethynylene)s are shown in Scheme 1.

1a R=Me 1b R=Ph

Scheme 1: basic reactions used for the synthesis of phenyl acetylene terminated poly

(silyleneethynylene-4, 4′-phenylethereneethynylene)s

General synthesis for phenylacetylene-terminated poly(silyleneethynylene-4, 4′

-phenylethereneethynylene)s was condensation reaction using organic magnesium reagents. All the operations were carried out under inert atmosphere conditions using pure argon, solvents and reagents were dried and distilled.

Synthesis of phenylacetylene-terminated poly(dimethylsilyleneethynylene-4, 4′

-phenylethereneethynylene) s (1a)

Ethyl bromide (21.8g, 0.2mol) in tetrahydrofuran (50ml) was added dropwise to a stirred mixture of magnesium powder (5.76g, 0.24mol) in tetrahydrofuran (50ml) at room temperature for 30min. The reaction mixture was heated at reflux for 2h, followed by the dropwise addition of a solution of

bis-(4-ethynyl-phenyl) ether (17.44g, 0.08 mol) and phenylacetylene (2.04g, 0.02mol) in tetrahydrofuran (50ml), After another one-hour reflux, the mixture turned from a clear solution to a suspension. Then dimethyldichlorosilane (11.61g, 0.09mol) in tetrahydrofuran (50ml) was added dropwise, and stirred at reflux for another 1 h. The reaction mixture was cooled, then treated with 0.1M HCl (50ml) and separated into two layers, the organic phase was isolated and the solvent was evaporated under reduced pressure. The residue was extracted by chloroform, neutralized with 0.1M NaOH, washed with water and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, to give 23.3g resin 1a(II) (yield 94%) as a pale yellow viscous oil. Mw=2430 (Mw/Mn=1.67). 1H NMR (500MHz, CDCl3): (ppm). 0.15 (Me2Si), 6.85~7.38(phenylene). IR

 

ν(neat) 2157 cm-1(C≡C).

Synthesis of phenylacetylene-terminated poly(diphenylsilyleneethynylene-4, 4′

-phenylethereneethynylene) s (1b)

Using essentially the same procedure and employing diphenyldichlorosilane (22.77g, 0.09mol), 33.0g resin 1b(V) (yield 92%) was obtained as a pale yellow viscous oil. Mw=3045 (Mw/Mn=1.82). 1H NMR (500MHz, CDCl3): (ppm). 6.85-7.54( phenylene). IR ν(neat) 2150 cm-1(C≡C).

3 Results and Discussion

Phenyl acetylene-terminated poly (silyleneethynylene-4, 4′-phenylethereneethynylene)s, {C6H5-C

≡C-[Si(R)2-C≡C-C6H4-O-C6H4-C≡C]n-C6H5} wherein R represents methyl or phenyl, were synthesized by condensation reaction between dichlorosilanes and 4, 4′-diethynyldiphenyl ether using organic magnesium reagents. These reactions proceeded smoothly. Chemical structures of the polymers have been determined by 1H NMR. They are in good agreement with the desired structures. The addition of phenylacetylene to 4, 4′-diethynyldiphenyl ether allows a perfect control of the molecular masses of the macromoleculars shown in Table 1 and Table 2.

Table 1: the molecular masses of 1a controlled by phenyl acetylene

index No. The mol. ratio of phenyl acetylene to 4,

4′-diethynyldiphenyl ether Mn Mw Polydispersity

Ⅰ0 2131 3452 1.62

Ⅱ1:4 1455 2430 1.67

Ⅲ1:1 980 1564 1.60

Table 2: the molecular masses of 1b controlled by phenyl acetylene

No. The mol. ratio of phenyl acetylene to 4,

4′-diethynyldiphenyl ether

Mn Mw Polydispersity index

IV 0 3068 5827 1.90 V 1:4 1341 2200 1.64 VI

1:1 1028 1543 1.50

By Gel permeation chromatography (GPC), molecular mass distributions of some polymers were

determined. As presented in Figure 2, polymer IV possesses monomodal molecular mass distribution, whereas polymer V shows multimodal molecular mass distribution.

Figure2: GPC curves of IV and V

Thermal properties of II and V were examined by TGA–DTA in nitrogen. Their Td5 and final weight loss at 1000°C are listed in Table 3. As expected, the materials obtained from the polymers exhibited excellent heat-resistant properties in nitrogen. In particular, V showed higher Td5 and lower weight loss at 1000°C (Table 3) than those of II . This is probably due to the larger number of Si-Me bonds in a repeating unit that are relatively unstable as indicated by the smaller bond dissociation energy of Si-Me (318 kJ/mol) than that of Si-Ph (358 kJ/mol) [8].

Table 3: TGA of polymers in nitrogen

TGA in nitrogen a

polymers

Td5 (°C) b Weight loss (%) c

II 603 23

V 625 19

a. At a rate of 10°C /min from 25 to 1000°C.

b. Temperature resulting in 5% weight loss based on the initial weight.

c. Total weight loss at 1000°C.

DTA of V revealed a sharp exothermic peak at 200–220°C in Figure 3. This signal above 200°C is

curing temperature. Presumably, cross-linking reactions of polymers occurred at this temperature,

which would be responsible for the high heat resistance of these polymers. In fact, when polymer was

heated at 210°C in nitrogen, the polymers became insoluble.

Figure 3: TGA-DAT of V

The IR spectrum of V after being heated revealed a decrease of the absorption band at around 2150cm-1

due to the C≡C bond stretching frequency (Figure 4, 5), indicating that some cross-linking reactions

[9].

Figure 4: IR spectra of polymer V

Figure 5: IR spectra of polymer V after heating at 220°C for 30min in nitrogen

A c k n o w l e d g m e n t s

We thank the foundation of the Specialized Research Fund for the Doctoral Program of Higher education (No. 20030251001) for financial support.

References

[1] Puerta AR, Remsen EE, Bradley MG, Sherwood W, Sneddon LG. (2003)Synthesis and Ceramic Conversion

Reactions of 9-BBN-Modified Allylhydridopolycarbosilane: A New Single-Source Precursor to Boron-Modified Silicon Carbide. Chem Mater; 15(2): 478-485.

[2] Ohshita J, Iida T, Ikeda M, Uemura T, Ohta N, Kunai A. (2004)Synthesis of poly

{[bis(diethynylphenyl)silylene]phenylene}s with highly heat-resistant properties and an application to conducting materials. J Organomet Chem; 689: 1540-1545.

[3] Ohshita J, Yoshimoto K, Hashimoto M, Hamamoto D, Kunai A, Harima Y, Kunugi Y, Yamashita K, Kakimoto

M, Ishikawa M. (2003) Synthesis of organosilanylene– pentathienylene alternating polymers and their application to the hole-transporting materials in double-layer electroluminescent devices. J Organomet Chem;

665: 29-32.

[4] (a). Wong WY, Wong CK, Lu GL, Lee AWM, Cheah KW, Shi JX. (2003)Triplet Emission in

Platinum-Containing Poly(alkynylsilanes). Macromolecules; 36(4): 983-990. (b). Morisaki Y, Fujimura F, Chujo Y. (2003)Synthesis and Properties of Novel σ-π-Conjugated Polymers with Alternating Organosilicon and [2.2]Paracyclophane Units in the Main Chain. Organometallics; 22(17): 3553-3557. (c). Chen J, Xie Z,

Lam JWY, Law CCW, Tang BZ. (2003)Silole-Containing Polyacetylenes. Synthesis, Thermal Stability, Light Emission, Nanodimensional Aggregation, and Restricted Intramolecular Rotation. Macromolecules; 36(4): 1108-1117.

[5] (a) Koopmann F, Frey H. (1996)Synthesis of Poly(silylenemethylene)s Symmetrically Substituted with Alkyl

Side Groups Containing 4-6 Carbon Atoms. Macromolecules; 29(11): 3701-3706. (b) Sargeant SJ, Weber WP.

(1993)Synthesis of carbosilane monomers and polymers with mesogenic pendant groups. Preparation and characterization of aryloxy-substituted poly(1-sila-cis-pent-3-enes). Macromolecules; 26(10): 2400-2407. (c) Ganicz T, Stanczyk W, B-Florjanczyk E, Sledzinska I. (1996)Synthesis and characterization of liquid crystal polycarbosilanes: poly(1-methyl-1-silaethylene), poly(1-methyl-1-silabutane) and poly(1-silabutane) with pendant mesogenic groups. Polymer; 37(18): 4167-4174.

[6] (a). Hu W, Nakashima H, Furukawa K, Kashimura Y, Ajito K, Liu Y, Zhu D, Torimitsu K. (2005)A

Self-Assembled Nano Optical Switch and Transistor Based on a Rigid Conjugated Polymer, Thioacetyl-End-Functionalized Poly(para-phenylene ethynylene). J Am Chem Soc; 127(9):2804-2805. (b).

Wosnick JH, Liao JH, Swager TM. (2005)Layer-by-Layer Poly(phenylene ethynylene) Films on Silica Microspheres for Enhanced Sensory Amplification. Macromolecules; 38(22): 9287-9290. (c). Amara JP, Swager TM. (2005)Synthesis and Properties of Poly(phenylene ethynylene)s with Pendant Hexafluoro-2-propanol Groups. Macromolecules; 38(22): 9091-9094. (d). Xue C, Chen Z, Wen Y, Luo FT, Chen J, Liu H. (2005)Synthesis of Ferrocene-Grafted Poly(p-phenylene-ethynylenes) and Control of Electrochemical Behaviors of Their Thin Films. Langmuir; 21(17): 7860-7865. (e). Clark APZ, Shen KF, Rubin YF, Tolbert SH. (2005)An Amphiphilic Poly(phenylene ethynylene) as the Structure-Directing Agent for Periodic Nanoscale Silica Composite Materials. Nano Lett;5(9): 1647-1652. (f). Wosnick JH, Mello CM, Swager TM. (2005)Synthesis and Application of Poly(phenylene Ethynylene)s for Bioconjugation: A Conjugated Polymer-Based Fluorogenic Probe for Proteases. J Am Chem Soc; 127(10): 3400-3405. (g).Kokil A, Yao P, Weder C. (2005)Organometallic Networks Based on 2,2'-Bipyridine-Containing Poly(p-phenylene ethynylene)s. Macromolecules; 38(9): 3800-3807. (h).Kim Y, Bouffard J, Kooi SE, Swager TM. (2005) Highly Emissive Conjugated Polymer Excimers. J Am Chem Soc; 127(39): 13726-13731. (i). Carbonnier B, Egbe DAM, Birckner E, Grummt UW, Pakula T. (2005)Correlation between Chain Packing and Photoluminescence for PPV/PPE in Macroscopically Oriented State: Side Chain Effects. Macromolecules;

38(18): 7546-7554. (j). Kim Y, Whitten JE, Swager TM. (2005)High Ionization Potential Conjugated Polymers. J Am Chem Soc; 127(34): 12122-12130. (k). Funston AM, Silverman EE, Miller JR, Schanze KS.

(2004)Charge Transfer through Terthiophene End-Capped Poly(arylene ethynylene)s. J Phys Chem B; 108(5): 1544-55.

[7] (a). Itoh M, Iwata K, Ishikawa J-I, Sukawa H, Kimura H, Okita K. (2001)Various Silicon- Containing

Polymers with Si(H)-C≡C Units. J Polym Sci: Part A: Polym Chem; 39(15): 2658-2669. (b). Itoh M, Inoue K, Iwata K, Mitsuzuka M, Kakigano T. (1997)New Highly Heat-Resistant Polymers Containing Silicon: Poly(silyleneethynylenephenylene- ethynylene)s. Macromolecules; 30(4): 694-701.

[8] Ohshita J, Iida T, Ikeda M, Uemura T, Ohta N, Kunai A. (2004)Synthesis of

poly{[bis(diethynylphenyl)silylene]phenylene}s with highly heat-resistant properties and an application to conducting materials. J Organomet Chem; 689: 1540-1545.

[9] Kuroki S, Okita K, Kakigano T, Ishikawa J, Itoh M. (1998)Thermosetting Mechanism Study of

Poly[(phenylsilylene)ethynylene-1,3-phenyleneethynylene] by Solid-State NMR Spectroscopy and Computational Chemistry. Macromolecules; 31(9): 2804-2808.

球形硅树脂的制备及简单工艺

球形硅树脂的制备及简单工艺生产的研究 摘要:通过简单的有机硅单体甲基三甲氧硅烷为原料,水解、缩合制备了粒径分布均匀、球形度规则的一类球形的固体白色粉末,并且通过不同的温度、水解比、氨水含量等影响因素来控制其粒径大小分布,所使用的方法控制简易,操作简单,且对工艺生产的条件要求较低,具有大量的市场前景。 关键词:甲基三甲氧硅烷;白色粉末;粒径分布;工艺生产; Study of Preparation and Simply Production Technology of SiliconeResinPowder Abstarct: A spherical solid white powder which was uniform distribution of partical size and the sphericity was rules was made by a simply silicone monomer called Methyltrimethoxysilane through by hydrolysis and condensation. And the particle size could be controlled by the different temperature, the ratio of hydrolysis and the content of Ammonia and so on. The method was controlled easily and operated simplicity, it was low requirement for production technology and with a lager number of market prospects. Keywords: Methyltrimethoxysilane; A Spherical Solid White Powder; Particle Size; Production Technology; 0 前言 有机硅材料具有许多独特的性能,用途十分广泛,已成为人们生活与各个经济领域中所必须的材料,并且对相关其它领域的发展也至关重要[1]。享有“工业味精”、“科技发展催化剂”等美誉的有机硅是一种人工合成、结构以硅原子与氧原子为主链的高聚物,由于其本身特有的性能,因此使其具备了很多优异的性能,近几年,有着长期稳定的发展[2]。 球形硅树脂微粉是一类真球形、粒径分布均匀的固体粉末,其化学结构为不溶、不熔的三官能团成分致密交联所得的固化树脂,通常由有机硅氧烷制得[3]。具有优异的耐水性,滑爽性,润滑性以及光扩散性,因此可以作为添加剂,增加涂料、油墨的润滑性、分散性及疏水性[4],并且通过与PC、聚苯乙烯、丙烯酸

苯乙炔自身偶联法制备共轭二炔实验方案-

苯乙炔自身偶联法制备共轭二炔及其定性定量分析实验方案【实验目的】 1.了解进行科研的基本过程。 2.学会独立用中国知网、数据库等平台查询资料,设计实验方案。 3.掌握苯乙炔的偶联反应极其产物的定性定量分析方法。 【实验原理】 按照发生反应的两个有机单元的种类,可以把偶联反应分为自身偶联 ( Homo -coupling) 和交叉偶联( Cross -coupling)反应两大类: 当两个有机单元各不相同时被称为为交叉偶联,而当两个有机单元相同时被称为自身偶联。本项目的合成部分是从末端炔烃出发,在Ni、Cu 催化剂作用下,以空气为氧化剂发生自身偶联反应,得到1,3 -二炔。 本项目以相对廉价和容易操作的苯乙炔为起始原料,以六水合氯化镍、碘化亚铜、四甲基乙二胺为催化剂,以空气为氧化剂,制备1,4 -二苯基丁二炔,反应方程如下: 反应过程中用薄层层析色谱来进行监测; 反应结束后,可以用气相色谱法分析产物,并使用内标法计算产率; 产品用柱层析方法进行分离并重结晶再纯化后,分别测定其熔点、红外吸收光谱和紫外-可见吸收光谱。 【仪器和药品】 试剂:苯乙炔( 98%) 、六水合氯化镍( A. R. ) 碘化亚铜( A. R. ) 、四甲基乙二 胺( A. R. ) 、四氢呋喃( A. R. ) 、二苯甲酮( A. R. ) 、石油醚( 30 ~60 ℃) 、乙酸乙酯( A. R. ) 、稀盐酸( 2 mol/L) 、甲醇、碳酸氢钠、二氯甲烷、柱层析硅胶( 200 ~300 目) 、薄层层析硅胶( GF254) 、无水硫酸钠、石英砂、脱脂棉。 仪器:烧瓶、烧杯、锥形瓶、层析缸、载玻片、分析天平、层析柱、试管、试 管架、熔点管、蒸馏装置、移液管、容量瓶、量筒、毛细管( 内径0. 5 mm) 、50 mL 分液漏斗、抽气头、双联球、长颈漏斗、洗耳球、干燥器; 气相色谱仪、熔点测定仪、254 nm 紫外灯、磁力搅拌器、红外光谱仪、紫外可见光谱仪。 【实验步骤】: 1.合成:用分析天平称取0. 36 g 六水合氯化镍、0. 28 g 碘化亚铜于50 mL 圆底烧瓶中,加入磁子。量取25 mL 四氢呋喃并加入到圆底烧瓶中,加入0. 45 mL ( 0. 34 g,3 mmol) N,N,N’,N’-四甲基乙二胺。搅拌5 min 后,取3. 06 g ( 30 mmol,3. 4 mL)苯乙炔加入到体系中。在瓶口塞上一团棉花,并室温搅拌。

苯乙炔和醛+离子交换树脂

The cation exchange resin-promoted coupling of alkynes with aldehydes:one-pot synthesis of a ,b -unsaturated ketones J.S.Yadav *,B.V.Subba Reddy,P.Vishnumurthy Division of Organic Chemistry,Indian Institute of Chemical Technology,Hyderabad 500007,India a r t i c l e i n f o Article history: Received 1February 2008Revised 2May 2008Accepted 13May 2008 Available online 15May 2008Keywords: Ion-exchange resin Aldehydes Alkynes Conjugated ketones a b s t r a c t Alkynes undergo smooth coupling with aldehydes in the presence of Amberlyst-15òat room temperature to produce the corresponding a ,b -unsaturated ketones in high yields with E -geometry.The use of an inexpensive,readily available,and recyclable cation exchange resin makes this method quite simple and convenient. ó2008Elsevier Ltd.All rights reserved. a , b -Unsaturated ketones have attracted increasing attention due to their numerous pharmacological properties such as anti-cancer activity,cytotoxicity,anti-in?ammatory,analgesic,and antipyretic behavior.1Some of them are potential antibacterial,antifungal,and anti-ulcer agents.2They are also very useful inter-mediates in organic synthesis,especially for heterocycles.3These ?ndings have attracted the attention of chemists,biochemists,and pharmacologists to this particular group of compounds.The stereoselective synthesis of a ,b -unsaturated ketones is generally accomplished by various methods such as condensation,oxidation,elimination,acylation,and insertion of carbon monoxide among others.4However,in most cases,the stereoselective control of the carbon–carbon double bond remains unsolved.The coupling of alkynes to aldehydes is an important transformation in organic synthesis to generate carbon–carbon multiple bonds.5Though the addition of alkynylmetal reagents to aldehydes to produce propargyl alcohols has been studied extensively,5the reaction be-tween alkynes and aldehydes to generate a ,b -unsaturated ketones has received little attention.Only a few methods are known in the literature for the direct preparation of conjugated enones from alkynes and aldehydes.Lewis acids such as SbF 5,Yb(OTf)3,and In-(OTf)3are employed to accomplish this reaction.6–8Other reagents such as VO(OSiPh 3)3and InCl 3have been used in the coupling of allenyl carbinols with aldehydes to generate b -hydroxy enones.9,10 In recent years,the use of heterogeneous catalysts such as ion-exchange resins,clay,and zeolites has received signi?cant atten-tion in different areas of organic synthesis because of their simplic-ity in operation,environmental compatibility,reusability,greater selectivity,non-corrosiveness,and ready availability of the re-agents at low cost.11In particular,ion-exchange resins can make reaction processes simple,more convenient,economic,and envi-ronmentally benign which enable them to function as ef?cient catalysts for various transformations.12 In continuation of our interest in the use of solid acid cata-lysts,13herein,we report an ef?cient and metal-free method for the preparation of a ,b -unsaturated ketones by means of coupling alkynes with aldehydes using a cheap and readily available cation exchange resin.Initially,we attempted the coupling of phenyl-acetylene (1)with paraformaldehyde (2)in the presence of Amberlyst-15ò.The reaction was complete within 2.0h and the product,1-phenylprop-2-en-1-one 3a was obtained in 86%yield (Scheme 1). Other terminal alkynes such as p -methylphenylacetylene and 4-phenylbut-1-yne were also coupled effectively with paraformalde-hyde under similar conditions (Table 1,entries b and c).These re-sults provided the incentive for further study with various alkynes and aldehydes.Interestingly,several aldehydes such as cyclohex-anecarboxaldehyde,n -hexanal,n -butyraldehyde,benzaldehyde, 0040-4039/$-see front matter ó2008Elsevier Ltd.All rights reserved.doi:10.1016/j.tetlet.2008.05.056 *Corresponding author.Tel.:+914027193535;fax:+914027160512.E-mail addresses:yadav@iict.res.in ,yadavpub@iict.res.in (J.S.Yadav). Tetrahedron Letters 49(2008)4498–4500 Contents lists available at ScienceDirect Tetrahedron Letters j ou r na l h om e pa ge :w w w.e lse v ie r.c om /lo c at e /t et l et

间硝基苯甲醛

Product Name:m-nitrobenzaldehyde,3-nitrobenzaldehyde CAS:99-61-6 Manufacturer:Pingxiang Sifeng New Material Technology Co.,Ltd.0799-685596613807994153 间硝基苯甲醛用途汇总 间硝基苯甲醛(CAS:99-61-6)是重要的有机合成中间体,可用作染料、感光材料、特别是医药方面有机合成中间体。那么间硝基苯甲醛具体可以用于哪些产品呢? 1.医药方面-间氨基苯乙炔 间硝基苯甲醛与四溴化碳经Wittig反应、脱溴制得间硝基苯乙炔,经锌粉还原制得抗肿瘤药厄洛替尼关键中间体间氨基苯乙炔 2.医药方面-合成间硝基肉桂酸 间硝基苯甲醛为原料,在醋酸钠存在下与乙酸酐缩合,可制得间硝基肉桂酸。间硝基肉桂酸是合成诊断药物碘普酸钙的重要中间体,也用于其它有机合成 3.医药方面-合成N-烯丙基-N-间氨基苯甲基-氨基甲酸叔丁酯 以间硝基苯甲醛和烯丙基胺为原料,通过还原胺化反应制得N-烯丙基-间硝基苄胺,盐酸巴尼地平 4.医药方面-合成氯舒隆的关键中间体 以间硝基苯甲醛和三氯甲烷为原料进行反应合成——三氯甲基-3-硝基-苄醇 5.医药方面-合成新型钙拮抗剂西尼地平中间体 乙酰乙酸-2-甲氧基乙酯与间硝基苯甲醛缩合生成的2-(3-硝基亚苄基)乙酰乙酸2-甲氧基乙酯,是西尼地平的关键中间体之一 6.医药方面-盐酸巴尼地平原料 以碳酸氢铵,间硝基苯甲醛和乙酰乙酸甲酯为原料,经缩合、部分水解,再与(s)-N-苄基-3-羟基吡咯烷经酯化、分步重结晶、成盐得到盐酸巴尼地平 7.医药方面-尼群地平原料 以间硝基苯甲醛,乙酰乙酸乙酯,氨化试剂为原料,合成尼群地平的绿色新工艺 8.医药方面-尼莫地平原料 间硝基苯甲醛和乙酰乙酸2-甲氧基乙酯在乙酸酐-浓硫酸催化下缩合得到2-(3-硝基亚苄基)乙酰乙酸2-甲氧基乙酯,再在浓盐酸催化下与3-氨基丁烯酸异丙酯在乙醇中闭环得到尼莫地平 9.超分子化学-用对氯苯甲醛、间硝基苯甲醛、对硝基苯甲醛、对二甲胺基苯甲醛、对羟基苯甲醛分别和1,3-丙二胺反应可以合成了五种短链二元脂肪胺客体

MQ硅树脂的合成工艺研究

2009年第2期广东化工 第36卷总第190期https://www.sodocs.net/doc/546281076.html, · 13 ·MQ硅树脂的合成工艺研究 李思东,葛建芳,蒲侠,郭兆钧,张泰发,钟新萍 (仲恺农业工程学院化学化工学院,广东广州 510225) [摘 要]以正硅酸乙酯(TEOS)、六甲基二硅氧烷(MM)为主要原料,在浓盐酸的催化作用下,合成MQ硅树脂。 讨论合成过程中影响MQ硅树脂性能的主要因素,如反应物配比、反应时间、反应温度等。最终确定MQ硅树脂的最佳合成工艺条件:反应时间为3 h,反应温度为60~70 ℃,正硅酸乙酯、六甲基二硅氧烷、水、乙醇和盐酸(35 %重量浓度)的质量比为40/12/8.8/5/2.4。 [关键词]MQ;缩合;正硅酸乙酯;六甲基二硅氧烷 [中图分类号]T [文献标识码]A [文章编号]1007-1865(2009)02-0013-03 Research on the Synthesis Process of MQ Silicone Resin Li Sidong, Ge Jianfang, Pu Xia, Guo Zhaojun, Zhang Taifa, Zhong Xinping (College of Chemistry & Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China) Abstract: MQ resin was synthesized by the hydrolysis of tetraethyl orthosilicate and hexamethyldisiloxane under acidic condition. The factors influencing the properties of MQ resin, such as the effects of the ratio of raw material, time of reaction and react temperature etc, were investigated in detail. Finally, the optimum technological parameters of the MQ resin were obtained as time 3 h, temperature 60~70 ℃, quality proportion of tetraethyl orthosilicate, hexamethyldisiloxane, water, ethanol and hydrochloric acid(weight concentration 35 %) was 40/12/8.8/5/2.4. Keywords: MQ;polycondensation;tetraethyl orthosilicate;hexamethyldisiloxane 有机硅聚合物是特殊的高分子材料,具有一系列的优异性能,品种繁多,因而得到广泛的应用。有机硅树脂一般为网状体形结构的有机硅高聚物,属于硅有机高分子化合物[1-2]。有机硅树脂的性质介于普通有机高分子化合物和无机高分子化合物之间。作为树脂使用可以获得一般树脂难以达到的耐高温、憎水、耐化学品性能。此外,它还具有优异的电绝缘性、机械性能、耐热性和耐候性。以它为基料做成的电绝缘漆、涂料、模塑料、层压材料、脱膜剂、防潮剂等各类产品在电机、电器、电子、航空、建筑等部门都获得了广泛的应用[3-4]。MQ硅树脂是由四官能度硅氧烷缩聚链节(SiO2即Q)与单官能度硅氧烷链节(R3SiO1/2即M)组成的结构比较特殊的聚有机硅氧烷产品,具有优异的耐热性、耐低温性、成膜性、柔韧性、抗水性和粘接性能,主要用作硅氧烷压敏胶的填料、增粘剂及加成型液体硅橡胶的补强填料[5-6]。以TEOS为主要原料,合成电子敷料专用MQ树脂,具有重要应用价值。 1 实验部分 [收稿日期] 2008-10-10 [基金项目] 仲恺农业工程学院大学生创新基金资助项目(200737) [作者简介]李思东(1986-),男,广东揭阳人,在读本科生,主要研究方向为高分子合成。

MSDS危险化学品安全技术说明书——33545--苯乙炔

化学品安全技术说明书 第一部分化学品及企业标识 化学品中文名:苯乙炔;乙炔苯 化学品英文名:phenylacetylene;acetylene benzene 企业名称: 生产企业地址: 邮编: 传真: 企业应急电话: 电子邮件地址: 技术说明书编码: 第二部分成分/组成信息 √纯品混合物 有害物成分浓度CAS No. 苯乙炔536-74-3 第三部分危险性概述 危险性类别:第3.3类高闪点液体 侵入途径:吸入、食入 健康危害:具有刺激性。无人类中毒资料。 环境危害:对环境有害。 燃爆危险:易燃,其蒸气与空气混合,能形成爆炸性混合物。 第四部分急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。如有不适感,就医。眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。如有不适感,就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮水,禁止催吐。如有不适感,就医。 第五部分消防措施 危险特性:易燃,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。若遇高热,可发生聚合反应,放出大量热量而引起容器破裂和爆炸事故。 有害燃烧产物:一氧化碳。 灭火方法:用泡沫、干粉、二氧化碳、砂土灭火。 灭火注意事项及措施:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。 尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结 束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上 撤离。 第六部分泄漏应急处理 应急行动:消除所有点火源。根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴正压自给式呼吸 器,穿防静电服。作业时使用的所有设备应接地。禁止接触或跨越泄漏 物。尽可能切断泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性 空间。小量泄漏:用砂土或其它不燃材料吸收。使用洁净的无火花工具收 集吸收材料。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,减少蒸发。 喷水雾能减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用防爆 泵转移至槽车或专用收集器内。 第七部分操作处置与储存 操作注意事项:密闭操作,加强通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴直接式防毒面具(半面罩),戴化学安全防护眼 镜,穿防毒物渗透工作服,戴橡胶耐油手套。远离火种、热源,工作场所 严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气 中。避免与氧化剂、酸类、卤素、碱金属接触。灌装时应控制流速,且有 接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。配

有机化学习题册答案

有机化学习题集锦答案一、写出下列化合物的名称: 1)3-甲基-3-乙基-6异丙基壬烷 2)1-甲基-2丙基-3-氯环戊烷 3)2-甲基-4、4-二氯戊烷 4) 顺-1-甲基-4-叔丁基环己烷 5) 1、3-二甲基-4-异丙基-2-溴苯 6)苄基环己烷 7)5-甲基-3-乙基-2-庚醇 8) 2、3-二甲基-5丙基-1、4-庚二醇 9) 2-乙基-6-氨基苯酚 10) 4-乙基-1、2-苯二酚 11)乙基异丙基醚 12) 3、6-二甲基-6乙基-2、4-环氧辛烷 13)2、3、5-三甲基-4-氯庚醛 14)3-甲基-4-氯甲基苯甲醛 15)2、4-二甲基戊二醛 16)4-甲基-2-戊酮 17)3、5-二甲基环己酮 18)2、3-二甲基-1、4-苯醌 19)1,2-二苯基乙酮 20)3-苯基丁酸 21)2、5-二甲基-3-硝基庚二酸 22)邻苯二甲酸 23)4-甲基戊酰氯 24)2-甲基丙酸丙酸酐 25)乙二酸乙二酯 26)N-甲基-3-甲基戊酰氨 27)5、5-二硝基-2-己烯 28) 4-甲基-1己烯-5-炔 29) 6、7-二甲基-4-辛烯-1-炔 30) 3-乙基-4-己烯-1-醇 31) 5-氯-4-庚烯-2-酮 32) 3-甲基-2-乙基-5庚酮醛 33) 4-硝基-3戊酮酸 34)2-甲基-4-乙基-6、7-二硝基-2-羟基辛醛35)3-乙烯基-2-氨基苯磺酸 36)3-甲基-2、6-二羟基苯甲酸

37)3Z、5E-4-甲基-5-异丙基-2-硝基-6、7-二氯-3、5-辛二烯 38) 反-3-甲基-4-乙基-5-硝基-3-己烯 39) 1、3-二甲基吡咯 40) 6-硝基吲哚乙酸 41) 3、5-二甲基喹啉 42) 2-甲基-8-乙基嘌呤 43) N-甲基-N-乙基苯胺 44) 2,5-二甲基戊烷 45) D-甘露糖 46) D-来苏糖 47) 氢氧化二甲基乙基丙基铵 48) 水杨酸 49) 柠檬酸 50) 2、4-二甲基-2-氯戊醛肟 二、单项选择题: 1、C 2、A 3、B 4、D 5、C 6、D 7、C 8、D 9、D 10、B 11、D 12、B 13、C 14、C 15、C 16、C 17、D 18、A 19、C 20、A 21、A 22、A 23、C 24、C 25、A 26、C 27、C 28、C 29、D 30、B 31、D 32、A 33、B 34、B 35、C 36、D 37、B 38、B 39、A 40、B 41、D 42、B 43、A 44、A 45、D 46、D 47、A 48、D 49、A 50、D 51、C 52、C 53、C 54、C 55、B 56、B 57、A 58、C 59、A 60、C 61、A 62、A 63、D 64、C 65、C 66、B 67、C 三、填空题: 1、正四面体 2、新戊烷 3、SP3 4、平面型 5、亲电加成反应 6、顺-2-丁烯 7、SP2 8、直线型 9、平面型 10、SP2 11、平面型

苯乙炔自身偶联法制备共轭二炔

苯乙炔自身偶联法制备共轭二炔 及其定性、定量分析 一、实验目的 1.了解偶联反应的定义、分类及其应用 2.了解并掌握如何完成简单目标化合物的合成、分离及性质测定 3.了解气相色谱中以内标法定量测定产率的方法 4.掌握萃取、薄层层析、柱层析、重结晶、抽滤等基本操作 5.掌握熔点、紫外-可见光谱、红外光谱的测定方法 二、实验原理 偶联反应(Coupling Reaction)是有机化学中的一类重要反应,是指两个有机单元之间通过某种化学反应,形成新的化学键,从而得到一个新的有机分子的过程。传统意义上的偶联反应一般涉及到金属有机化合物(Organometalic Compounds)参与的碳-碳键的形成;但是现代意义上的偶联,其范围相应地由碳原子扩展到各类杂原子(Heteroatoms);并且其过程既可能是金属有机化合物催化或参与的,也有可能是其它的有机物催化或参与的。 因为偶联反应可以看做是两个有机单元相互连接得到一个新的有机单元,所以偶联反应是有机合成(Organic Synthesis)中一类非常重要的增长碳链的方法。一类典型的反应就是亲核性的(Nucleophilic)金属有机化合物,如格氏试剂、芳基硼酸、有机锌试剂等,在催化剂作用下和亲电性的(Electrophilic)有机部分,如各类卤代烃等发生反应;亲核性的有机部分和亲电性的有机部分相结合,得到更长的碳链。例如下图所示,在钯配合物催化下,亲核性的对甲基苯基锌试剂和溴苯发生偶联反应,得到4-甲基联苯。 由此可见,偶联反应可以看做是有机合成中的“浆糊”,能够把各种有机部分结合起来,因此在有机合成中占据着非常重要的地位。20世纪60年代起,有机化学家发现钯、铑、镍等过渡金属的配合物可以催化许多偶联反应的进行,并且将亲核试剂和亲电试剂的种类进行了扩展,得到系列人名反应,如Negishi反应、Heck反应、Suzuki反应、Stille反应等。其中,Heck、Negishi和Suzuki还因此而荣获2010年诺贝尔化学奖。 按照发生反应的两个有机单元的种类,可以把偶联反应分为自身偶联(Homo-coupling)和交叉偶联(Cross-coupling)反应两大类:当两个有机单元各不相同时被称为为交叉偶联,而当两个有机单元相同时被称为自身偶联。 本项目的合成部分是从末端炔烃出发,在Ni、Cu催化剂作用下,以空气为氧化剂发生自身偶联反应,得到1,3-二炔。1,3-二炔是一类结构特殊的化合物。

苯乙炔苯酐改性硅烷偶联剂的合成研究

化学试剂,2009,31(7),538~540 苯乙炔苯酐改性硅烷偶联剂的合成研究 刘峰31a ,张旭华1a ,齐海霞1b ,黄永发2,袁智斌2,熊兵1a ,张招贵1a (1.南昌大学a.理学院化学系;b.基础化学实验中心,江西南昌 330031; 2.江铜2耶兹铜箔有限公司,江西南昌 330096) 摘要:利用42苯乙炔苯酐(42PEPA )对γ2氨丙基三乙氧基硅烷(γ2APS )进行改性,合成了热稳定性、黏附性、防腐性更好的新型硅烷偶联剂,并用红外、差热分析、热重分析进行了表征。关键词:硅烷偶联剂;苯乙炔苯酐;酰亚胺化;金属表面处理 中图分类号:O62714 文献标识码:A 文章编号:025823283(2009)0720538203 收稿日期:2008208201基金项目:国家自然科学基金资助项目(50803026);江西省教育厅自然科学基金资助项目(G JJ08005)。 作者简介:刘峰(19742),男,江西高安人,博士,副教授,研究方向为有机合成、聚酰亚胺材料。 硅烷偶联剂(SC A )是分子中同时具有两种不 同的反应性基团的有机硅化合物,γ2官能团硅烷偶联剂是人们研究最早、应用最早的偶联剂,其结构通式可表示为:Y —(CH 2)3Si (OCH 2CH 3)3。其中的Y 为能与有机涂层起反应的有机反应性官能团,如—NH 2、—SH 、—Cl 、—CH CH 2等。其中硅酯键易水解成Si —OH ,再与无机材料表面的羟基形成氢键,通过加热干燥,脱水反应形成部分共价键,最终使SC A 在无机材料表面形成既与无机物表面紧密粘合又能与有机涂料反应的膜。 硅烷偶联剂应用于金属表面处理是一项新兴的、环保型的表面处理工艺。将三烷氧基硅烷偶联剂水解后直接涂覆金属表面,干燥后,在金属表面将形成一层致密的网状的有机硅疏水膜,且有机硅膜与金属基体表面之间将形成Me —O —Si 的稳定共价键。由此,经过SC A 处理的金属基体的表面不仅对有机涂层黏附性能有很大的改善,抗腐蚀、抗摩擦和抗冲击的能力以及耐氧化性能也随之提高。 热固性聚酰亚胺复合材料由于其对航天航空器的减重及耐高温等性能方面起到的重要作用而广泛应用于航空航天领域。1974年美国Hughes 飞机公司推出了以乙炔基封端的聚酰亚胺,由于乙炔基在加热到250℃后会进行聚合形成高度交联的体型结构,且在这个过程中没有小分子的放出,使以乙炔基封端的聚酰亚胺具有突出的热氧化稳定性和优异的高温耐湿性,成为当时非常具有竞争力的材料。然而,由于聚酰亚胺预聚物的酰亚胺化温度与乙炔基的聚合温度很接近,因而造成材料的加工窗口比较窄。为了解决上述缺点,20世纪80年代又发展了以苯乙炔基封端的聚酰亚胺[1]。由于苯环的引入,使炔基的交联温 度提高(达到371℃ ),而使聚酰亚胺预聚物具有较宽的加工窗口。且与炔基相比,苯乙炔基封端的聚酰亚胺预聚物有更好的热氧化稳定性。常见的苯乙炔基封端剂有32氨基苯乙炔基苯胺和42苯乙炔基苯酐(42PEPA )。但与32氨基苯乙炔苯胺 相比,42苯乙炔苯酐更容易精制提纯,而且毒性大大降低。 借鉴炔基高度交联后可有效提高材质的热氧化稳定性的机理,在本文中我们利用PEPA 对γ2APS 进行改性合成新型的SC A 。预期改性后的SC A 分子中因酰亚胺环具有较强的极性使SC A 的 酸性增强,从而在处理金属时形成的Si —O —Me 共价键更稳定,更加不易水解。同时,分子中的酰亚胺环对经过金属表面有一定强度的相互作用[2,3],从而提高SC A 对金属的黏附性能。由于改性后的SC A 中的Y 官能团主要为大分子疏水基的热稳定好的苯环、酞酰亚胺环,所形成的高密度膜具有很好的疏水性能和抗氧化性能,从而既能增加膜对金属的黏附性能,又能提高防腐性能[4]。其中的叁健还可以在SC A 完全亚胺化后的更高温度左右引发交联[5,6],并且交联时无挥发物放出,从而可以形成更致密的膜,有效地提高膜的热氧化稳定性和对部分高分子涂料的黏附能力等其他性能。因此,使用PEPA 改性将有助于提高SC A 对金属表面黏附性能、防腐、耐热氧化性能。 835化 学 试 剂2009年7月

苯乙炔基封端的聚(硅乙炔-4,4‘-二苯醚)的合成和性能

Synthesis and properties of phenyl acetylene terminated poly (silyleneethynylene-4, 4’-phenylethereneethynylene)s1 Xu Jinfeng Shen Yongjia* Institute of Fine Chemicals Institute of Fine Chemicals East China University of Science and Technology East China University of Science and Technology Shanghai 200237, P. R. China Shanghai 200237, P. R. China eleven_xu@https://www.sodocs.net/doc/546281076.html, yjshen@https://www.sodocs.net/doc/546281076.html, Wang Chengyun Institute of Fine Chemicals East China University of Science and Technology Shanghai 200237, P. R. China cywang@https://www.sodocs.net/doc/546281076.html, Abstract Two kinds of phenylacetylene-terminated poly(silyleneethynylene-4,4′- phenylethereneethynylene)s, {C6H5-C≡C-[Si(R)2-C≡C-C6H4-O-C6H4-C≡ C]n-C6H5} wherein R represents methyl or phenyl, were synthesized by condensation reaction between dichlorosilanes and 4, 4′-diethynyldiphenyl ether using organic magnesium reagents. The polymers were characterized by NMR, IR, gel permeation chromatography, thermogravimetric analysis, and differential scattering calorimetries. Keywords: phenyl acetylene, polysilanes, gel permeation chromatography, thermogravimetric analysis, differential scattering calorimetries 1 Introduction Organosilicon polymers have received a great deal of attention because of their alternating arrangement in an organosilicon unit, π-electron system, and potential applications as advanced materials such as, ceramics precursors[1], organic semiconductors[2], hole-transporting materials[3], thermally stable polymers[4], liquid crystalline polymers[5]. In addition, polymers having ethynylene units in the π-electron system have been extensively studied[6]. An example includes the synthesis of poly [(hydrosilylene) ethynylene (phenylene) ethynylene]s with excellent heat-resistant and flame-resistant properties, reported by Itoh and his co-workers[7], which is fusible and soluble in most common organic solvents. In this paper, we report the synthesis of two kinds of new resins 1 Support by the Specialized Research Fund for the Doctoral Program of Higher e ducation (No. 20030251001) * Corresponding author

芳香亲核取代反应合成cardo型透明聚酰亚胺_唐咏梅

KP056 超支化离子液体增韧增强苯并噁嗪树脂及性能研究 陈诗媛,张俊珩* 中南民族大学430074 苯并噁嗪树脂是一类新型的热固性树脂,性脆、粘度高、固化温度高阻碍其广泛应用,增韧改性一直是其研究热点。本文以三羟甲基丙烷(TMP)、二羟甲基丙酸 (DMPA)和巯基丙酸 (MPA)反应制备了端巯基超支化聚酯树脂 (THBP),再以THBP与1-烯丙基-3-甲基咪唑六氟磷盐 (AMIMPF6)通过硫醇-烯烃点击反应制备了对苯并噁嗪树脂具有增强和增韧功能的超支化聚酯离子液体 (HBP-PIm+PF6--n, n=1,2,3),研究了HBP-PIm+PF6--n的含量及分子量对苯并噁嗪复合材料性能的影响规律,显示复合材料的机械性能随HBP-PIm+PF6--n含量和代数的增加先增加后减小,具有极大值;复合材料中含3wt% HBP-PIm+PF6--2时综合性能达到极大值,拉伸、弯曲和冲击强度比未改性苯并噁嗪树脂的相应性能分别提高了46.1%、73.0%和223.6%。 关键词:苯并噁嗪树脂;超支化聚酯离子液体;增韧;增强 KP057 高溶解性苯乙炔封端热固性聚酰亚胺树脂 李函远,王玮,陈国飞,张安将,方省众* 中国科学院宁波材料技术与工程研究所315201 热固性聚酰亚胺具有高的耐温等级和好的加工性能,因而作为树脂基复合材料和粘结剂在航空航天等领域应用广泛,其中采用苯乙炔基封端的聚酰亚胺因其良好的加工性能和高温热稳定性受到广泛关注。本文以4-苯乙炔苯酐作为封端剂,以混合异构硫醚二酐,4,4'-二氨基二苯醚,5(6)-氨基-1-(4-氨基苯基)-1,3,3-三甲基茚满作为单体,设计并合成了一系列苯乙炔基封端的聚酰亚胺预聚物。设计分子量为2500g/mol,并使用DSC、TGA和流变仪等研究不同二胺共聚比例对体系溶解性和溶体粘度,以及固化后树脂热性能的影响。实验结果表明,引入DAPI能有效改善聚酰亚胺的溶解性,其在低沸点有机溶剂中的溶解度大于30%。预聚物最低熔体粘度在34-57 Pa·s之间。利用所合成的预聚物在370 °C热压1 h制备了热固性薄膜,薄膜具有良好的热稳定性,玻璃化转变温度为288~309 °C。 关键词:热固性;聚酰亚胺;苯乙炔基;溶解性 KP058 芳香亲核取代反应合成cardo 型透明聚酰亚胺 唐咏梅,陈国飞,王玮,张安将,方省众* 中国科学院宁波材料技术与工程研究所315201 聚酰亚胺是一种高性能聚合物材料,具有优异的热稳定性、良好的力学性能和电性能等,主要应用于航空、航天和微电子工业中,然而,大多数PI由于存在高度共轭结构和/或分子间形成电荷转移络合物使其在可见光区域有强烈的吸收,从而呈现黄色,限制了其在光学领域的应用。为提高聚酰亚胺的透明性,从分子结构出发,将cardo和脂环结构结合以提高聚酰亚胺的透明性。由酚酞单体出发合成了一系列酚酞衍生物的双酚单体,以4-氟代苯酐和反式1,4-环己烷二胺为原料合成了一种新型的双氟单体,双酚单体与双氟单体通过亲核取代反应合成了一系列cardo 型聚酰亚胺。通过紫外、热重和溶解性等分析,对该系列cardo 型聚酰亚胺进行性能表征。结果表明:该系列cardo 型聚酰亚胺均具有良好的溶解性;该cardo型聚酰亚胺的截止波长在350 nm左右,在450 nm处的透过率大部分高于80%,说明cardo和环己烷的存在使聚合物的透明性提高。 关键词:cardo;反式1,4-环己烷;芳香亲核取代反应 KP059 从植物油(大茴香脑)到高性能材料的简易转化 陶杨青,贺凤开,王佳佳,周俊峰,孙晶*,房强* 中国科学院上海有机化学研究所200032 大茴香脑,一种天然存在的芳香性化合物,可以大量地从八角,茴香等植物中提取得到。通过简单的两步反应,以87%的收率实现了从大茴香脑到功能性单体的有效转变。该单体除了保有大茴香脑原有的丙烯基外,还通过Ullmann偶联反应引入了苯并环丁烯基团,在简单加热条件下即可发生开环聚合,形成交联的网状树脂。该材料表现出了良好的介电性能(在0.1-30 MHz范围内介电常数小于2.64)和低吸水率(小于0.2%在沸水中保持144小时)。热重分析(TGA)显示5%的热失重温度高达455 oC,动态热机械分析(DMA)测得玻璃化转变温度Tg达189 oC。这些结果表明,通过植物油(占比57%)衍生的新型聚合物可以与传统石油化工得到的材料相媲美。基于低介电常数材料在微电子工业的广泛应用,该方法为之提供了一条新的可持续的原料来源。同时,该方法也为其他芳香性天 591

相关主题