搜档网
当前位置:搜档网 › 电机主要运行参数的监测研究

电机主要运行参数的监测研究

电机主要运行参数的监测研究
电机主要运行参数的监测研究

西安科技大学

硕士学位论文

电机主要运行参数的监测研究

姓名:李莉

申请学位级别:硕士

专业:电力电子与电力传动指导教师:蔡文皓

20080415

790ETD直流控制器参数设置

790ETD直流控制器参数设置 一.首先检查电枢电压与励磁电流的拨码开关是否与控制器铭牌上额定值一致,拨码开关不可随意改动,否则有烧毁电机的风险。一般在需要过载时才可以改动拨码开关,而且此时输入控制器参数时也要做相应变化:(拨码开关在触发板上) (1)004Drive_Rated_Iarm调速器额定电流:根据电枢拨码开关设置相应电流。 017Imax_Brk1_(spd1),018Imax_Brk2_(spd2),021Current_Lim_Pos, 022Current_Lim_Neg根据电枢拨码开关和过载情况设置相应电流(2)我们使用的直流控制器都是结构1和结构2型(额定电流为37A-300A),其励磁电流拨码开关对应的Imax为10A(出厂设置一般不需要改动),此值是我们设置设 置励磁电流的基准。 二.控制器上电后会检查主电源相序,相序不正确则调速器将停止运行并显示相关报警信息PhasSequ/per。调整相序后重新上电。 三.试运行时先用电枢电压反馈,以便确定测速机极性和测试机器。在出厂默认设置下还需要设置的参数在PARAMETRES/Quick start下: (1)004Drive_Rated_Iarm调速器额定电流 (2)008Spd_fbk_select反馈方式:选择ArmVolt_FB_Filt2 (3)009arm_volt@1500rpm电机在1500rpm时的电枢电压值: 如果电机在1500rpm时的额定电枢电压是440V,则输入440 如果电机在1000rpm时的额定电枢电压是440V则输入660(440*1500/1000=660) (4)010MTRrpm@max_spd测速发电机的转速校准:输入电机额定转速。 (5)015Motor_Rated_Iarm电机额定电枢电流:根据电机铭牌。 (6)017Imax_Brk1_(spd1)一般设置为电机额定电枢电流 (7)018Imax_Brk2_(spd2)一般设置为电机额定电枢电流 (8)021Current_Lim_Pos设置为电机额定电枢电流 (9)022Current_Lim_Neg设置为电机额定电枢电流的负值 (10)031Max_Speed电机最大速度:输入电机额定转速(此项参数与010 MTRrpm@max_spd保持一致) (11)032Motor_Base_Spd电机基准速度:输入电机额定转速 (12)033Max_Spd_Pos电机正转速度限幅:输入电机额定转速 (13)034Max_Spd_Neg电机反转速度限幅:输入电机额定转速的负值 (14)035Spd_Prop_Gain速度环比例增益调节:根据运行情况适当调节 (15)036Spd_Integrl_Gain速度环积分增益调节:根据运行情况适当调节 (16)434field_curr_ref励磁电流参考: 电机励磁电流=电流励磁拨码开关设置电流*field_curr_ref%, 由一.(2)知电流励磁拨码开关设置电流为10A,所以 Field_curr_ref%=(电机励磁电流*10)% (17)435minimum_filed_I最小励磁电流(不弱磁时设置为电机额定励磁电流) (18)441Arm_volt_weak%不弱磁时设置为90%-100% (19)442fld_curr_scaling:输入励磁拨码开关设置的电流值,10A (20)453select_fld_cntrl励磁反馈方式选择:curr1电流1 (21)MAIN MENU/MEMORY FUNCTIONS/MEMORISE MOTOR1:按住M键2S保存 参数。

电动机运行状态监测系统

兰州理工大学技术工程学院 微机原理及应用 课 程 设 计 班级:焊接工艺与控制工程2班 姓名:史鹏举 学号:09050227 时间:二〇一一年十二月

目录 引言 (3) 1硬件设计 (3) 信号采集单元 (4) I/O单元 (5) 通讯单元 (8) CPU单元 (9) 2 软件设计 (11) 3抗干扰措施 (12) 4结论 (12)

引言 随着电子技术的发展,电动机运行状态监测系统正向基于现场总线的智能型方向发展。电机参数的监测(特别是动态参数的实时监测)可为判别电机运行质量提供不可缺少的数据.我所设计的这种电机运行状态监测系统,是由一台单片机及电机外围电路组成,构成主从方式工作.输入的模拟信号首先送到前置处理部分,再送到差分放大器.采用双端输入单端输出,再经低通滤波器送入A/D转换器,而后进入单片机.单片机的数字量,在LED显示器实时显示。这样就大大提高了参数的监测精度而且加强抗干扰能力。 采用单片机,使外围电路减少,可靠性增强,性价比提高,并具有一下特点:采用空芯电流互感器,电路和分量程放大电路进行电流采样,可提高电流的采样范围,保证大范围的采样,且采样线性度高;根据热容情况判断电动机的过载引起的发热(温度)状态,最大发挥电动机的过载能力;用微处理器可实现实时监测,可在设定时间范围内跳闸保护。 1 硬件设计 电动机运行状态监测系统,用H8/3687FP单片机实现电动机的保护功能。在硬件方面主要由三相电流信号采样、电压信号采样、键盘接口、显示部分、控制输出、报警输出、通信接口等几部分构成,下面分别对其中的关键部分作简要介绍。

信号采集单元 电动机运行状态监测系统采用交流采样算法计算被测信号。采样方式是按一定周期(称为采样周期)连续循环实时采样被测信号一个完整的波形(对于正弦波只需采样半个周期即可),然后将采样得到的离散信号进行真有效值运算,从而得到被测信号的真有效值,这样就避免了被测信号波形畸变对采样值的影响。 信号采集单元的功能取样、整流、放大互感器二次测的输出信号,将这些信号转换为单片机可处理的信号。电动机运行状态监测系统中处理三相电流信号、电压信号的信号采集放大电路原理都相同,现以一路电流信号采集放大电路为例说明电路工作原理。 图1 信号采集放大电路 信号采集放大电路如图1所示。在图中二极管A1、A7是双向二极管,对后级电路起到过压保护作用。当输入的信号在正常范围内,A1、A7不起作用,当输入信号超出正常范围(或有脉冲干扰信号出现)时,A1、A7导通,防止超出后级电路端口范围的信号进入后级电路,破坏后级A/D电路。CR1为取样电阻,将从CT1输出的电流信号转变为电压信号。LM324和CR4,CR7,CR10,CR13组成同相放大电路将电压信号放大后输入A/D转换电路。 图1中LM324采用双电源供电,这样可以保证LM324输出电压达到5V充分利用A/D转换提高显示精度。图1中通过运放将输入信号进行分档处理,小信号从输出大信号从输出。这样处理是因为:电动

永磁同步电机参数测量试验方法

一、实验目的 1. 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 二、实验内容 1. 掌握永磁同步电机dq 坐标系下的电气数学模型以及机械模型。 2. 了解三相永磁同步电机内部结构。 3. 确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。 三、拟需实验器件 1. 待测永磁同步电机1台; 2. 示波器1台; 3. 西门子变频器一台; 4. 测功机一台及导线若干; 5. 电压表、电流表各一件; 四、实验原理 1. 定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。I d 为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: 1 ,2a d b c d I I I I I ===- (1) 23d s d U R I = (2)

图1 电路等效模型 2. 直轴电感的测量 在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。测定定子电阻后,关断功率开关管,永磁同步电机处于自由状态。向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如 U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为: d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3) 对于d 轴电压输入时的电流响应为: ()(1)d R t L U i t e R -=- (4) 利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中U /R 为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的倍时,1d R t L - =-,电感与电阻的关系式可以写成: 0.632d L t R =? (5) 其中为电流上升至稳态值倍时所需的时间. 3. 交轴电感的测量 测出L d 之后,在q 轴方向(d 轴加90°)施加一脉冲电压矢量。电压矢量的作用时间一般选取的很短 ,小于电机的机械时间常数,保证电机轴在电压矢量作用期间不会转动。则q 轴电压方

最新设备状态监测管理制度

设备状态监测管理制度 1 目的 为了加强设备状态监测的管理,保证装置安全、稳定、长周期运行,依据国家相关法律、法规制定本制度。 2 范围 本制度规定了设备状态监测管理内容。 本制度适用于本厂设备状态监测。 3 职责 3.1 主管设备管理工作的厂领导,依据《设备管理制度》的管理要求和职责,全面负责设备状态监测的管理工作。 3.2 生产设备技术部职责: 3.2.1 负责甲醇厂设备状态监测工作的归口管理,负责制定甲醇厂设备状态监测的有关制度及实施细则,并监督、检查、考核。 3.2.2 建立甲醇厂设备状态监测管理体系,根据设备分级管理要求,制定不同级别设备的状态监测管理策略。 3.2.3 将状态监测数据进行保存,定期对监测工作进行总结。 3.2.4 负责定期组织监测数据的归纳、整理、分析,了解设备运行状况,为转动设备运行、维护、检修提供依据,对监测发现异常的设备,组织有关人员对故障进行分析并处理。 3.2.5 负责组织状态监测相关技术交流和培训。 3.2.6 负责或参与状态监测系统配置技术方案的设计审查、安装、调试和验收工作。

3.3 各车间职责 3.3.1 负责本单位状态监测的日常管理,制定状态监测计划,落实状态监测责任,做好本单位状态监测管理工作。 3.3.2 负责组织监测数据记录,依据分析结果,评价设备运行状态,对发现的故障征兆,及时组织协调有关单位诊断、处理。 3.3.3 归纳、整理状态监测数据、收集技术资料。 3.4 车间主操作人员职责 3.4.1 严格按照工艺卡片参数操作。 3.4.2 及时通报设备状态监测信息,指导运行和检修。 4 内容 4.1 设备状态监测组织机构(参照设备管理组织机构) 4.2 甲醇厂的大型机组空压机、氧压机、合压机、焦压机、增压膨胀机应逐步建立、完善在线监测系统。 4.3 对已建立的原厂监测系统,应完善诊断系统,按时检查、分析监测数据。 4.4 未建立在线监测系统的转动设备,按照分级管理要求,认真做好离线监测计划,依据“定人员、定设备、定测点、定仪器、定周期、定标准、定路线、定参数”的原则进行状态监测,对监测结果及时进行分析提出运行、维修建议。 4.5 监测发现转动设备异常时,应增加监测频次,必要时采用精密诊断故障进行分析,及时掌握故障的发展趋势,防止事故发生。 4.6 加强状态监测、故障诊断技术培训和交流,定期总结成果和经验,提高状态监测人员的技术素质。 5 相关文件记录

电机参数测试--方法小结

三相鼠笼式异步电动机参数测试方法 ——陈小波(注:该总结报告文档是本人在南京航空航天大学《电机学实验指导书》的基础上产生的一点自己的见解, 如有不当,请见谅!) 三相鼠笼式异步电动机参数测定分三部分:测量定子绕组的冷态直流电阻,空载实验,短路(堵转)实验。下面将分别讲述。 一、测量定子绕组的冷态直流电阻 原理:将电机在室内放置一段时间,用温度计测量电机绕组端部或铁心的温度。当所测温度与冷却介质温度之差不超过2K时,即为实际冷态。记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。 具体实现方法有:伏安法、电桥法等。各种方法详细的理论分析及原理介绍在书中有说明。在实际应用场合,可以使用万用表来进行伏安法的测试。 二、空载实验 《电机学实验指导书》上讲述的是Δ接法的测量方法。原理分析如下: 采样Δ接法的测量方法时,只需一相绕组短接,测量一相得到的数据是线电压跟线电流,可以得出空载实验的空载阻抗。Δ接法电机等效电路如图1所示。 A B C 图1 Δ接法电机等效图 但是,在小功率的应用场合(比如:家电等消费产品场合),三相异步电动机亦有好多

采用Y 型接法。此时电机测量如果可以检测相电压或者线电压均可,下面将逐一分析。 Y 型接法电机等效图如图2所示。 A B C 图2 Y 接法电机等效图 按照图2的等效图,若检测一相得到相电压,线电流,则可直接计算得出短路阻抗。若检测一相得到线电压,线电流,计算便可得到2倍的短路阻抗。 三、短路(堵转)实验 短路实验的原理跟实际的操作流程在实验指导书上均有详细的指导,再次不再重复叙述。 注:因三相异步电动机的广泛使用,在许多场合并未对三相异步电动机的一些细则进行说明,例如,现在许多三相电动机均由变频器拖动,且变频器的前级整流大部分采用全桥整流。下面以小功率消费场合所采用不控整流技术来进行说明: 此时 直流输出 22.34cos d U U α=[1] 大部分情况下,我们只知道电机的供电电源是市电。而不知道电机的一些详细额定参数(我遇到的是额定电压未知)。此时,在进行实验时,我们无法确定三相调压器所施加电压的上限是多少。 所以,在这种情况下,可根据上面的公式及电机的供电方式及供电电源的等级来确定三相调压器所施加电压的上限(上式中反推所得到的2U )。

YDM4电机智能监控装置

YDM4电机智能监控装置 订货技术规范 项目名称: 主回路电压等级: (KV)总数量: (台) 2、附加功能

: 9、定货范例: 1、用户所选择YDM4系列电机智能监控装置的功能:直接起动方式、11KW交流电动机(额定电流约为22A)适应YDM4的额定电流规格10~40A、控制装置的工作电压为AC220V、通讯MODBUS-RTU总线、具有电压测量、接地保护、模拟量4~20mA输出等功

能。 选型编号:YDM4-A40AB/MUJA/AC220V (控制装置的额定工作电压为AC220V); 2、用户所选择YDM4电机智能监控装置的功能:正-反转起动方式、200KW交流电动机(额定电流约为370A)适应YDM4的额定电流规格150~600A的一次互感器穿芯式、控制装置的工作电压为DC220V、通讯MODBUS-RTU总线、具有电压测量、温度(PTC)保护、模拟量4~20mA输出等功能。 选型编号:YDM4-C600AD/MUTA/DC220V (控制装置的额定工作电压为DC220V); 3、用户所选择YDM4电机智能监控装置的功能:直接旁路起动方式、200KW交流电动机(额定电流约为370A)需要配比400:1A的二次电流互感器、适应YDM4的二次电流比1A的互感器穿芯式额定电流规格30~6500A:1A、控制装置的工作电压为DC220V、通讯MODBUS-RTU总线、具有电压测量、温度(PTC)保护、模拟量4~20mA输出等功能。 选型编号:YDM4-A1AC/MUTA/ DC220V (控制装置的额定工作电压为DC220V)。 10、附 用户代表签字:供货方代表签字: 日期:日期:

相异步电动机在各种运行状态下的机械特性

三相异步电动机在各种运行状态下的机械特性 一、实验目的 了解三相线绕式异步电动机在各种运行状态下的机械特性。 二、预习要点 1、如何利用现有设备测定三相线绕式异步电动机的机械特性。 2、测定各种运行状态下的机械特性应注意哪些问题。 3、如何根据所测出的数据计算被试电机在各种运行状态下的机械特性。 三、实验项目 1、测定三相线绕式转子异步电动机在R S=0时,电动运行状态和再生发电制动状态下的机械特性。 2、测定三相线绕转子异步电动机在R S=36Ω时,测定电动状态与反接制动状态下的机械特性。 3、R S=36Ω,定子绕组加直流励磁电流I1=0.36A及I2=0.6A时,分别测定能耗制动状态下的机械特性。 四、实验方法 1 2、屏上挂件排列顺序 D34-2、D51

图6-2 三相线绕转子异步电动机机械特性的接线图 3、R S=0时的反转性状态下机械特性、电动状态机械特性及再生发电制动状态下机械特性。 (1)按图6-2接线,图中M用编号为DJ17的三相线绕式异步电动机,U N=220V,Y接法。MG用编号为DJ23的校正直流测功机。S1、S2、、S3选用D51挂箱上的对应开关,并将S1合向左边1端,S2合在左边短接端(即线绕式电机转子短路),S3合在2'位置。R1选用R2的180Ω阻值加上R3、R5上四只900Ω串联再加R 上两只1300Ω并联共4430Ω阻值,R2选用R1上1800Ω阻值,R S选用MET01电源控制屏R7上36Ω的电阻,R3暂不接。直流电表A2、A4的量程为5A,A3量程为200mA,V2的量程为500V,交流电表V1的量程为500V,A1量程为3A。 (2)确定S1合在左边1端,S2合在左边短接端,S3合在2'位置,M的定子绕组接成星形的情况下。把R1、R2阻值置最大位置,将控制屏左侧三相调压器旋钮向逆时针方向旋到底,即把输出电压调到零。 (3) 检查控制屏下方“直流电机电源”的“励磁电源”开关及“电枢电源”开关都须在断开位置。接通三相调压“电源总开关”,按下“启动”按钮,旋转调压器旋钮使三相交流电压慢慢升高,观察电机转向是否符合要求。若符合要求则升高到U=110V,并在以后实验中保持不变。接通“励磁电源” ,调节R2阻值,使校正直流测功机的励磁电流为校正值100mA并保持不变。 (4)接通控制屏右下方的“电枢电源”开关,在开关S3的2'端测量校正直流测功机的输出电压的极性,先使其极性与S3开关1'端的电枢电源相反。在R1阻值为最大的条件下将S3合向1'位置。 (5)调节“电枢电源”输出电压或R1阻值,使电动机M的转速下降,直至n为零,再把R1的R3、R5上四个900Ω串联电阻调至零后用导线短接,继续减小R1阻值或调高电枢电压使电机反向运转,直至n=-1300r/min为止。然后增大电阻R1或者减小校正直流测功机的电枢电压使电机从反转运行状态进入堵转然后进入电动运行状态,在该范围内测取电机MG的U a、I a、n及电动机M的交流电流表A1的I1值,将

三相异步电动机的参数测定

实验报告

图2-1 三相异步电动机参数测定接线图 (2)利用调压电源改变供给异步电动机的电源,异步电动机连接成Y 形,即将U 、V 、W (A 、B 、C )各接A 、B 、C 三相宫电线,X 、Y 、Z 接在一起。 (3)当施加电压从零逐渐增加,达到某值时,电机开始启动,然后逐渐增加电压到额定电压。测量其空载转速,观察其方向,再降低电压,使电机停下来。 (4)将三相交流供电线任意两相交换,再逐渐增加电压,观察电动机的转向,理解电源相序变化对电机转向的影响。 2. 参数测定 测量定子绕组的冷态直流电组,用数字万用表测量三个定子绕组1r 值, 娶妻平均数,即得冷态电阻。至于异步电动机的参数12 12,,,,,m m x x x r r r '',可用空载和短路实验来测定。下面主要作这两个实验。 (1). 空载实验 a.按照图3-1接线。电机绕组为Y 接(U N =220V )。负载与电机脱开,即不加负载。 b.把交流调压器的电压调至最小位置,接通电源,逐渐升高电压,是电动机旋转,并注意电机的旋转方向。若电机的旋转方向不符合要求,则需改变任意两根输入线即可。 c.保持电机在额定电压下,空载运行数分钟,使电机的机械损耗达到稳

1 x由下列短路实验求得。励磁电阻: 2 3 Fe m P r I =,式中 Fe P为额定电压下的铁损耗,由图3-2确定。 图2-2 电机的铁损与机械损耗 即作出2 () P f U =曲线,在2H U时对应的,Fe mec mec P P P 。可取2 () P f U =的延长线与 纵轴的交点,线段OK的长度表示机械损耗 mec P。 由短路实验计算出短路参数: 短路阻抗K k k U Z I =;短路电阻: 2 3 k k k P R I =;短路电抗:22 k k k X Z R =-,式中 ,, k k k U I P分别是短路相电压、短路相电流、三相短路功率之和。 转子绕组的折合值为 21 k r R R '=-,定、转子漏电抗为 12 1 2k x x X ' =≈最后画出完整的三相异步电动机等效电路图,并填入相关参数。

设备状态在线监测2011年度工作总结

设备状态在线监测2011年度工作总结 在股份公司领导和检修车间领导的支持和指导下,设备状态在线监测不断的茁壮成长,监测员们密切配合,爱岗敬业,恪尽职守,在不断的学习和探索中,积累总结经验,发现设备异常和故障分析的技术日趋成熟,为股份公司设备长周期稳定运行奠定了坚实的基础,在这一年里,提前发现问题,及时反馈设备异常近200余起,再结合各个车间现场操作人员的积极配合,避免了多起设备安全事故近50余起。 现对过去的一年中设备状态在线监测小组的工作收获及工作成绩简要回顾总结如下: 一、设备状态在线监测于2010年10月份成立以来,在这一年里,大家在工作上严于律己,在上班的八个小时中,时刻保持精神状态集中,认真观察在线监控的每台设备的振动趋势,仔细分析每个异常数据的频谱图、时域图、瀑布图。在付班时,也都来到工作岗位对股份公司的近百台的离线检测设备进行测量、分析和诊断工作,通过不断学习,总结,相互交流,共同提高。大家的口头禅:“只要数据异常,肯定有原因”,是信号干扰,是负荷波动,还是设备已出现故障,都会到现场仔细观察,测量设备的每一个测点,尽最大努力保证每个测量数据的准确性、每个故障的及时发现,认真的与现场操作人员沟通,询问近期设备运行状况,再和设

备近期的振动趋势做对照,进而详尽的分析设备的运行状况。当发现设备运行异常时,及时到现场查看联系相关人员协调解决,或及时电话通知现场人员注意该设备的运行趋势和运行状态。在线监测工作中,我们公司的“严,实,细,快”得到了充分的贯彻和发展。在线监测工作取得的成绩可以说是在很多数据的收集整理中取得的,我们的操作制度和考核制度齐备和严谨,首先要严守岗位,对待测量数据,要严谨,细致,结合现场的实际状况,设备运行的原始参数,确保取得真实的测量数据,严格,认真分析,发现异常及时、快速反应,迅速联系现场人员加强巡检,做好预防工作和检修的准备,对待设备异常要提前发现提前预知、提前做好检修预案,杜绝设备安全事故的发生! 二、在大家的共同努力下,尽管我们在设备状态线监测成立时间较短,但是取得的成绩是有目共睹的,预测出近50余起设备安全事故,如:如往复式压缩机轴瓦磨损,往复式压缩机十字头连接螺栓松动,缸体活门损坏,旋转式设备地脚松动,轴承磨损和润滑不良,联轴器的同轴度,同心度不良,以及叶轮转子不平衡等等。简单列举如下:1、10月30日尿素6#CO2压缩机一段中体垂直振动测点V4,振动加速度趋势,突然波动较大,且上升趋势明显,由正常情况下的0.15g上升至0.36g。查看频谱图,1X较高,在50~350Hz之间存在少量幅值较低的高倍频成分。从瀑布图上看,高倍频

通用变频器调试步骤和参数设置

通用变频器调试步骤和参数设置快速调试 当选择P0010=1(快速调试)时,P0003(用户访问级)用来选择要访问的参数。这一参数也可以用来选择由用户定义的进行快速调试的参数表。在快速调试的所有步骤都已完成以后,应设定P3900=1,以便进行必要的电动机数据的计算,并将其它所有的参数(不包括P0010=1)恢复到它们的缺省设置值。

一、快速调试步骤和参数设置

二、功能调试 1、开关量输入功能 2、开关量输出功能 可以将变频器当前的状态以开关量的形式用继电器输出,通过输出继电器的状态来监控变频器的内部状 的每一位更改。 3、模拟量输入功能

1电压信号2~10V作为频率给定,需要设置: 以模拟量通道2电流信号4~20mA作为频率给定,需要设置: 注意:对于电流输入,必须将相应通道的拨码开关拨至ON的位置。 4、模拟量输出功能 MM440变频器有两路模拟量输出,相关参数以in000和in001区分,出厂值为0~20mA输出,可以标定为4~20mA输出(P0778=4),如果需要电压信号可以在相应端子并联一支500Ω电阻。需要输出的物理量可以 5、加减速时间 加速、减速时间也称作斜坡时间,分别指电机从静止状态加速到最高频率所需要的时间,和从最高频率

设置过小可能导致变频器过电流。P1121设置过小可能导致变频器过电压。 6、频率限制 多段速功能,也称作固定频率,就是设置参数P1000=3的条件下,用开关量端子选择固定频率的组合,实现电机多段速度运行。可通过如下三种方法实现: 1)直接选择(P0701~ P0706 = 15) 在这种操作方式下,数字量输入既选择固定频率(见上表),又具备起动功能。 3)二进制编码选择+ON命令(P0701~P0704 = 17)

电机振动在线监测系统解决方案上课讲义

钛能科技根据多年来的状态监测实践,针对电机故障研发出了一套电机振动在线监测系统解决方案,对全面推动我司电机状态监测工作深入开展发挥了重要作用。 1.引言 电机是现代工业生产中的重要电气设备,是现代工业生产的重要物质和技术基础,广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保等各个行业。各种电机设备的技术水平和运行状况是影响一个工业企业各项经济技术指标的重要因素,电机故障会对企业生产运营造成严重影响。一般说来,电机故障约有60%-70%是通过振动和由振动辐射出的噪声反映出来的,因此现场应用中,振动监测技术是应用比较普遍的故障诊断方法。 电机振动主要由电枢不平衡、电磁力、轴承磨损、转轴弯曲和安装不良使电机与负载机械的轴心线不对中或倾斜等原因引起的。电机振动三个基本参数,分别是振幅、频率和相位。其中振幅可用位移、速度和加速度来表示。在测量过程中我们一般对高频故障(如滚动轴承、齿轮箱故障等)或高速设备进行测量时,应选加速度为参考量;在对低频故障(如不平衡、不对中等)或低速设备测量时,应选位移为参考量;而在进行振动的总体状态测量时,选速度为参考量。电机振动大小必须要满足国家的电机振动标准,否则会造成很严重的后果。 要做好电机振动的监测诊断,首先要对诊断对象做全面的了解以及必要的机理分析,比如:机器的结构和动态特性(齿轮与轴承规格、特征频率等),机器的相关机件连接情况(如动力源、基座等),机器的运行条件(如温度、压力、转速)及维修技术(如故障、维修、润滑、改造),异常振 动的形态和特性。 2.解决方案 2.1方案概述 钛能科技根据已有的技术规范,在对钢铁、石化、水泥客户广泛深入调研的基础之上,结合自身多年来的技术积累,精心开发了电机振动在线监测系统,受到了客户的肯定和好评。 钛能科技电机振动在线监测系统依托先进的物联网传感技术,通过测定电机设备特征参数(如振动加速度、速度、位移等),计算并存储设备的运行参数,自动生成日数据库、历史数据库及报警库。将特征参数值与设定值进行比较,来确定设备当前是处于正常、异常还是故障状态,设备一旦出现异常或者故障,及时报警通知运行管理人员。尽可能多的采集故障信息,从而获得设备的状态变化规律,预测设备的运行发展趋势,帮助用户查找产生故障的原因,识别、判断故障的严重程度,

三相异步电动机的工作特性和参数测定

第8章三相异步电动机的工作特性和参数测定 原理简述 一、基本方程式和等效电路 异步电机定子绕组所产生的旋转磁场,以转差速度切割转子导体,在转子导体中感应电势,产生电流,转子导体中的电流与定子旋转磁场相互作用而产生电磁转矩,使转子旋转。当转子的 转速与定子旋转磁场的转速相等时,定、转子之间没有相对切割,转子中就没有电流,也就不能产生转矩。因此转子的转速一定要异于磁场的转速,故称异步电机。由于异步而产生的转 矩称为异步转矩。当时,为电动机运行;时为发电机运行;当即转子逆着磁场方向旋转时,它是制动运行。异步电机绝大多数都是作为电动机运行。其转矩和转速(转差率)曲线,如图8-1所示。 由《电机学》中可知,将转子边的量经过频率折算和绕组折算,可得到异步电机的基本方程式为: 式中转差率是异步电机的重要运行参数,为折算到定子一边的转子参数,也就是从定子上测得转子方面的数值。

由方程式可以画出相应的等效电路,如图8-2所示。 当异步电动机空载时,,。附加电阻。图8-2中转子回路相当 开路;当异步电动机堵转时,,,附加电阻,图8-2转子回路相当短路,这就和变压器完全相同。因此异步电机也可以通过空载实验和堵转(短路)实验来求出异步电机的等效电路中的各参数。 二、空载实验 由空载实验可以求得励磁参数,以及铁耗和机械损耗。实验是在转子轴上 不带任何机械负载,转速,电源频率的情况下进行的。用调压器改变试验电压 大小,使定子端电压从逐步下降到左右,每次记录电动机的端电压、 空载电流和空载功率,即可得到异步电动机的空载特性,如图8-3所示。 图 8-3 空载特性图 8-4 铁耗和机械耗分离 空载时,电动机的输入功率全部消耗在定子铜耗、铁耗和转子的机械损耗上。所以从空载功 率中减去定子铜耗,即得铁耗和机械耗之和,即 式中为定子绕组每相电阻值,可直接用双臂电桥测得。 机械损耗仅与转速有关而与端电压无关,因此在转速变化不大时,可以认为是常数。

伺服驱动器参数设置方法

伺服驱动器参数设置方法 在自动化设备中,经常用到伺服电机,特别是位置控制,大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来参考,然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。 1.位置比例增益:设定位置环调节器的比例增益。设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值由具体的伺服系统型号和负载情况确定。 2.位置前馈增益:设定位置环的前馈增益。设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡。不需要很高的响应特性时,本参数通常设为0表示范围:0~100% 3.速度比例增益:设定速度调节器的比例增益。设置值越大,增益越高,刚度越大。参数数值根据具体的伺服驱动系统型号和负载值情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较大的值。 4.速度积分时间常数:设定速度调节器的积分时间常数。设置值越小,积分速度越快。参数数值根据具体的伺服驱动系统型号和负载情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较小的值。 5.速度反馈滤波因子:设定速度反馈低通滤波器特性。数值越大,截止频率越低,电机产生的噪音越小。如果负载惯量很大,可以适当减小设定值。数值太大,造成响应变慢,可能会引起振荡。数值越小,截止频率越高,速度反馈响应越快。如果需要较高的速度响应,可以适当减小设定值。 6.最大输出转矩设置:设置伺服驱动器的内部转矩限制值。设置值是额定转矩的百分比,任何时候,这个限制都有效定位完成范围设定位置控制方式下定位完成脉冲范围。本参数提供了位置控制方式下驱动器判断是否完成定位的依据,当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,驱动器认为定位已完成,到位开关信号为 ON,否则为OFF。 在位置控制方式时,输出位置定位完成信号,加减速时间常数设置值是表示电机从0~2000r/min的加速时间或从2000~0r/min的减速时间。加减速特性是线性的到达速度范围设置到达速度在非位置控制方式下,如果伺服电机速度超过本设定值,则速度到达开关信号为ON,否则为OFF。在位置控制方式下,不用此参数。与旋转方向无关。7.手动调整增益参数 调整速度比例增益KVP值。当伺服系统安装完后,必须调整参数,使系统稳定旋转。首先调整速度比例增益KVP值.调整之前必须把积分增益KVI及微分增益KVD调整至零,然后将KVP值渐渐加大;同时观察伺服电机停止时足否产生振荡,并且以手动方式调整KVP参数,观察旋转速度是否明显忽快忽慢.KVP值加大到产生以上现象时,必须将KVP 值往回调小,使振荡消除、旋转速度稳定。此时的KVP值即初步确定的参数值。如有必要,经KⅥ和KVD调整后,可再作反复修正以达到理想值。 调整积分增益KⅥ值。将积分增益KVI值渐渐加大,使积分效应渐渐产生。由前述对积分控制的介绍可看出,KVP值配合积分效应增加到临界值后将产生振荡而不稳定,如同KVP值一样,将KVI值往回调小,使振荡消除、旋转速度稳定。此时的KVI值即初步确定的参数值。

电机检测系统简要方案

电机故障检测系统简要方案 电机的运行状态关系到安全发电的稳定运行,实施预防维修是电厂电机维护的基本要求,预防维修是全过程对设备进行动态管理,即在设备运行阶段以点检为核心的一种管理模式,应用这种管理模式,将有效地防止“过维修”或“欠维修”,给出设备的预警维修周期,减少设备的故障突发生率,大大降低设备维护费用,甚至几乎把安全提到100%。 电机电气类诊断和健康监测是每个电厂电机设备安全稳定运行的关键,也是设备管理者关注重点,根据EPRI(美国电力委员会)的报告:电机故障的53%源于机械原因,47%源于电气原因。其中,37%源于定子绕组,10%源于转子,如铸件缺陷导致的不平衡气隙、断条等。 按电机本体故障机外在因素区分: 电机过载造成电机故障占24%;受潮占17%;润滑不良或者密封不良占20%;粉尘污染6%;绝缘老化仅仅占5%(这是对地或者相与相短路而言);轴承失效占12%;不可抗拒的故障占6%而已。发电行业的各类电机,同样存在着相应的故障类型,电机的故障类型,按照检修部门和检修重点不尽相同。但是归结一点,电机的故障类型主要还是分为两大类:1类:电机绕组问题。(定子、转子)的匝间短路 2类:电机转子断条故障,以及定转子气隙问题。(鼠笼牵引电机) 3类:电机在线运行故障,主要涉及包括轴承寿命在内的相关机械负载问题。 电机智能故障分析系统,由西马力公司提供,专门研究现场电机各类故障诊断和预防工作,技术历史悠久。电机综合故障诊断系统适用于电厂发电行业各类发电机、辅助电机综合检测。近20年来一直被国内各大企业指定电机维护的设备,并参考基准设立为电机质量校核。 1、传统电机故障检测系统: ●直阻测量:沿用上世纪70、80年代的直阻测量————技术陈旧、手段简单。 ●绝缘测试:摇表,双桥,万用表,————设备功能简单,故障分析有限。 ●高压试验:耐压试验/泄漏电流/吸收比/极化指数,————设备笨重,只能在 试验台检测。 ●试验指标:更多的停留在简单的评价绝缘好坏,————只能模糊评价一个指标:好? 坏? 设备好坏的状态级别?哪方面的故障问题?还能坚持多久不能给出量的指

科蒂斯交流电机控制器参数表

科蒂斯交流电机控制器参数表 科蒂斯交流电机控制器参数表 编程参数 通过CURTIS 1311手持编程器或1314编程站,可以为此交流控制器进行参数设置。通过这些参数设置可以使客户对车辆的性能进行客户化的设置,从而满足用户特定的应用需求。对于编程器的操作,请参考附表C。 编程菜单 编程参数被分类并且按级别集中显示在菜单中,详见表格3。 电机响应调节 电机响应的特性调整可以通过速度控制或扭矩控制来实现。它取决于具体的应用需要。CURTIS 控制器提供以下调整模式: 简化版速度模式 速度模式 扭矩模式 简化版的速度模式减少了一些参数的设置,从而方便了用户调节,它适应大部分应用需求。 速度模式,包括简化版的速度模式,适用于加速器输入控制电机速度输出的应用。 扭矩模式适用于加速器输入控制电机扭矩输出的应用。 注意:扭矩控制和速度控制不可以同时选择。例如:如果您已经选择了速度或简化版速度模式,而之后您去调整扭矩控制参数,这些新调整的参数并不会产生效果。 请参照以下参数列表。 CURTIS INSTRUMENTS (CHINA) CO., LTD. CONTROL MODE SELECT …P27 0. SPEED MODE EXPRESS…P28 Max Speed…..最大速度 Kp 比例控制 Ki 积分控制 Accel Rate 加速调整 Decel Rate 减速调整 Brake Rate 刹车调整 Pump Enable 泵使能 1. SPEED MODE MENU Speed Controller Max Speed 最大速度 Kp 速度比例控制 Ki 速度积分比例(设定速度与实际速度对比) Vel Feedforward 速度前馈 Kvff 低速负载匹配(改善低速时加速器反应) Build Rate Kvff 启动的时间 Release Rate Kvff结束的时间

YDM4电机智能监控装置 MODBUS通信协议

YDM4电机智能监控装置 MODBUS 通信协议 1 Modbus RTU 通信协议概述 1.1电气接口: RS485半双工 通信参数:波特率9600/19200、8位数据位、偶校验、1位停止位; 1.2通讯数据格式 2.1 02( 0x02)功能码:读离散量输入 注:状态被表示成 1= ON 和0 = OFF 。 0x0D ?0x0F 欠载 0x10 ON/OFF 过载 0x11 ON/OFF 数据格式: 数据长度: 2 modbus 点表 参数名称 开关量输入1 开关量输入2 开关量输入3 开关量输入4 开关量输入5 开关量输入6 开关量输入7 开关量输入8 开关量输入9 开关量输入10 开关量输入11 开关量输入12 开关量输入13 地址 0x00 0x01 0x02 0X03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 状态 ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF 起动A 起动B 停车 故障复位 清除热容量 反馈1 反馈2 反馈3 可编程输入1 可编程输入2 可编程输入3 紧急停车 测试输入 备注 备用

2、主站写参数,如参数超出数据范围,大于上限值,则写入上限值,小于下限值,则写入下限值。 3、主站写参数,即使用 16 (0x10)功能码,寄存器数量最大为 8 (16字节)。 4 2.2 03 (0x03) 06 (0x06) 16 (0x10) 功能码: 功能码: 功能码: 读保持寄存器 写单 个保持寄存器 写保持寄存器 1、地址大于0x0100 (含 0x0100) 的保持寄存器使用 06功能码时,寄存器值必须为 0X55AA ,其他所 有值均为非法值,从站按照异常代码 03 (非法数据)异常响应。

电动机的状态监测在实际生产中的应用

要求: 1、第二部分中应结合所给图一、二、三分别对三种维修方式进行简要的文字说明,并对tm、T、cp、cf等代号加以注明。 2、各波形图须编号、配名,并在文中提及。 3、图4中的“√”指什么,“×”指什么,“”指什么,表中的纪录和累计补油或检修间隔的数字有多处不对应,是否有误?。 4、修改后全文发email至本邮箱,并注明“电动机的状态监测在实际生产运行中的应用”修改稿。 5、如文章有自行修改的内容(作者更改、内容删减等),请用红笔特别注明或通知编辑部。 正文: 电动机的状态监测在实际生产 运行中的应用 电动机的状态监测在实际生产 运行中的应用 内容摘要:电动机是化工及各行业中最常用的动力驱动设 备,它的运行是否正常直接关系到各生产装置的 正常平稳运行。而在很多企业,对电动机的状态 监测则没有一个行之有效的管理方案。我们经过 多年的实践,得出了一套行之有效的电动机状态 监测管理制度及技术支持方案,和大家进行交 流。 关键词:电动机、状态监测、运行、监测仪器 一、前言 在各厂普遍执行的一般是定期检修电动机,这种方案检修时间

长,材料消耗大。大家都知道现在一般的化工企业都追求经济效益最大化,一般2-3年才安排大检修一次,而且检修时间控制的很短。对于电气设备的检修方面来说,在检修期间,各种操作技术改造等工作已经将检修时间充满,根本无法实现电动机在检修期内大面积的检修。加之许多电动机在大检修的检修过程中并未发现轴承损坏,这样检修就造成人员和材料的浪费。 二、检修方案分析 现在的电动机检修方案都归结为以下三种:定期预防维修方式、事后维修方式、预知维修(状态维修)方式。 如何合理的检修,并节约费用呢? (一)、定期预防维修方式 图一:定期预防维修的特点和界限 从上图可以看出:定期检修的检修周期在不同负荷及生产状况下很难确定。很难预防故障及节约成本。 (二)、事后维修方式。

培训资料-三相异步电动机参数的测定13页

6.1.1三相异步电动机机械特性的三种表达式 §6-1 三相异步电动机的机械特性 三相异步电动机参数的测定 载试验 *励磁参数与铁耗及机械损耗的确定 通过空载试验可以测定异步电动机的励磁参数, 异步电动机的励磁参数决定于电机主磁路的饱和程度, 所以是一种非线性参数; 通过短路试验可以测定异步电动机的短路参数 异步电动机的短路参数基本上与电机的饱和程度无关,是一种线性参数 载试验与励磁参数的确定 一) 空载试验 1.异步电动机空载运行 指在额定电压和额定频率下,轴上不带任何负载的运行状态 2.空载试验电路 图5.7. 机空载试验电路 3.空载试验的过程 定子绕组上施加频率为额定值的对称三相电压,

从 (1.10 ~ 1.30) 倍额定电压值开始调节电源电压, 逐渐降低到可能使转速发生明显变化的最低电压值为止 每次记录端电压、空载电流、空载功率和转速, 根据记录数据,绘制电动机的空载特性曲线 5.7.2空载特性曲线 (二) 励磁参数与铁耗及机械损耗的确定 从空载特性可确定 计算工作特性所需等值电路中的励磁参数、铁耗和机械损耗 1.机械损耗和铁耗的分离 空载试验时输入电动机的损耗有:定子铜耗、铁耗和机械损耗 其中定子铜耗和铁耗与电压大小有关,而机械损耗仅与转速有关上式改写为

由于可认为铁耗与磁密平方成正比,因而铁耗与端电压平方成正比, 绘制曲线 p Fe + p mec = f (U1)2 图机械损耗与铁耗的分离 作曲线延长线相交于直轴于 0ˊ点, 过 0ˊ作一水平虚线将曲线的纵坐标分为两部分, 由于空载状态下电动机的转速 n 接近 n0 ,可以认为机械损耗是恒值 所以虚线下部纵坐标表示与电压大小无关的机械损耗, 线上部纵坐标表示对应于某个电压 U1 的铁耗 磁参数的确定 空载试验时的等效电路

相关主题