搜档网
当前位置:搜档网 › 解决带电粒子在有界磁场中运动的临界问题的两种方法

解决带电粒子在有界磁场中运动的临界问题的两种方法

解决带电粒子在有界磁场中运动的临界问题的两种方法
解决带电粒子在有界磁场中运动的临界问题的两种方法

解决带电粒子在有界磁场中运动的临界问题的两种方法

此类问题的解题关键是寻找临界点,寻找临界点的有效方法是:

①轨迹圆的缩放:

当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”.

例1一个质量为m,带电量为+q的粒子(不计重力),

从O点处沿+y方向以初速度射入一个边界为矩形的匀强

磁场中,磁场方向垂直于xy平面向里,它的边界分别是

y=0,y=a,x=-1.5a,如图所示,那么当B满足条件_________

时,粒子将从上边界射出:当B满足条件_________时,

粒子将从左边界射出:当B满足条件_________时,粒子

将从下边界射出:

例2 如图9-8所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域?

【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。

【解析】粒子从A点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF射出,则

相应的临界轨迹必为过点A并与EF相切的轨迹如图9-10所示,作出A、P点速度的垂线相交于O/即为该临界轨迹的圆心。

临界半径R0由

d

Cosθ

R

R0

=

+

有: θ

+

=

Cos

1

d

R0

故粒子必能穿出EF的实际运动轨迹半径R≥R0

即:

θ

+

=

Cos

1

d

qB

mv

R0

有:

)

Cos

1(

m

qBd

v0

θ

+

图9-8 图9-9 图

9-10

由图知粒子不可能从P 点下方向射出EF ,即只能从P 点上方某一区域射出;

又由于粒子从点A 进入磁场后受洛仑兹力必使其向右下方偏转,故粒子不可能从AG 直线上方射出;由此可见EF 中有粒子射出的区域为PG ,

且由图知:

θ

+θ+θ

=

θ+θ=cot d Cos 1dSin cot d Sin R PG 0。

例3 如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里的、磁感应强度为

B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ = 30°、大小为v 0的带正电

粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力

不计,

求:(1)粒子能从ab 边上射出磁场的v 0大小范围. (2)如果带电粒子不受上述v 0大小

范围的限制,求粒子在磁场中运动的最长时间.

解析:(1)若粒子速度为v 0,则qv 0B =

R v m

2

, 所以有R =qB mv 0, 设圆心在O 1处对应圆弧与ab 边相切,相应速度为v 01,则R 1+R 1sin θ =

2

L

, 将R 1 =

qB mv 01代入上式可得,v 01 =m

qBL

3 类似地,设圆心在O 2处对应圆弧与cd 边相切,相应速度为v 02,则R 2-R 2sin θ =

2

L

, 将R 2 =

qB mv 02代入上式可得,v 02 =m

qBL

所以粒子能从ab 边上射出磁场的v 0应满足

m qBL 3<v 0≤m

qBL

(2)由t =

T π

α

2及T =

qB m 2π可知,粒子在磁场中经过的弧所对的圆心角α越长,在磁场中运动的时间也越长。由图可知,在磁场中运动的半径r ≤R 1时,运动时间最长,弧所

对圆心角为(2π-2θ),

所以最长时间为t =qB m )22(θπ-=qB

m

a b c d

例4 如图7所示,矩形匀强磁场区域的长为L ,宽为L /2。磁感应强度为B ,质量为m ,电荷量为e 的电子沿着矩形磁场的上方边界射入磁场,欲使该电子由下方边界穿出磁场,求:电子速率v 的取值范围?

解析:(1)带电粒子射入磁场后,由于速率大小的变化,导致粒子轨迹半径的改变,如图所示。当速率最小时,粒子恰好从d 点射出,由图可知其半径R 1=L/4,再由R 1=mv 1/eB ,得

当速率最大时,粒子恰好从c 点射出,由图可知其半径R 2满足,即

R 2=5L/4,再由R 2=mv 2/eB ,得

电子速率v 的取值范围为:。

例5、在边长为a 2的ABC ?内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.

解析:如图6所示,设粒子速率为1v 时,其圆轨迹正好与AC边相切于E点.

由图知,在E AO 1?中,11R E O =,113R a A O -=

,由

A

O E O 11030cos =

1

1323R a R -=,解得a R )32(31-=,则a R a A

O AE )332(2

321

1-=-=

=. 又由1

2

11R v

m Bqv =得m aqB m BqR v )32(311-==,则要粒子能从AC间离开磁场,其速率应大于1v .

图5

D

B

图6

D 1o

如图7所示,设粒子速率为2v 时,其圆轨迹正好与BC边相切于F点,与AC相交于G点.易知A点即为粒子轨迹的圆心,则a AG AD R 32=

==.

又由2

2

22R v m Bqv =得m aqB

v 32=,则要粒子能从AC间离开磁场,其速率应小于

等于2v .

综上,要粒子能从AC间离开磁场,粒子速率应满足

m

aqB

v m aqB

3)32(3≤

<-. 粒子从距A点a a 3~)332(-的EG 间射出.

★★★ 带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,

因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时关键寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。

② 轨迹圆的旋转:

当粒子的入射速度大小确定而方向不确定时,所有不同方向

入射的粒子的轨迹圆是一样大的,只是位置绕入射点发生了旋转,从定圆的动态旋转中,也容易发现“临界点”.

例6 一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里.许多质量为m 带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域. 不计重力,不计粒子间的相互影响. 下列图中阴影部分表示带电粒子可能经过的区域,其中正确的图是 ( A )

例7 在y>0的区域内存在匀强磁场,磁场垂直于图中的Oxy 平面,方向指向纸外,原点O 处有一离子源,沿各个方向射出速率相等的同价正离子,对于速度在Oxy 平面内的离子,它们在磁场中做圆弧运动的圆心所在的轨迹,可用下面给出的四个半圆中的一个来表示,其中 正确的是( A )

例8 如图,在x轴的上方(y≥0)存在着垂直于纸面向外的匀

强磁场,磁感应强度为B。在原点O有一个离子源向x轴上方的

各个方向发射出质量为m、电量为q的正离子,速率都为v。对

那些在xy平面内运动的离子,在磁场中可能到达的最大x=

________________,最大y=________________

例9 图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B的匀强磁场,方向垂直纸面向外是MN上的一点,从O 点可以

向磁场区域发射电量为+q、质量为m 、速率为的粒于,粒于射入

磁场时的速度可在纸面内各个方向已知先后射人的两个粒子恰好在

磁场中给定的P点相遇,P到0的距离为L不计重力及粒子间的相

互作用

(1)求所考察的粒子在磁场中的轨道半径

(2)求这两个粒子从O点射人磁场的时间间隔

解析:设粒子在磁场中做圆周运动的轨道半径为R,由牛顿第二定律,有

(1)

(2)如图所示,以OP为弦可画两个半径半径相同的圆,

分别表示在P点相遇的两个粒子的轨道,圆心和直径分

别为O1、O2和OO1Q1、OO2Q2,在O处两个圆的切线分别

表示两个粒子的射入方向,用θ表示它们之间的夹角。

由几何关系可知:

从O点射入

到相遇,粒子1的路程为半个圆周加弧长

=Rθ粒子2

的路程为半个圆周减弧长=Rθ

粒子1运动的时间:

粒子2运动的时间:

两粒子射入的时间间隔:

可解得:

例10 如图1,半径为cm r 10=的匀强磁场区域边界跟y

轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为

s m v /102.36?=的粒子.已知α粒子质量kg m 27

10

64.6-?=,电量C q 19

10

2.3-?=,试画出α粒子通

过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.

解析:设粒子在洛仑兹力作用下的轨道半径为R ,由

R

v m Bqv 2

= 得

cm m m Bq mv R 2020.0102.3332.0102.31064.619

6

27==?????==--

虽然α粒子进入磁场的速度方向不确定,但粒子进场点是确定的,因此α粒子作圆周

运动的圆心必落在以O 为圆心,半径cm R 20=的圆周上,如图2中虚线.

由几何关系可知,速度偏转角总等于其轨道圆心角.在半径R 一定的条件下,为使α粒子速度偏转角最大,即轨道圆心角最大,应使其所对弦最长.该弦是偏转轨道圆的弦,同时也是圆形磁场的弦.显然最长弦应为匀强磁场区域圆的直径.即α粒子应从磁场圆直径的A 端射出.

如图2,作出磁偏转角?及对应轨道圆心O ',据几何关系得2

1

2

sin

==

R r ?

,得060=?,即α粒子穿过磁场空间的最大偏转角为060.

例11 如图8所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 的距离l=16cm 处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度

都是v=3.0×106

m/s ,已知α粒子的电荷与质量之比

q/m=5.0×107C/kg ,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的

长度。

解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨道半径,有qvB=mv 2

/R ,

由此得 R=mv/qB ,代入数值得R=10cm 。

可见,2R>l>R ,如图9所示,因朝不同方向发射的α粒子的圆轨迹都过S ,由此可知,某一圆轨迹在图中N 左侧与ab 相切,则此切点P 1就是α粒子能打中的左侧最远点。为定出

P 1点的位置,可作平行于ab 的直线cd ,cd 到ab 的距离为R ,以S 为圆心,R 为半径,作弧

交cd 于Q 点,过Q 作ab 的垂线,它与ab 的交点即为P 1。

再考虑N 的右侧。任何α粒子在运动中离S 的距离不可能超过2R ,以2R 为半径、S 为圆心作圆,交ab 于N 右侧的P 2点,此即右侧能打到的最远点。

由图中几何关系得

所求长度为 P 1P 2=NP 1+NP 2,

代入数值得 P 1P 2=20cm 。

点评:本题给定带电粒子在有界磁场中运动的入射速度的大小,其对应的轨迹半径也就确定了。但由于入射速度的方向发生改变,从而改变了该粒子运动轨迹图,导致粒子的出射点位置变化。在处理这类问题时重点是画出临界状态粒子运动的轨迹图(对应的临界状态的速度的方向),再利用轨迹半径与几何关系确定对应的出射范围。

例12 如图14所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2

100.1-?=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向

图14

o cm x /cm y /p ?????

??

????

??

??

??

各个方向发射速率s m v /100.14?=的带正电的粒子,粒子的质量为kg m 25

106.1-?=,

电量为C q 18

10

6.1-?=,求带电粒子能打到y 轴上的范围.

解析:带电粒子在磁场中运动时有R v m Bqv 2

=,则

cm m Bq mv R 101.010

6.1100.110

0.1106.11824

25

==??????==

---. 如图15所示,当带电粒子打到y 轴上方的A 点与P 连线正好为其圆

轨迹的直径时,A 点既为粒子能打到y 轴上方的最高点.因cm R Op 10==,cm R AP 202==,则cm OP AP OA 3102

2=-=.

当带电粒子的圆轨迹正好与y 轴下方相切于B点时,B点既为粒子能打到y 轴下方的最低点,易得cm R OB 10==.

综上,带电粒子能打到y 轴上的范围为:cm y cm 31010≤≤-.

小结:

1.带电粒子进入有界磁场,运动轨迹为一段弧线.

解决这类问题的切入点是:定圆心;求半径;画轨迹;找圆心角。 2.同源粒子垂直进入磁场的运动轨迹

(2) 粒子进入单边磁场时,入射速度与边界夹角等于出射速度与边界的夹角; 针对性训练:

1、 如图11所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2

100.1-?=,A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07

?范围内的电子,Q为P 点正上方

B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3

101.9-?=,

速度大小不同,

方向相同。 cm /

已知电子的质量kg m 31

10

1.9-?=,电子电量C e 19106.1-?=,不

计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:

(1)沿P Q方向射出的电子击中A 、B 两板上的范围.

(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系及各自相应的取值范围.

解析:如图12所示,沿PQ方向射出的电子最大轨迹半径由

r v m Bev 2

=可得Be

mv r m m =,代入数据解得d m r m 21022

=?=-. 该电子运动轨迹圆心在A板上H处,恰能击中B板M处.随着

电子速度的减少,电子轨迹半径也逐渐减小.击中B板的电子与Q点

最远处相切于N点,此时电子的轨迹半径为d ,并恰能落在A板上H处.所以电子能击中B板MN区域和A板PH区域.

在?MFH中,有d d

d MF HM FH 3)2(2

22

2-=-=

s m d PF QM /1068.2)32(3-?=-==, m d QN 2101-?==,m d PH 21022-?==.

电子能击中B板Q点右侧与Q点相距m m 2

3

101~1068.2--??的范围.电子能击中A板P点右侧与P点相距m 2

102~0-?的范围.

(2)如图13所示,要使P点发出的电子能击中Q点,则有Be mv r =,2

sin d

r =θ. 解得6

108sin ?=θv .

v 取最大速度s m /102.37?时,有41sin =

θ,4

1

arcsin min =θ;v 取最小速度时有2

max πθ=

,s m v /1086

min ?=.

所以电子速度与θ之间应满足6

108sin ?=θv ,且]2

,

41[arcsin π

θ∈,]/102.3,/108[76s m s m v ??∈

2、据有关资料介绍,受控核聚变装置中有极高的温度,因而带电粒子将没有通常意义上的“容器”可装,而是由磁场约束带电粒子运动使之束缚在某个区域内.现按下面的简化条件来讨论这个问题:如图8所示的是一个截面为内径m R 6.01=、外径m R 2.12=的环状区域,区域内有垂直于截面向里的匀强磁场.已知氦核的荷质比

图13

P

kg c m

q

/108.47?=,磁场的磁感应强度T B 4.0=,不计带电粒子重力. (1)实践证明,氦核在磁场区域内沿垂直于磁场方向运动速度v 的大小与它在磁场中运动的轨道半径r 有关,试导出v 与r 的关系式.

(2)若氦核沿磁场区域的半径方向平行于截面从A 点射人磁场,画出氦核在磁场中运动而不穿出外边界的最大圆轨道示意图.

(3)若氦核在平行于截面从A 点沿各个方向射人磁场都不能穿出磁场外边界,求氦核的最大速度.

解析:(1)设氦核质量为m ,电量为q ,以速率v 在磁感强度为B 的匀强磁场中做半径为r 的匀速圆周运动,由洛仑兹力公式

和牛顿定律得R v m Bqv 2=,则m

Bqr

v =.

(2)所求轨迹示意图如图9所示(要与外圆相切) (3)当氦核以m v 的速度沿与内圆相切方向射入磁场且轨道与外圆相切时,则以m v 速度沿各方向射入磁场区的氦核都不能穿出磁场外边界,如图10所示.

由图知m R R r 3.0212=-=

',又由r v m Bqv 2

=得Bq

mv

r =

, 在速度为m v 时不穿出磁场外界应满足的条件是

r Bq

mv m

'<, 则s m m

r Bq v m /1076.53.0108.44.067?=???='

. 3、(14分)如图所示的直角坐标系中,在直线x =-2l 0到y 轴区域内存在着两个大小相等、方向相反的有界匀强电场,其中x 轴上方的电场方向沿y 轴负方向,x 轴下方的电场方向沿y 轴正方向。在电场左边界上A (-2l 0,-l 0)到C (-2l 0,0)区域内,连续分布着电量为+q 、质量为m 的粒子。从某时刻起由A 点到C 点间的粒子,依次连续以相同的速度v 0沿x 轴正方向射入电场。若从A 点射入的粒子,恰好从y 轴上的A ′(0,l 0)沿x 轴正方向射出电场,其轨迹如图。不计粒子的重力及它们间的相互作用。 ⑴求匀强电场的电场强度E ;

⑵求在AC 间还有哪些位置的粒子,通过电场后也能沿x 轴正方向运动?

⑶若以直线x =2l 0上的某点为圆心的圆形区域内,分布着垂直于xOy 平面向里的匀强磁场,使沿x 轴正方向射出电场的粒子,经磁场偏转后,都能通过直线x =2l 0与圆形磁场边界的一个交点处,而便于被收集,则磁场区域的最小半径是多大?相应的磁感应强度B 是多大?

图10

图9

⑴ 从A 点射出的粒子,由A 到A ′的运动时间为T ,根据运动轨迹和对称性可得 x 轴方向 002l v T = (1分) y 轴方向 2)2

(2122

0?=T m qE l (1分) 得:0

2mv E ql =

(2分) ⑵ 设到C 点距离为△y 处射出的粒子通过电场后也沿x 轴正方向,粒子第一次达x 轴用时△t ,水平位移为△x ,则 0x v t ?=? 21()2qE

y t m

?=

? (1分) 若满足022l n x =??,则从电场射出时的速度方向也将沿x 轴正方向 (2分)

解之得:2002

20111

()2l qE y l n m v n

?=

= (2分) 即AC 间y 坐标为021

y l n

=- (n = 1,2,3,……) (1分)

⑶ 当n =1时,粒子射出的坐标为10y l =

当n =2时,粒子射出的坐标为201

4

y l =-

当n ≥3时,沿x 轴正方向射出的粒子分布在y 1到y 2之间(如图)y 1到y 2之间的距离为

L = y 1-y 2=054l 则磁场的最小半径为 0

528

l L R =

=

(2分) 若使粒子经磁场偏转后汇聚于一点,粒子的运动半径与磁场圆的半径相等(如图),

(轨迹圆与磁场圆相交,四边形PO 1QO 2为棱形) 由2

00mv qv B R

= 得:0

085mv B ql =

(2分)

带电粒子在圆形磁场中运动的规律.

带电粒子在磁场中的运动 例 1. 如图所示,在宽度为 d 磁感应强度为 B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度 v 入射, 粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A. 带电粒子的比荷 B. 带电粒子在磁场中运动的周期 C. 带电粒子的质量 D. 带电粒子在磁场中运动的半径变式 . 若带电粒子以初速度 v 从 A 点沿直径入射至磁感应强度为 B , 半径为 R 的圆形磁场, 粒子飞出时偏离原方向 60°,利用以上数据可求出下列物理量中的哪几个 应用 1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、 e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场 ,磁感应强度 B =0.25T 。一群不计重力、质

量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度 v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域( A . 从 Od 边射入的粒子, 出射点全部分布在 Oa 边 B . 从 aO 边射入的粒子, 出射点全部分布在 ab 边 C .从 Od 边射入的粒子,出射点分布在 Oa 边和 ab 边 D .从 aO 边射入的粒子,出射点分布在 ab 边和 bc 边 应用 2. 在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图 10所示。一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以速度 v 沿 -x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿 +y方向飞出。 (1请判断该粒子带何种电荷,并求出其比荷 q/m; (2若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间 t 是多少? 例 2. 如图所示, 一束电子流以不同速率, 由边界为圆形的匀强磁场的边界上一点 A , 沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题 当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。如何分析这类相关的问题是本文所讨论的内容。 一、带电粒子在有界磁场中运动的分析方法 1.圆心的确定 因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。 2.半径的确定和计算 利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点: ①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。 ②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。 3.粒子在磁场中运动时间的确定

若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出 圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T 即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t 与运动轨迹的长短无关。 4.带电粒子在两种典型有界磁场中运动情况的分析 ①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。 a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标) b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标) c、带电粒子在磁场中经历的时间由得出。 ②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

带电粒子在圆形磁场中运动的规律

带电粒子在磁场中的运动 例1.如图所示,在宽度为d 磁感应强度为B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度v 入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A.带电粒子的比荷 B.带电粒子在磁场中运动的周期 C.带电粒子的质量 D.带电粒子在磁场中运动的半径 变式.若带电粒子以初速度v 从A 点沿直径入射至磁感应强度为B ,半径为R 的圆形磁场,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 应用1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度 B =0.25T 。一群不计重力、质 量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域 ( ) A .从 Od 边射入的粒子,出射点全部分布在 Oa 边 B .从 aO 边射入的粒子,出射点全部分布在 ab 边 C .从Od 边射入的粒子,出射点分布在Oa 边和 ab 边 D .从aO 边射入的粒子,出射点分布在ab 边和bc 边 应用2.在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少? 例2.如图所示,一束电子流以不同速率,由边界为圆形的匀强磁场的边界上一点A ,沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( ) A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场 变式.如右图所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则 A.从P 射出的粒子速度大 B.从Q 射出的粒子速度大 C.从P 射出的粒子,在磁场中运动的时间长 D.两粒子在磁场中运动的时间一样长 例3.如右图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是 A.只要对着圆心入射,出射后均可垂直打在MN 上 B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心 C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长 D.只要速度满足m qBR v / ,沿不同方向入射的粒子出射后均可垂直打在MN 上(出射速度有什么关系?)若相同速率平行经过p 点的直径进入磁场,出射点又有什么规律?

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题的解题技巧 湖北省恩施高中 陈恩谱 带电粒子(质量m 、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射速度大小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。 在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化范围)或待定,按 已知参数可将问题分为如下10类(2 5C ),并可归并为6大类型。 所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序.....尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。 类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。 【例1】如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是 A .使粒子的速度v 5BqL 4m C .使粒子的速度v >BqL m D .使粒子的速度BqL 4m

带电粒子在磁场中运动(I)

3.6 带电粒子在磁场中的运动(二) 主编:金生华 主审:张国平 班级 姓名 学号 教学目标: 1.学会寻找带电粒子在匀强磁场中做匀速圆周运动的圆心、半径 2.能够处理带电粒子在匀强磁场中做非完整匀速圆周运动时间 教学重难点: 1.如何确立带电粒子在匀强磁场中做匀速圆周运动的圆心、半径及运动时间 难点解析 1、如何确立带电粒子在匀强磁场中做匀速圆周运动的圆心、半径及 运动时间? (1)圆心的确定。因为洛伦兹力f 指向圆心,根据f ⊥v ,画出粒子运动轨迹上任意两 点(一般是射入和射出磁场的两点)的f 的方向,其延长线的交点即为圆心。 (2)半径的确定和计算。圆心找到以后,自然就有了半径(一般是利用粒子入、出磁 场时的半径)。半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识。 (3)在磁场中运动时间的确定。利用圆心角与弦 切角的关系,或者是四边形内角和等于360° 计算出圆心角θ的大小,由公式t=ο360 θ×T 可求出运动时间。有时也用弧长与线速度的比。 如图所示,还应注意到: ①速度的偏向角?等于弧AB 所对的圆心角θ。 ②偏向角?与弦切角α的关系为:?<180°,?=2α;?>180°,?=360°-2α; (4)注意圆周运动中有关对称规律 如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等; 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 典型例题 【例1】如图所示,一束电子(电量为e)以速度v 垂直射入磁感应强度为B ,宽度为d 的匀强 磁场中,穿过磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量是多少?电子穿过磁场的时间是多少? 【例2】如图所示,匀强磁场的磁感应强度为B ,宽度为d ,边界为CD 和EF 。一电子从 CD 边界外侧以速率V 0垂直射入匀强磁场,入射方向与CD 边界间夹角为θ。已知电子的质量为m ,电荷量为e ,求: (1)为使电子能从磁场的另一侧EF 射出,电子的速率v0至少多大? (2)若电子从磁场的CD 一侧射出, 则电子在磁场中的运动时间是多少? 【例3】如图所示,分布在半径为r 的圆形区域内的匀强磁 场,磁感应强度为B ,方向垂直纸面向里。电量为 q 、质量为m 的带正电的粒子从磁场边缘A 点沿圆 的半径AO 方向射入磁场,离开磁场时速度方向偏 转了60°角。试确定:

2021高考物理新高考版一轮习题:第九章 微专题64 掌握“语言翻译”求解有界磁场问题(二)(含解析)

1.(多选)(2019·湖南长沙、望城、浏阳、宁乡四个县市区3月调研)如图1所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向自A点射入磁场,分别从AC边上的P、Q两点射出,不计粒子重力,则() 图1 A.从P点射出的粒子速度大 B.从Q点射出的粒子速度大 C.从P点射出的粒子,在磁场中运动的时间长 D.两粒子在磁场中运动的时间一样长 2.(2019·闽粤赣三省十校下学期联考)如图2所示,正六边形abcdef区域内有垂直于纸面向外的匀强磁场.一带电粒子从a点沿ad方向射入磁场,当速度大小为v1时,粒子从b点离开磁场;当速度大小为v2时,粒子从c点离开磁场,不计粒子重力,则v1与v2的大小之比为()

图2 A .1∶3 B .1∶2 C .2∶1 D.3∶2 3.(多选)(2019·山东德州市上学期期末)如图3所示,直角三角形 AOC 内有磁感应强度为B 的匀强磁场,方向垂直纸面向里,∠A =60°,AO =L .在O 点放置一个粒子源,可以向各个方向发射某种带负电的粒子,粒子的比荷为q m ,发射速度大小都为qBL m ,粒子重力忽略不计.对 于粒子进入磁场后的运动,下列说法正确的是( ) 图3 A .粒子在磁场中运动最长的时间为πm 3Bq B .粒子在磁场中运动最长的时间为πm Bq C .粒子在 AC 边界上可以射出的区域长度为L

D .粒子可以从 A 点射出 4.(多选)(2020·山东济宁市模拟)如图4所示,等腰直角三角形abc 区域内(包含边界)有垂直纸面向外的匀强磁场,磁感应强度的大小为B ,在bc 的中点O 处有一粒子源,可沿与ba 平行的方向发射大量速率不同的同种粒子,这些粒子均带负电、质量均为m 、电荷量均为q ,已知这些粒子均可以从ab 边离开abc 区域,ab =2l ,不考虑粒子的重力及粒子间的相互作用.关于这些粒子,下列说法正确的是( ) 图4 A .速度的最大值为 ( )2+1qBl m B .速度的最小值为qBl m C .在磁场中运动的最短时间为πm 4qB D .在磁场中运动的最长时间为πm qB 5.(2019·福建三明市期末质量检测)如图5所示,在一边长为a 的正方形区域内存在方向垂直纸面向里的匀强磁场.两个相同的带电荷量为-q (q >0)的粒子,质量均为m ,先后从P 点和Q 点以相同的速度v 0沿垂直于边界方向射入磁场,两粒子在图中M 点相遇.不计粒子的重力及粒子之间的相互作用,已知PO = 32a ,QO =36a ,OM =1 2 a ,则( )

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中, 如“圆周运动中小球能过最高点的速度条 件” “动量中的避免碰撞问题”等等, 这类题目中往往含有“最大”、 “最高”、“至少”、 “恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁 场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 、解题方法 画图T 动态分析T 找临界轨迹。 (这类题目关键是作图,图画准了,问题就解决了一大 半,余下的就只有计算了——这一般都不难。 ) 、常见题型 (B 为磁场的磁感应强度,V 。为粒子进入磁场的初速度) r ①旳方向一定,大小不确定一第一类 I 』确宦 < ②V 。犬小 一亦方向不确定——第二类 ■③旳大小、方向都不确定一第三类 分述如下: 第一类问题: 例1如图1所示,匀强磁场的磁感应强度为 B,宽度为d ,边界为CD 和EF 。一电子从 CD 边界 外侧以速率 V 。垂直匀强磁场射入,入射方向与CD 边界夹角为0。已知电子的质量为 m 电荷量为e ,为使电子能从磁场的另一侧 EF 射出,求电子的速率 v o 至少多大? 2.行不确宦 -①巾确定 ——第四类 {——五类

例2如图3所示,水平线 MN 下方存在垂直纸面向里的磁感应强度为 B 的匀强磁场,在 MN 线上某点O 正下方与之相距 L 的质子源S,可在纸面内360°范围内发射质量为 m 电量 为e 、速度为 V o =BeL / m 的质子,不计质子重力,打在 MN 上的质子在 O 点右侧最远距离 OP ,打在O 点左侧最 远距离 OO 。 分析:首先求出半径得r =L ,然后作出临界轨迹如图 4所示(所有从 S 发射出去的质子 做圆周运动的轨道圆心是在以 S 为圆心、以r =L 为半径的圆上,这类问题可以先作出这一圆 ——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆) ,O 諒L , OQL 。 【练习】如图5所示,在屏MN 勺上方有磁感应强度为 B 的匀强磁场,磁场方向垂直纸面 向里。P 为屏上的一小孔,PC 与MN 垂直。一群质量为 m 带电荷量为一q 的粒子(不计重力), 分析:如图2,通过作图可以看到:随着 界EF 相切,然后就不难解答了。 第二类问题: V o 的增大,圆半径增大,临界状态就是圆与边

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动 四会中学邱又香 知识与能力目标 1.理解洛伦兹力对粒子不做功 2.理解带电粒子的初速度方向与磁感应强度垂直时,粒子在匀强磁场中做匀速圆周运动 3.推导半径,周期公式并解决相关问题 道德目标 培养学生热爱科学,探究科学的价值观 教学重点 带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式, 并能用来解决有关问题。 教学难点 带电粒子在匀强磁场中做匀速圆周运动的条件 对周期公式和半径公式的定性的理解。 教学方法 在教师指导下的启发式教学方法 教学用具 电子射线管,环行线圈,电源,投影仪, 教学过程 一引入新课 复习:1 当带电粒子以速度v平行或垂直射入匀强磁场后,粒子的受力情况; 2 回顾带电粒子垂直飞入匀强电场时的运动特点,让学生猜想带电粒子垂直飞入匀强磁场的运动情况。 二.新课 1.运动轨迹 演示实验利用洛伦兹力演示仪,演示电子射线管内的电子在匀强磁场中的运动轨迹,让学生观察存在磁场和不存在磁场时电子的径迹。 现象:圆周运动。 提问:是匀速圆周运动还是非匀速圆周运动呢? 分析:(1)首先回顾匀速圆周运动的特点:速率不变,向心力和速度垂直且始终在同一平面,向心力大小不变始终指向圆心。 (2)带电粒子在匀强磁场中的圆周运动的受力情况是否符合上面3个特点呢? 带电粒子的受力为F洛=qvB ,与速度垂直故洛伦兹力不做功,所以速度v不变,即可得洛伦兹力不变,且F洛与v同在垂直与磁场的平面内,故得到结论:带电粒子在匀强磁场中做匀速圆周运动 结论:1、带电微观粒子的质量很小,在磁场中运动受到洛伦兹力远大于它的重

力,因此可以把重力忽略不计,认为只受洛伦兹力作用。 2、沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动,洛伦兹力提供做向心力,只改变速度的方向,不改变速度的大小。 2.轨道半径和周期 ? 例:一带电粒子的质量为m ,电荷量为q ,速率为v ,它在磁感应强度为B 的匀强磁场中做匀速圆周运动,求轨道半径有多大? 由 得 可知速度越大,r 越大。 周期呢? 由 得 与速度半径无关。 实验:改变速度和磁感强度观测半径r 。 例1:一个质量为m 、电荷量为q 的粒子,从容器下方的小孔S1飘入电势差为U的加速电场,然后经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上求: (1)求粒子进入磁场时的速率 (2)求粒子在磁场中运动的轨道半径 解:由动能定理得:qU = mv 2 /2, 解得: m qU v 2= 粒子在磁场中做匀速圆周运动得半径为:R =mv/qB=m m qU /2/qB=B q mU 2/2 ? 例2:如图,从粒子源S 处发出不同的粒子其初动量相同,则表示电荷量最小的带正电粒子在匀强磁场中的径迹应是( ) S mv R qB =2m T qB π=2v qvB m R =2R T v π=

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题 “带电粒子在磁场中的运动”是历年高考中的一个重要考点,而“带电粒子在有界磁场中的运动” 则是此考点中的一个难点.其难点在于带电粒子进入设定的有界磁场后只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,它要求考生根据带电粒子运动的几何图形去寻找几何关系,然后应用数学工具和相应物理规律分析解决问题.下面举例谈谈带电粒子在不同形状有界磁场中运动的一些临界问题. 一、 带电粒子在“圆形磁场区域”中的运动 例1、如图1,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36?=的粒子.已知α粒子质量kg m 27 1064.6-?=, 电量C q 19 10 2.3-?=,试画出α粒子通过磁场空间做圆周运动的 圆心轨道,求出α粒子通过磁场空间的最大偏角. 解析:设粒子在洛仑兹力作用下的轨道半径为R ,由 R v m Bq v 2 = 得 cm m m Bq mv R 2020.010 2.3332.0102.31064.619 6 27==?????==-- 虽然α粒子进入磁场的速度方向不确定,但粒子进场点是确定的,因此α粒子作圆周运动的圆心必落在以O 为圆心,半径cm R 20=的圆周上,如图2中虚线. 由几何关系可知,速度偏转角总等于其轨道圆心角.在半径R 一定的条件下,为使α粒子速度偏转角最大,即轨道圆心角最大,应使其所对弦最长.该弦是偏转轨道圆的弦,同时也是圆形磁场的弦.显然最长弦应为匀强磁场区域圆的直径.即α粒子应从磁场圆

高中物理带电粒子在匀强磁场中的运动

第四节带电粒子在匀强磁场中的运动 一、带电粒子在匀强磁场中的运动 1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做____________运动. 2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做_______运动. (1)向心力由洛伦兹力提供:qvB=__________=__________; (2)轨道半径公式:R=mv qB ; (3)周期:T=2πR v = 2πm qB (周期T与速度v、轨道半径R无关); (4)频率:f=1 T = qB 2πm ; (5)角速度:ω=2π T =__________. 二、带电粒子在有界磁场中的运动 1.分析方法:找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t和转过的圆心角α之间的关系作为辅助. (1)圆心的确定 ①基本思路:与速度方向垂直的直线和图中弦的中垂线一定过圆心. ②两种情形 a.已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点).b.已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点). (2)半径的确定 用几何知识(勾股定理、三角函数等)求出半径大小. (3)运动时间的确定 粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为: t= α 360° T(或t= α 2π T). 2.规律总结 带电粒子在不同边界磁场中的运动 (1)直线边界(进出磁场具有对称性,如图) (2)平行边界(存在临界条件,如图) (3)圆形边界(沿径向射入必沿径向射出,如图)

带电粒子在有界磁场中运动的临界问题_教案[1]

带电粒子在有界磁场中运动的临界问题 此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ① 轨迹圆的缩放: 当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R )不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”. 例1 一个质量为m ,带电量为+q 的粒子(不计重力),从O 点处沿+y 方向以初速度射入一个边界为矩形的匀强磁场中,磁场方向垂直于xy 平面向里,它的边界分别是y=0,y=a,x=-1.5a,如图所示,那么当B 满足条件_________时,粒子将从上边界射出:当B 满足条件_________时,粒子将从左边界射出:当B 满足条件_________时,粒子将从下边界射出: 例2 如图9-8所示真空中宽为d 的区域内有强度为B 的匀强磁场方向如图,质量m 带电-q 的粒子以与CD 成θ角的速度V0垂直射入磁场中。要使粒子必能从EF 射出,则初速度V0应满足什么条件?EF 上有粒子射出的区域? 【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。 【解析】粒子从A 点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF 射出,则 相应的临界轨迹必为过点A 并与EF 相切的轨迹如图9-10所示,作出A 、P 点速度的垂线相 交于O/即为该临界轨迹的圆心。 临界半径R0由d Cos θR R 00=+ 有: θ += Cos 1d R 0; 故粒子必能穿出EF 的实际运动轨迹半径R ≥R0 即: θ+≥ = Cos 1d qB mv R 0 有: )Cos 1(m qBd v 0θ+≥ 。 图9-8 图9-9 图9-10

专题、圆形有界磁场中“磁聚焦”规律(有问题详解)

专题、圆形有界磁场中“磁聚焦”的相关规律练习 当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律; 规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。 规律二:平行射入圆形有界磁场的相同带电粒 子,如果圆形磁场的半径与圆轨迹半径相等,则所 有粒子都从磁场边界上的同一点射出,并且出射点 的切线与入射速度方向平行,如乙图所示。【典型题 目练习】 1.如图所示,在半径为R的圆形区域内充满磁感应强度为B 的匀强磁 场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量 的带正电,电荷量为q ,质量为m,速度为v 的粒子,不考虑粒子间的相 互作用力,关于这些粒子的运动以下说法正确的是() A .只要对着圆心入射,出射后均可垂直打在MN 上 B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心 C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长 D .只要速度满足v qBR,沿不同方向入射的粒子出射后均可垂直打在MN 上m 2.如图所示,长方形abed的长ad=0.6m ,宽ab=0.3m ,O、e分别是ad、bc的中点,以e为圆心eb为半径的四分之一圆弧和以O为圆心Od为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场) -7 磁感应强度B= 0.25T。一群不计重力、质量m=3×10-7kg 、电荷量 -3 2 q=+2 ×10-3C的带正电粒子以速度v=5×102m/s沿垂直ad方向且垂直于磁场射人磁场区域,则下列判断正确的是() A .从Od 边射入的粒子,出射点全部分布在Oa 边 B .从aO 边射入的粒子,出射点全部分布在ab 边 C.从Od边射入的粒子,出射点分布在ab边 D.从ad边射人的粒子,出射点全部通过b点 3.如图所示,在坐标系xOy 内有一半径为 a 的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场,在直线y=a 的上方和直线x=2a 的左侧区域内,有一沿x 轴负方向的匀强电场,场强大小为E,一质量为m、电荷量为+ q(q>0)的粒子以速度v 从O 点垂直于磁场方向射入,当入射速度方向沿x 轴方向时,粒子恰好从O1 点正上方的 A 点射出磁场,不计粒子重力,求: (1)磁感应强度 B 的大小; (2)粒子离开第一象限时速度方向与y 轴正方向的夹角; (3)若将电场方向变为沿y轴负方向,电场强度大小不变,粒子以速度v从O点垂直于磁场方向、并与x 轴正方向夹角θ=300射入第一象限,求粒子从射入磁场到最终离开磁场的总

高中物理带电粒子在磁场中的运动知识点汇总

难点之九:带电粒子在磁场中的运动 一、难点突破策略 (一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件: ①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功. (二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下: 1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动. 2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动. ①向心力由洛伦兹力提供: R v m qvB 2 = ②轨道半径公式: qB mv R = ③周期: qB m 2v R 2T π=π= ,可见T 只与q m 有关,与v 、R 无关。 (三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的 物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。 1. “带电粒子在匀强磁场中的圆周运动”的基本型问题 (1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础, 有时需要建立运动时间t 和转过的圆心角α之间的关系( T 2t T 360t πα=α= 或)作为辅助。圆心的确定,通常有以下 两种方法。 ① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。 (2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。并注意以下两个重要的特点: 图9-1 图9-2 图9-3

带电粒子在有界磁场中运动的临界问题(同名9311)

带电粒子在有界磁场中运动的 临界问题(同名9311) 带电粒子在有界磁场中运动的临界问题的解题技巧带电粒子(质量m、电量q确定)在有界磁场中运动时,涉及的可能变化的参量有入射点、入射速度大 小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。 在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化范围)或待定,按已知参数可将问题分为如下10类(C2),并可归并为6大类型。

所有这些问题,其通用解法是:①第一步,找准轨迹 圆圆心可能的位置,②第二步,按一定顺序 尽可能多地 作不同圆心对应的轨迹圆(一般至少 5画个轨迹圆), ③第三步,根据所作的图和题设条件,找出临界轨迹圆, 从而抓住解题的关键点。 类型一:已知入射点和入射速度方向,但入射速度大 小不确定(即轨道半径不确定) 【例1】如图所示,长为L 的水平极板间有垂直于 纸面向内的匀强磁场,磁感应强度为 B , 板间距离也为L ,板不带电.现有质量为 m 、电荷量为q 的带正电粒子(不计重力), ① ② r = ④厂⑧ 出射 二 ―⑨ 一*■⑩ 型 四 类 型 五 ⑤ ⑨ 入射方向、速度大 小; 出射方向、速度 大小; 类 型 六 ④ ⑥ 入射点、出射方向; 出射点,入射方向 ⑤ ⑥ ⑦ L X 为 * * i X * 丸 X

从左边极板间中点处垂直磁感线以速度 v 水平射入磁 场,欲使粒子不打在极板上,可采用的办法是 A ?使粒子的速度xBm 5BqL v > 4m BqL 5BqL 4m Bm L D ?使粒子的速度 朋X *旳 IX/ * “X 5 * —2“ -乂 电 X * X y 卜

知识讲解_带电粒子在磁场中的运动 提高

带电粒子在磁场中的运动 编稿:周军审稿:隋伟 【学习目标】 1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法。 2.理解质谱仪和回旋加速器的工作原理和作用。 【要点梳理】 要点一:带电粒子在匀强磁场中的运动 要点诠释: 1.运动轨迹 带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中: (1)当v∥B时,带电粒子将做匀速直线运动; (2)当v⊥B时,带电粒子将做匀速圆周运动; (3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动. 说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动. 2.带电粒子在匀强磁场中的圆周运动 如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q. (1)轨道半径:由于洛伦兹力提供向心力,则有 2 v qvB m r =,得到轨道半径 mv r qB =. (2)周期:由轨道半径与周期之间的关系 2r T v π =可得周期 2m T qB π =. 说明:(1)由公式 mv r qB =知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率 成正比. (2)由公式 2m T qB π =知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率 均无关,而与比荷q m 成反比. 注意: mv r qB =与 2m T qB π =是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明 题中,两公式不能直接当原理式使用. 要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:

带电粒子在匀强磁场中的运动-各个方向

高二物理选修3-1第三章磁场第六节带电粒子在匀强磁场中的运动有界磁场向各个方向运动专题专项训练 习题集 【知识点梳理】 在有界的磁场中从同一点向各个方向发射出去的相同的带电粒子在运动中,存在两种情况。当它们的速度大小不同时,在磁场中运动的半径不同,相同的带电粒子,在相同的磁场中运动的半径与速度成正比。当它们的速度大小相同时,在磁场中运动的半径相同,它们运动圆心的轨迹是在同一个圆周上。这个圆是以发射点为圆心,以带电粒子在此磁场中运动的半径为半径的圆。 【典题强化】 1.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=60°,∠b=90°,边长ab=L。一个粒子源在b点将质量为m,电荷量为q的带负电 粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中, 速度的最大值是() A.qBL/3m B.qBL/3m C.qBL/2m D.qBL/m 2.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=600,∠b=900,边长ac=L。一个粒子源在a点将质量为m、电荷量为q的带正电粒 子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速 度的最大值是() A.qBL/2m B.qBL/6m C.qBL/4m D.qBL/6m 3.如图所示,在xOy平面内有一半径为r的圆形磁场区域,其内分布着磁感应强度为B方向垂直纸面向里的匀强磁场,圆形区域边界上放有圆形的感光胶片,粒子打在其上会感光。在 磁场边界与x轴交点A处有一放射源A,发出质量为m,电量为q的粒子沿垂直 磁场方向进入磁场,其方向分布在由AB和AC所夹角度内,B和C为磁区边界 与y轴的两个交点.经过足够长的时间,结果光斑全部落在第Ⅱ象限的感光胶片 上,则这些粒子中速度最大的是() A.qBr/2m B.qBr/2m C.qBr/m D.(2+)qBr/m 4.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平面(未画出)。一群比荷都为α的负离子体以相同速率v0(较大),由P点在纸平面内向不同方向射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是(不计重力)() A.离子飞出磁场时的动能一定相等 B.离子在磁场中运动半径不一定相等 C.沿PQ方向射入的离子飞出时偏转角最大 D.由Q点飞出的离子在磁场中运动的时间最长 5.如图所示,在半径为R的圆形区域内,有匀强磁场,方向垂直于圆平面(未画出).一群相同的带电粒子以相同速率v0,由P点在纸平面内向不同方向射入磁场.当磁感应强度大小为B1时,所有粒子出磁场的区域占整个圆周长的1/3;当磁感应强度大小减小为B2时,这些粒子在磁场中 运动时间最长的是2πR/3v0.则磁感应强度B1、B2的比值(不计重力)是()

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)

分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2 如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN 线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN 上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题 许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明. 一、最值问题的解题关键——抓弦长 1.求最长时间的问题 例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强 度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速 度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知 该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁 场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与 Oa 的夹角 表示)最长运动时间多长? 小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大. 2 .求最小面积的问题 例2 一带电质点的质量为m,电量为q,以平行于Ox 轴 的速度v从y轴上的a点射人如图3 所示第一象限的区域.为 了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可 在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强 磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区 域的最小面积,重力忽略不计. 小结:这是一个需要逆向思维的问题,而且同时考查了空 间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长. 二、汇聚发散问题的解题关键——抓半径 当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律; 规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入 射点的切线方向平行,如甲图所示。 规律二:平行射入圆形有界磁场的相同带电粒 子,如果圆形磁场的半径与圆轨迹半径相等,则所 有粒子都从磁场边界上的同一点射出,并且出射点 的切线与入射速度方向平行,如乙图所示。 例3 如图5所示,x 轴正方向水平向右,y 轴正方向竖直向 上.在半径为R 的圆形区域内加一与xoy平面垂直的匀强磁场.在 坐标原点O 处放置一带电微粒发射装置,它可以连续不断地发射 具有相同质量m 、电荷量q ( q > 0 )且初速为v0的带电粒子,不

相关主题