搜档网
当前位置:搜档网 › 土木工程专业英语论文

土木工程专业英语论文

土木工程专业英语论文
土木工程专业英语论文

Take the road of sustainable development civil engineering

Abstract: Civil Engineering is the oldest in human history "technical science" as a system of industrial activity, the essence of civil engineering production process, is a technical process

摘要:土木工程是人类历史上年代最久远的“技术科学”,作为一种系统的产业活动,土木工程的实质是生产的过程,是一种技术过程。

Civil engineering is the construction of various facilities in science and technology, collectively, both refer to the construction of the object, that is built on the ground, underground, water facilities, a variety of projects, but also refers to the application of materials, equipment and carried out survey and design , construction, maintenance, repair and other technology.

As an important basis for discipline, civil engineering has its important attributes: a comprehensive, social, practical, technical and economic and artistic unity. With the progress of human society and development, civil engineering has already evolved into large-scale comprehensive subject, and has many branches, such as: construction, railroad engineering, road engineering, bridge engineering, specialty engineering structures, water supply and drainage projects, port engineering, hydraulic engineering, environmental engineering and other disciplines. There are six professional civil engineering: architecture, urban planning, civil engineering, built environment and equipment engineering, water supply and drainage works and road and bridge projects. Introduction to Engineering through a semester course of study, I have been deeply impressed by the Civil Engineering covers a wide range, appreciate the achievements of their predecessors, but also understand that as a civil engineer of great responsibility. Of course, we can not have been immersed in the brilliant achievements, stalled. We should also advance with the times, to dig, to discover, to think, to imagine, to be innovative. In this, China's future as a civil engineer, I would like to combine the history of civil engineering, combined with China's national conditions and the world situation, to talk about civil engineering and sustainable development.

My knowledge about civil engineering has been broadened since I became a student of Tongji University.

Civil engineering is a form of human activity. Human beings pursued it to change the natural environment for their own benefit. Buildings, transportations, facilities, infrastructures are all included in civil engineering.

The development of civil engineering has a long history. Our seniors had left a lot of great constructions to us. For example, Zhao Zhou Bridge is the representative of our Chinese civil engineering masterpieces. It has a history of more than 1300 years and is still service at present. Civil engineering has been so rapid development of the period. A lot of new bridges have been constructed, and many greater plans are under discussion. China is a large county. And she is still well developing. So this era will be both exciting and rewarding for the Chinese Civil Engineers. And of course, civil engineering’s futu re is promising.

However, civil engineers will be facing more complex problems. We should pay attention to the growing population and a lot of deteriorating infrastructures. We should prepare for the possibility of natural disasters. To meet grow needs in the future; we should also try to update all the transportation systems.

To deal with these problems, we will have to develop innovative and enterprising skills. And we should choose a way that we can go continuously. Hazard Mitigation may be a great choice. Not only can it save money in the long run, but also avoid getting into an embarrassing situation in which we have to rebuild all the broken buildings. And we should also use more environmentally friendly materials when designing or constructing new buildings.

Well, to be a brilliant civil engineer is not easy. Today, engineering is a synthetic system. It not only depends on traditional mechanics, but also closely related to advanced science. So Physics, Chemistry, Material Science, Computer Science and perhaps more are all in our civil engineering program.

To be a good civil engineer, we should have the ability to apply the knowledge, to design a system, a component, or a procedure of construction. We should also be able to conduct experiments and explain the results. Furthermore, an engineer never works alone, so we shall cooperate with working team, and try our best to communicate effectively.

I’m very glad to be a student in this wonderful field. And I will try my best to be a successful civil engineer, to make contributions to our motherland.

1. Of civil engineering history, current situation and future development of knowledge Ancient Civil Engineering

Ancient Civil Engineering has a very long time span, it is roughly from 5000 BC to the Neolithic Age to the mid-17th century, around about 7000 years. In housing construction, bridge engineering, hydraulic engineering, tower engineering have made brilliant achievements. Some of the masterpieces of ancient civilization handed down a lot, so far stand tall. For example, China's Great Wall, Egyptian pyramids and so on. Built in the 6th century arch bridge, is the world's first open shoulder arch bridge, in 1991, American Society of Civil Engineers was selected as the world in 12 civil engineering landmark. Modern Civil Engineering

The time span of the modern civil engineering from the mid-17th century to the mid-20th century, after about 300 years. In the meantime, construction materials mainly from a shift to natural materials mainly man-made materials, the construction of theory building from the main to sum up the experience long-term experience to take into account the importance of scientific change. Construction techniques, some of the performance of large machinery along with a variety of highly effective methods of construction there, so people began to construct the complex structure or a poor environment in which civil engineering. During the completion of the Eiffel Tower, Empire State Building and Golden Gate suspension bridge, is still regarded as the great civil engineering.

Modern Civil Engineering

Modern civil engineering began in the mid-20th century. Development to date, civil engineering in building materials, structural theory and construction techniques have

made very great progress.

Building materials, high-strength concrete, high strength low alloy steel, polymers, glass more and more appear in the buildings. Structure theory, the use of powerful computing and computer graphics, mechanical analysis and the results more in line with the results of the calculation of the actual situation in which the design is more reliable. For building technology, have been developed to machine - electrical - computer integration, the construction process, whether it is God, and crosses into the earth or the sea, are not the construction of the barrier; and the widespread use of welding technology, but also makes the steel structure development has entered a new stage.

Created by world-renowned modern civil engineering construction are: China's Taipei International Financial Center, Shanghai Jin Mao Tower, Kuala Lumpur, Malaysia's oil and building the twin towers, the French Normandy cable-stayed bridge and so on.

pairs of understanding of the status of civil engineering

Today's civil engineering, are increasingly using the same function or its production process closely.

Requirements of public and residential buildings in the architectural, structural, water supply and drainage, heating, ventilation for gas, electricity and other modern technical equipment increasingly integrated as a whole.

Industrial buildings require constant temperature and humidity, anti-vibration, anti-corrosion, radiation, fire, explosion, magnetic, dust, high (low) temperature, resistance to high (low) wet, to a large span, ultra-heavy-duty, flexible space direction.

In addition, a growing number of high-rise buildings, underground engineering high-speed development, urban elevated highways, overpasses appeared in large numbers, and the progressive realization of high-speed transportation, large-scale water conservancy projects.

It is worth mentioning that China's reform and opening up, the comprehensive national strength has greatly improved, and already has more large-scale development and use of water conditions, such as the Three Gorges Dam, water diversion project are all world-class large-scale water project.

pairs of understanding the future development of Civil Engineering

With the constant deepening of China's reform and opening up and rapid economic development, China will face a more massive building boom. We can say that we are faced with a leap of civil engineering along with the great development of the national economy a good period. And such a good development environment has been and will continue to be the West's urgent attention.

As a cross-century generation, this situation provides us with excellent rare Shizhancaigan unprecedented, the impact to the international standards of good opportunities. At the same time, we feel deeply that this is an "opportunity" and "challenge" coexist, "cooperation" and "competition" intertwined, "innovation" and "follow the old" era of competing, how to grasp the turn of the century when the Civil disciplines, trends, and create with Chinese characteristics, world-class new era of civil engineering disciplines, a generation of our century's challenges.

2. My feelings and understanding: China's Civil Engineering to go the road of sustainable

development

China's civil engineering has its own particularity.

"China is the world's most populous country, a great resource in addition to that by 13 $ 110 to become negligible, while a small problem multiplied by 1.3 billion becomes a big problem." Professor Liu Xila this language effectively tells our the difficulty lies.

China's coal, oil, gas, water, forests are living in the world total, and per capita, but all below the world average. Population, energy, education, pollution problems have become severe problems faced by the four. Path of sustainable development is imminent. And civil engineering, also will be when a long-term, out of a sustainable development.

World, the modernization process of the United States can be described as advanced, and now data indicate that: the future of the United States to invest $ 1.6 trillion construction projects to address the unsafe condition, for example, chloride-induced corrosion of buildings and so on. As a contemporary civil engineer, in the tradition of the brilliant achievements of our predecessors, but also have a lot of the lessons learned have been an accident, in future work to improve innovation and achieve sustainable development.

the development of high-tech, structural health monitoring applications, to achieve sustainable development

Civil Engineering in actual use, there will be varying degrees of damage or performance degradation, since this will affect the carrying capacity and durability, and even lead to serious construction accidents, caused significant casualties and economic losses, resulting in serious social impact . Therefore, from the moment of completion of construction, we must make health monitoring, repair and reinforcement of the preparation.

With modern sensor technology, computer and communications technology, signal processing techniques and structural analysis and dynamic analysis of the rapid development of the theory, it is proposed the concept of structural health monitoring, to revolutionize the development of civil engineering changes.

Structural health monitoring system installed in the structure through a variety of sensors, automatic, real-time measurement of the structure of the environment, load, response, etc., on the structure of health status assessment, scientific and effective conservation and management structure to provide basis for decision making, to ensure the structural safety of the operation to extend the structural life.

In recent years, large-scale civil engineering structures, especially large-span bridge health monitoring domestic and international engineering and technology as the focus of attention in the academic community through research and engineering and technical personnel research efforts have yielded fruitful results. Home and abroad in recent years, new bridges were installed in many large structural health monitoring systems, such as China's Shanghai Xupu Bridge, Jiangyin Yangtze River Highway Bridge, the Donghai Bridge, Hong Kong's T sing Ma Bridge, the bridge and Youngjong Korea Seohae bridge,

U.S. Commodore Barry Bridge and Canada Confedration bridges.

Like this, through the development of structural health monitoring and safety warning, the first time found that the construction problems that may arise, timely repair and reinforcement, both to avoid the possible construction accidents, construction has been largely solved the rapid aging of damage, have Remove the restoration of the embarrassing situation, and the resulting large number of economic resources, a waste of time to achieve the sustainable development of building use.

The rational use of natural resources, focusing on re-use of existing civil engineering infrastructure, to achieve sustainable development

"Sustainable development is achieved without sacrificing the ability of future generations to meet their needs and conditions, to meet current needs."

Rational use of natural resources, will have in the civil engineering construction, use and maintenance process, the civil engineer to take the initiative to be saving energy, and maximize the role of both civil engineering facilities.

For example, we can take advantage of building green, gray brick walls in the summer, reduce the surface temperature, thereby reducing air conditioning use; can use energy-saving type of brick or insulation composite wall as the wall material, to the role of thermal insulation in winter ; also solar energy, ground heat and other new energy sources, reducing the amount of non-renewable resources to reduce.

In addition, the reuse of existing buildings is also an important means of sustainable development. This regard, Shanghai has made a lot of successful experience: do not plant a lot, a lot has been transformed into exhibition halls, offices, artists studios. This transformation of re-use, consistent with the requirements of modern use, but also save energy, avoid waste, is an effective

Development and utilization of renewable resources and green resources to achieve sustainable development

Removal of waste each year the world of concrete, concrete waste generated by construction etc will have a huge amount of construction waste. China's annual construction of the building construction waste generated by 4,000 tons, have produced 13.6 million tons of waste concrete, removal processing a large amount of environmental pollution. In addition, China is the world's cement production 20 years of superpower, which in itself is a high consumption of resources, high energy consumption, pollution of the environment industry.

Compared with other materials, steel and recycled concrete is more in line with green building standards, this should be to develop the green building materials.

In this regard, Japan's Aichi World Expo, give us a vivid lesson: materials, the Expo will be a variety of construction materials on the surface is very high, but many are recycling. Many plank wood construction waste by processing, placed around the chair, TV cabinet is made of crush. Toyota Pavilion wall is made from recycled waste paper processing, long-term venue Japan Pavilion, only the pursuit of harmony between man and nature, but also saves the expenditure, the use of most of the steel and wood, can be recycled. At the same time, the advantages of bamboo wall to September 3 Aichi summer also showed

exhaustive. Bamboo greatly reduces the performance of their indoor temperature, air-conditioning use is also significantly reduced. This gave me a number of thought: in the building material selection, the appropriate place in the application of renewable natural resources, save money, but also to achieve a harmonious and sustainable ecological development and architecture, why not?

In addition, the World Expo in Aichi Japan Nagakute, Japan Pavilion cocoon-like in order to reduce heat load, the use of green walls, bio-degradable plastic materials and thinning wood (forest wood to be cut fine) to achieve the environmental protection function. "Nature's Wisdom" as the theme of the Aichi World Expo, pavilion building large-scale application of modern scientific and technological achievements, highlighting the environmental and functional, reflecting the natural beauty of the human diligently pursuing. This should also be the future civil engineers to learn and develop.

China's building, Professor Li Guohao Yangpu Bridge is also designed classic. Approach part of the spiral structure, saving several hundred million RMB, is a civil and sustainable economic development model.

Of course, sustainable development, by no means blind pursuit of savings, but the most reasonable to seek a middle state, we must ensure there is enough creative architecture, but also the pursuit of the perfect technical and economic indicators, with minimum investment for maximum benefits. We still still want to create classic, but must not be built on the squandering of money, based on consuming more resources and energy basis. Today, building the world has entered an era of eco-aesthetics, focusing on culture, ecology, engineering and environmental relationship between the human-oriented, energy saving and sustainable development, the focus is the direction of contemporary engineers.

3.Civil Engineering expertise should have the quality

A good civil engineer, must have the "four elements", that is, knowledge structure,

practical skills, ability to structure and the overall quality and innovation.

Knowledge structure, including: public basic knowledge, professional knowledge and expertise.

First, the good civil engineer must have a solid basic knowledge of the public, and, in the familiar basis of natural science, a good psychological and moral humanities, social science-based knowledge is also essential.

Second, the best engineers must also have excellent professional knowledge. Of engineering mathematics, fluid mechanics, geotechnical engineering, structural engineering and so have a solid understanding and ability to apply strong.

Third, also in-depth expertise. Whether engaged in railway engineering, tunnels, underground works or construction projects, each engineer has to be advanced for the emphasis on industry expertise. The only way to make our civil engineering business, walking in the forefront of the world.

Inseparable from the practice of Civil Engineering. Therefore, engineers have to have superb practical skills. For example: drawing skills, computer application skills, measurement skills and structural engineering testing skills.

As a Civil Engineering undergraduate students, I will be four years of college learning

process, and strive to master the computer language and programming skills, treasure every opportunity to practice on the machine, and in college physics experiments, material testing and structural experiments The general structure of the experiment to master the basic method, with the structure of the initial test of skills, and providing technical training, curriculum design, structural design for the contest winners.

In addition, the difference between engineers and scientists not only by the constraints of the laws of nature, will be bound by the laws of society. Engineering and technical personnel complete each project is a program of "social activities" may not rely on a person in the room alone. Therefore, to have sufficient capacity to deal with social, follow the laws of good society.

In school life, I will continue to improve their learning ability, from the engineering capabilities to enhance learning, students work to enhance the management capacity, and gradually improve their own knowledge structure, from which to develop a science and technology development capabilities and skills and the ability of public relations to do more.

However, these skills also help to constitute a truly sustainable development of China's civil engineer. Because the engineer is the most important cultural enrichment with high moral and intellectual quality. In order to state and national interests, dedicated to the cause of the motherland. For the country's honor, to have a strong sense of competition. With dialectical materialist way of thinking, there is step on solid, rigorous, hard working style. The only way to be a qualified civil engineer in China.

We should also note that China's civil engineering industry with world-class level there is a gap. For example, many domestic high-rise buildings (including the Shanghai World Financial Center), almost all of its engineering design borne from abroad, almost all steel products imported from abroad, the general contractor were mostly borne by the foreign countries, only the steel structure fabrication and installation work by domestic unit commitment. Be completely independent intellectual property rights, engineering and construction to achieve the localization, catch up with international standards, we need the young generation to complete!

附录:

参考资料:

《土木工程》(英)斯科特(Scott,J.S.)撰中国建筑工业出版社

《土木建筑文献检索与利用》肖友瑟主编大连理工大学出版社

《土木工程总论》丁大钧,蒋永生编中国建筑工业出版社

《土木建筑工程概论》王继明主编高等教育出版社

《土木工程学报》中国土木工程学会土木工程学报编辑部

《土木工程》中国土木工程学会科学出版社

《土木工程概论》上海交通出版社

《土木系统工程》机械工业出版社

《INTRODUCTION OF CIVIL ENGINEERING》中国建筑工业出版社

《土木工程专业英语》段兵延第二版全书文章翻译精编版

第一课 土木工程学土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。 土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。 土木一词来源于拉丁文词“公民”。在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。 领域。因为包含范围太广,土木工程学又被细分为大量的技术专业。不同类型的工程需要多种不同土木工程专业技术。一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。 贯穿任何给定项目,土木工程师都需要大量使用计算机。计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。计算机成为了现代土木工程师的必备品,因为它使得工程师能有效地掌控所需的大量数据从而确定建造一项工程的最佳方法。 结构工程学。在这一专业领域,土木工程师规划设计各种类型的结构,包括桥梁,大坝,发电厂,设备支撑,海面上的特殊结构,美国太空计划,发射塔,庞大的天文和无线电望远镜,以及许多其他种类的项目。结构工程师应用计算机确定一个结构必须承受的力:自重,风荷载和飓风荷载,建筑材料温度变化引起的胀缩,以及地震荷载。他们也需确定不同种材料如钢筋,混凝土,塑料,石头,沥青,砖,铝或其他建筑材料等的复合作用。 水利工程学。土木工程师在这一领域主要处理水的物理控制方面的种种问题。他们的项目用于帮助预防洪水灾害,提供城市用水和灌溉用水,管理控制河流和水流物,维护河滩及其他滨水设施。此外,他们设计和维护海港,运河与水闸,建造大型水利大坝与小型坝,以及各种类型的围堰,帮助设计海上结构并且确定结构的位置对航行影响。 岩土工程学。专业于这个领域的土木工程师对支撑结构并影响结构行为的土壤和岩石的特性进行分析。他们计算建筑和其他结构由于自重压力可能引起的沉降,并采取措施使之减少到最小。他们也需计算并确定如何加强斜坡和填充物的稳定性以及如何保护结构免受地震和地下水的影响。 环境工程学。在这一工程学分支中,土木工程师设计,建造并监视系统以提供安全的饮用水,同时预防和控制地表和地下水资源供给的污染。他们也设计,建造并监视工程以控制甚至消除对土地和空气的污染。他们建造供水和废水处理厂,设计空气净化器和其他设备以最小化甚至消除由工业加工、焚化及其他产烟生产活动引起的空气污染。他们也采用建造特殊倾倒地点或使用有毒有害物中和剂的措施来控制有毒有害废弃物。此外,工程师还对垃圾掩埋进行设计和管理以预防其对周围环境造成污染。

土木工程专业英语论文.doc

Building construction concrete crack of prevention and processing Abstract The crack problem of concrete is a widespread existence but again difficult in solve of engineering actual problem, this text carried on a study analysis to a little bit familiar crack problem in the concrete engineering, and aim at concrete the circumstance put forward some prevention, processing measure. Keyword: Concrete crack prevention processing Foreword Concrete's ising 1 kind is anticipate by the freestone bone, cement, water and other mixture but formation of the in addition material of quality brittleness not and all material.Because the concrete construction transform with oneself, control etc. a series problem, harden model of in the concrete existence numerous tiny hole, spirit cave and tiny crack, is exactly because these beginning start blemish of existence just make the concrete present one some not and all the characteristic of quality.The tiny crack is a kind of harmless crack and accept concrete heavy, defend Shen and

土木工程专业英语词汇(整理版)

第一部分必须掌握,第二部分尽量掌握 第一部分: 1 Finite Element Method 有限单元法 2 专业英语Specialty English 3 水利工程Hydraulic Engineering 4 土木工程Civil Engineering 5 地下工程Underground Engineering 6 岩土工程Geotechnical Engineering 7 道路工程Road (Highway) Engineering 8 桥梁工程Bridge Engineering 9 隧道工程Tunnel Engineering 10 工程力学Engineering Mechanics 11 交通工程Traffic Engineering 12 港口工程Port Engineering 13 安全性safety 17木结构timber structure 18 砌体结构masonry structure 19 混凝土结构concrete structure 20 钢结构steelstructure 21 钢-混凝土复合结构steel and concrete composite structure 22 素混凝土plain concrete 23 钢筋混凝土reinforced concrete 24 钢筋rebar 25 预应力混凝土pre-stressed concrete 26 静定结构statically determinate structure 27 超静定结构statically indeterminate structure 28 桁架结构truss structure 29 空间网架结构spatial grid structure 30 近海工程offshore engineering 31 静力学statics 32运动学kinematics 33 动力学dynamics 34 简支梁simply supported beam 35 固定支座fixed bearing 36弹性力学elasticity 37 塑性力学plasticity 38 弹塑性力学elaso-plasticity 39 断裂力学fracture Mechanics 40 土力学soil mechanics 41 水力学hydraulics 42 流体力学fluid mechanics 43 固体力学solid mechanics 44 集中力concentrated force 45 压力pressure 46 静水压力hydrostatic pressure 47 均布压力uniform pressure 48 体力body force 49 重力gravity 50 线荷载line load 51 弯矩bending moment 52 torque 扭矩53 应力stress 54 应变stain 55 正应力normal stress 56 剪应力shearing stress 57 主应力principal stress 58 变形deformation 59 内力internal force 60 偏移量挠度deflection 61 settlement 沉降 62 屈曲失稳buckle 63 轴力axial force 64 允许应力allowable stress 65 疲劳分析fatigue analysis 66 梁beam 67 壳shell 68 板plate 69 桥bridge 70 桩pile 71 主动土压力active earth pressure 72 被动土压力passive earth pressure 73 承载力load-bearing capacity 74 水位water Height 75 位移displacement 76 结构力学structural mechanics 77 材料力学material mechanics 78 经纬仪altometer 79 水准仪level 80 学科discipline 81 子学科sub-discipline 82 期刊journal ,periodical 83文献literature 84 ISSN International Standard Serial Number 国际标准刊号 85 ISBN International Standard Book Number 国际标准书号 86 卷volume 87 期number 88 专着monograph 89 会议论文集Proceeding 90 学位论文thesis, dissertation 91 专利patent 92 档案档案室archive 93 国际学术会议conference 94 导师advisor 95 学位论文答辩defense of thesis 96 博士研究生doctorate student 97 研究生postgraduate 98 EI Engineering Index 工程索引 99 SCI Science Citation Index 科学引文索引 100ISTP Index to Science and Technology Proceedings 科学技术会议论文集索引 101 题目title 102 摘要abstract 103 全文full-text 104 参考文献reference 105 联络单位、所属单位affiliation 106 主题词Subject 107 关键字keyword 108 ASCE American Society of Civil Engineers 美国土木工程师协会 109 FHWA Federal Highway Administration 联邦公路总署

理工英语3作文3个

一、根据所给内容写一封求职信 说明:假设你是LI MING,根据下列内容写一封求职信。 写信日期:2016年1月10日 内容: 1) 从2016年1月8日在《中国日报》上获悉ABC公司招聘总经理职位的信息; 2) 毕业于上海学院(注:专业自拟),获得几种技能证书; 3) 曾在DDF公司兼职,熟悉办分室工作,熟练使用电脑; 4) 随信附上简历; 5) 希望能获得面试机会。 注意信函格式! Dear Mir I was very interested in your advertisement in China Daily January,8,2016。 I want to apply for the position of general manager assistant at ABC company. I graduated from Shanghai College ,majoring in computer. I have got several certificates.I worked part-time in DDF company. I am familiar with office work and skilled in using computers. I think I am capable of the job. If your would like me to attend an inteview,I will try my best. Enclosed is my resume. I am looking forward for your letter. Your sincerely, Li Ming

土木工程专业英语正文课文翻译

第一课土木工程学 土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。 土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。 土木一词来源于拉丁文词“公民”。在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。 领域。因为包含范围太广,土木工程学又被细分为大量的技术专业。不同类型的工程需要多种不同土木工程专业技术。一个项目开始的时候,土木工程师要对场地进行测绘,定位有用的布置,如地下水水位,下水道,和电力线。岩土工程专家则进行土力学试验以确定土壤能否承受工程荷载。环境工程专家研究工程对当地的影响,包括对空气和地下水的可能污染,对当地动植物生活的影响,以及如何让工程设计满足政府针对环境保护的需要。交通工程专家确定必需的不同种类设施以减轻由整个工程造成的对当地公路和其他交通网络的负担。同时,结构工程专家利用初步数据对工程作详细规划,设计和说明。从项目开始到结束,对这些土木工程专家的工作进行监督和调配的则是施工管理专家。根据其他专家所提供的信息,施工管理专家计算材料和人工的数量和花费,所有工作的进度表,订购工作所需要的材料和设备,雇佣承包商和分包商,还要做些额外的监督工作以确保工程能按时按质完成。 贯穿任何给定项目,土木工程师都需要大量使用计算机。计算机用于设计工程中使用的多数元件(即计算机辅助设计,或者CAD)并对其进行管理。计算机成为了现代土木工程师的必备品,因为它使得工程师能有效地掌控所需的大量数据从而确定建造一项工程的最佳方法。 结构工程学。在这一专业领域,土木工程师规划设计各种类型的结构,包括桥梁,大坝,发电厂,设备支撑,海面上的特殊结构,美国太空计划,发射塔,庞大的天文和无线电望远镜,以及许多其他种类的项目。结构工程师应用计算机确定一个结构必须承受的力:自重,风荷载和飓风荷载,建筑材料温度变化引起的胀缩,以及地震荷载。他们也需确定不同种材料如钢筋,混凝土,塑料,石头,沥青,砖,铝或其他建筑材料等的复合作用。 水利工程学。土木工程师在这一领域主要处理水的物理控制方面的种种问题。他们的项目用于帮助预防洪水灾害,提供城市用水和灌溉用水,管理控制河流和水流物,维护河滩及其他滨水设施。此外,他们设计和维护海港,运河与水闸,建造大型水利大坝与小型坝,以及各种类型的围堰,帮助设计海上结构并且确定结构的位置对航行影响。 岩土工程学。专业于这个领域的土木工程师对支撑结构并影响结构行为的土壤和岩石的特性进行分析。他们计算建筑和其他结构由于自重压力可能引起的沉降,并采取措施使之减少到最小。他们也需计算并确定如何加强斜坡和填充物的稳定性以及如何保护结构免受地震和地下水的影响。 环境工程学。在这一工程学分支中,土木工程师设计,建造并监视系统以提供安全的饮用水,同时预防和控制地表和地下水资源供给的污染。他们也设计,建造并监视工程以控制甚至消除对土地和空气的污染。

(完整版)土木工程专业英语常用词汇

Part IV:Commonly Used Professional Terms of Civil Engineering development organization 建设单位 design organization 设计单位 construction organization 施工单位 reinforced concrete 钢筋混凝土 pile 桩 steel structure 钢结构 aluminium alloy 铝合金 masonry 砌体(工程)reinforced ~ 配筋砌体load-bearing ~ 承重砌体unreinforced ~非配筋砌体 permissible stress (allowable stress) 容许应力plywood 胶合板 retaining wall 挡土墙 finish 装修 finishing material装修材料 ventilation 通风 natural ~ 自然通风 mechanical ~ 机械通风 diaphragm wall (continuous concrete wall) 地下连续墙 villa 别墅 moment of inertia 惯性矩 torque 扭矩 stress 应力normal ~ 法向应力shear ~ 剪应力 strain 应变 age hardening 时效硬化 air-conditioning system空调系统 (air) void ration(土)空隙比 albery壁厨,壁龛 a l mery壁厨,贮藏室 anchorage length锚固长度 antiseismic joint 防震缝 architectural appearance 建筑外观 architectural area 建筑面积 architectural design 建筑设计 fiashing 泛水 workability (placeability) 和易性 safety glass安全玻璃 tempered glass (reinforced glass) 钢化玻璃foamed glass泡沫玻璃 asphalt沥青 felt (malthoid) 油毡 riveted connection 铆接 welding焊接 screwed connection 螺栓连接 oakum 麻刀,麻丝 tee三通管 tap存水弯 esthetics美学 formwork 模板(工程) shoring 支撑 batching 配料 slipform construction (slipforming) 滑模施工 lfit-slab construction 升板法施工 mass concrete 大体积混凝土 terrazzo水磨石 construction joint 施工缝 honeycomb蜂窝,空洞,麻面 piled foundation桩基 deep foundation 深基础 shallow foundation浅基础 foundation depth基础埋深 pad foundation独立基础 strip foundation 条形基础 raft foundation筏基 box foundation箱形基础 BSMT=basement 地下室 lift 电梯electric elevator lift well电梯井 escalator 自动扶梯 Poisson’s ratio 泊松比μ Young’s modulus , modulus of elasticity 杨氏模量,弹性模量E safety coefficient 安全系数 fatigue failure 疲劳破坏 bearing capacity of foundations 地基承载力bearing capacity of a pile 单桩承载力 two-way-reinforcement 双向配筋 reinforced concrete two-way slabs钢筋混凝土双向板 single way slab单向板 window blind 窗帘sun blind wind load 风荷载 curing 养护 watertight concrete 防水混凝土 white cement白水泥 separating of concrete混凝土离折segregation of concrete mortar 砂浆~ joint 灰缝 pilaster 壁柱 fire rating耐火等级 fire brick 耐火砖 standard brick标准砖

自我介绍作文之英语作文自我介绍带翻译

自我介绍作文之英语作文自我介绍带翻译

英语作文自我介绍带翻译 【篇一:英文版自我介绍翻译(共4篇)】 篇一:面试用英语自我介绍怎么说 面试用英语自我介绍怎么说? 面试过程中自我介绍是在所难免的,中文自我介绍尚且难倒了很多人,更何况是英文自我介绍呢,但是面试用英语自我介绍在一些外资企业或者和英语相关岗位也是不可避免的。今天我们就说一说面试用英语自我介绍怎么说? 其实自我介绍大体都是一样的,简单的基本介绍,个人情况和兴趣爱好的一个阐述,话不多说先举一个例子吧。(先英文后中文吧) hello, everybody, my name is xxx, my personality alacrity is bright, i like to make friend, enjoying to read some books about philosophy usually, i like discussing problems with my friends together, i feel very happy to know everyone, hoping to get along with everyone delectation in the day of aftertime. 大家好,我是xxx,我的性格活泼开朗,喜欢交流,日常生活中我喜欢看一些哲学性的书,很喜欢和朋友一起探讨问题,非常高兴认识大家,在之后的生活里能够和大家相处融洽。大家在做英文自我介绍过程不用担心和害怕,并不是所有的面试官英文水平都很好,有些可能根本就听不懂你在说什么,在这个面试过程中你最重要的是要保持微笑和自信,无论多么蹩脚的英文你首先要保证流利和自信就可以了。 篇二:考研英语自我介绍及各个专业所对应的英语翻译 考研英语自我介绍及各专业所对应英语翻译自我介绍 (self-introduce)

土木工程专业英语常用词汇

土木工程专业英语常用 词汇 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

Part IV:Commonly Used Professional Terms of Civil Engineering development organization 建设单位 design organization 设计单位 construction organization 施工单位 reinforced concrete 钢筋混凝土 pile 桩 steel structure 钢结构 aluminium alloy 铝合金 masonry 砌体(工程) reinforced ~ 配筋砌体load-bearing ~ 承重砌体 unreinforced ~非配筋砌体 permissible stress (allowable stress) 容许应力plywood 胶合板 retaining wall 挡土墙 finish 装修 finishing material装修材料 ventilation 通风 natural ~ 自然通风 mechanical ~ 机械通风 diaphragm wall (continuous concrete wall) 地下连续墙 villa 别墅 moment of inertia 惯性矩torque 扭矩 stress 应力 normal ~ 法向应力 shear ~ 剪应力strain 应变 age hardening 时效硬化 air-conditioning system空调系统 (air) void ration(土)空隙比 albery壁厨,壁龛 a l mery壁厨,贮藏室 anchorage length锚固长度 antiseismic joint 防震缝 architectural appearance 建筑外观architectural area 建筑面积 architectural design 建筑设计 fiashing 泛水 workability (placeability) 和易性 safety glass安全玻璃 tempered glass (reinforced glass) 钢化玻璃foamed glass泡沫玻璃 asphalt沥青 felt (malthoid) 油毡 riveted connection 铆接 welding焊接 screwed connection 螺栓连接

土木工程专业英语词汇汇总

A Type Wooden Ladder A字木梯 A-frame A型骨架 A-truss A型构架 Abandon 废弃 Abandoned well 废井 Aberration of needle 磁针偏差Abnormal pressure 异常压力abnormally high pressure 异常高压Abort 中止 abrasion 磨损 Abrasion surface 浪蚀面 abrasive cut-off machine 磨切机Abrasive Cutting Wheel 拮碟abrasive grinding machine 研磨机Abrasive Grinding Wheel 磨碟abrasive particle 磨料颗粒 Absolute address 绝对地址Absolute altitude 绝对高度Absolute damping 绝对阻尼Absolute deviation 绝对偏差Absolute flying height 绝对航高Absolute gravity 绝对重力 absolute permeability 绝对渗透率absolute porosity 绝对孔隙率absolute temperature 绝对温度absorbability 吸收性;吸附性absorption 吸收 abutment 桥墩 abutting end 邻接端 acceleration 加速 acceleration lane 加速车道Acceleration of gravity 重力加速度acceleration pedal 加速器踏板accelerator 催凝剂;加速器;催化剂acceptance criteria 接受准则 access 通路;通道 access door 检修门;通道门access lane 进出路径 access panel 检修门 access point 入口处;出入通道处access ramp 入口坡道;斜通道access road 通路;通道 access shaft 竖井通道 access spiral loop 螺旋式回旋通道access staircase 通道楼梯 access step 出入口踏步 access tunnel 隧道通道 accessible roof 可到达的屋顶accessory 附件;配件accident 事故;意外 accidental collapse 意外坍塌 accommodate 装设;容纳 accredited private laboratory 认可的私 人实验室 accumulator 储压器;蓄电池 accuracy limit 精度限制 acetylene cylinder 乙炔圆筒 Acetylene Hose 煤喉 Acetylene Regulator 煤表 acid plant 酸洗设备;酸洗机 acid pump 酸液泵 acid tank 酸液缸 acidic rock 酸性岩 acoustic couplant 声耦合剂 acoustic coupler 声音藕合器;音效藕 合器 acoustic lining 隔音板 acoustic screen 隔声屏 Acoustic wave 声波 acrylic paint 丙烯漆料(压克力的油漆) acrylic sheet 丙烯胶片(压克力的胶片) active corrosion 活性腐蚀 active earth pressure 主动土压力 active fault 活断层 active oxidation 活性氧化 actual plot ratio 实际地积比率 actuator 促动器;唧筒;激发器 adapt 改装 adaptor 适配器;承接器;转接器; addition 增设;加建 additional building works 增补建筑工 程 additional horizontal force 额外横向力 additional plan 增补图则(附加的平面 图) additional vent 加设通风口 additive 添加剂 Address 地址 adhesive 黏结剂;胶黏剂 adhesive force 附着力 Adhesive Glue 万能胶 Adhesive Reflective Warning Tape 反 光警告贴纸 adit 入口;通路;坑道口 adjacent construction 相邻建造物 adjacent level 相邻水平 adjacent site 相邻基地 adjacent street 相邻街道 adjoining area 毗邻地区 adjoining building 毗邻建筑物 adjoining land 毗邻土地 adjoining structure 毗邻构筑物 adjustable 可调校 Adjustable Wrench Spanner 昔士 adjuster 调节器 adjustment 调校;调整 Administrative Lawsuit 行政诉讼 Administrative Remedy 行政救济 admixture 掺合剂;外加剂 advance directional sign 前置指路标 志;方向预告标志 advance earthworks 前期土方工程 advance warning sign 前置警告标志 advance works 前期工程 aeration 曝气 aeration tank 曝气池 aerial 天线 Aerial mapping 航空测图 aerial photograph 航测照片 Aerial photography 航照定位 aerial rapid transit system 高架快速运 输系统 aerial ropeway 高架缆车系统 aerial view 鸟瞰图 aerofoil 翼型 aerosol 悬浮微粒;喷雾 aerosphere 大气圈 affix 贴附 aftercooler 后冷却器 afterfilter 后过滤器 aftershock 余震 agent 作用剂;代理人 aggradation 堆积 aggregate 骨材;集料;碎石 aggregate area 总面积 aggregate grading 骨材级配 aggregate superficial area 表面总面积 aggregate usable floor space 总楼地板 空间 agitator 搅拌器;搅动机 air bleeding 放气(空气渗出) air blower 鼓风机 air brake 气压制动器 Air chambor 气室 air circuit 空气回路 air circuit breaker 空气断路器 air cleaner 空气滤清器

土木工程专业英语结课论文

2012级土木工程(本)专业《土木工程英语》课程论文 论文题目:高层建筑防火的研究 Research of high-rise building fire prevention 专业班级: 学生姓名: 学号: 论文成绩: 评阅教师: 2015年11 月14 日

(一) 基于性能化防火设计方法的商业综合体典型空间防火优化设计研究 正文:改革开放以来,我国市场经济蓬勃发展,各种类型的商业建筑如雨后春笋般涌现。然而人们在享受高效便捷的购物消费和休闲娱乐的同时,商业综合体及其建筑群的巨大规模、多样功能、众多人数、复杂流线、与城市多层面多点衔接等特点,极大程度地增大了灾害风险,特别是城市和建筑中最易发生的灾种——火灾的风险。传统的建筑防火设计以“条文式”的防火规范为依据,无法满足部分现代商业综合体迅速发展的设计需要,当因结构、功能、造型等方面的特殊要求,出现现行国家消防技术规范中未明确规定的、现行国家消防技术规范规定的条件不适用的、依照国家消防技术规范进行设计确有困难的情况时,将采取针对性更强、更加先进、经济、合理、有效的性能化防火措施进行建筑和规划设计。与此同时,性能化防火设计方法以其在火灾场景和人员疏散模拟等方面的突出优势,也将被更多地运用于优化“条文式”防火设计规范框架内的规划与建筑方案设计。可见研究大型商业综合体的性能化防火设计措施,并利用性能化防火设计的方法调整优化规划与建筑设计以避免和减轻火灾危害是亟待解决的重要课题。本论文共分为十章,分别介绍了课题的研究背景与意义,国内外商业综合体性能化防火的研究现状,要素构成及火灾危险性,建筑的火灾机理与性能化防火设计参数,五大类商业综合体典型空间的防火优化措施,最后提出结论与展望。本文的核心研究内容是结合商业综合体空间要素构成特征的火灾特点以及建筑防火设计中的三个重要指标(防火分区、疏散距离、疏散宽度),提炼五大类商业综合体的典型空间,即密集空间、竖向贯通空间、超大水平开敞空间、狭长通道空间和地下空间,以建筑学和城市规划学的视角,一方面运用计算机技术,对“超规范”的设计方案进行性能化防火设计安全评价,另一方面对条文式规范框架内的设计方法进行优化。性能化防火策略作为消防设计乃至贯穿整个建筑、规划设计全过程的设计思路,已初步为我们展现出应用领域的美好前景,本文旨在进一步完善和发展以数字技术为基础的性能化防火设计方法,为建筑和城市减灾防灾目标的实现提供更有力的保障。

土木工程专业英语段兵延第二版全书文章翻译样本

第一课 土木工程学土木工程学作为最老工程技术学科,是指规划,设计,施工及对建筑环境管理。此处环境涉及建筑符合科学规范所有构造,从灌溉和排水系统到火箭发射设施。 土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其她当代社会和大量人口集中地区基本公共设施。她们也建造私有设施,例如飞机场,铁路,管线,摩天大楼,以及其她设计用作工业,商业和住宅途径大型构造。此外,土木工程师还规划设计及建造完整都市和乡镇,并且近来始终在规划设计容纳设施齐全社区空间平台。 土木一词来源于拉丁文词“公民”。在1782年,英国人John Smeaton为了把她非军事工程工作区别于当时占优势地位军事工程师工作而采用名词。自从那时起,土木工程学被用于提及从事公共设施建设工程师,尽管其包括领域更为辽阔。 领域。由于包括范畴太广,土木工程学又被细分为大量技术专业。不同类型工程需要各种不同土木工程专业技术。一种项目开始时候,土木工程师要对场地进行测绘,定位有用布置,如地下水水位,下水道,和电力线。岩土工程专家则进行土力学实验以拟定土壤能否承受工程荷载。环境工程专家研究工程对本地影响,涉及对空气和地下水也许污染,对本地动植物生活影响,以及如何让工程设计满足政府针对环保需要。交通工程专家拟定必须不同种类设施以减轻由整个工程导致对本地公路和其她交通网络承担。同步,构造工程专家运用初步数据对工程作详细规划,设计和阐明。从项目开始到结束,对这些土木工程专家工作进行监督和调配则是施工管理专家。依照其她专家所提供信息,施工管理专家计算材料和人工数量和耗费,所有工作进度表,订购工作所需要材料和设备,雇佣承包商和分包商,还要做些额外监督工作以保证工程能准时按质完毕。 贯穿任何给定项目,土木工程师都需要大量使用计算机。计算机用于设计工程中使用多数元件(即计算机辅助设计,或者CAD)并对其进行管理。计算机成为了当代土木工程师必备品,由于它使得工程师能有效地掌控所需大量数据从而拟定建造一项工程最佳办法。

土木工程专业英语课文原文及对照翻译

土木工程专业英语课文原 文及对照翻译 Newly compiled on November 23, 2020

Civil Engineering Civil engineering, the oldest of the engineering specialties, is the planning, design, construction, and management of the built environment. This environment includes all structures built according to scientific principles, from irrigation and drainage systems to rocket-launching facilities. 土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。 Civil engineers build roads, bridges, tunnels, dams, harbors, power plants, water and sewage systems, hospitals, schools, mass transit, and other public facilities essential to modern society and large population concentrations. They also build privately owned facilities such as airports, railroads, pipelines, skyscrapers, and other large structures designed for industrial, commercial, or residential use. In addition, civil engineers plan, design, and build complete cities and towns, and more recently have been planning and designing space platforms to house self-contained communities. 土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。他们也建造私有设施,比如飞机场,铁路,管线,摩天大楼,以及其他设计用作工业,商业和住宅途径的大型结构。此外,土木工程师还规划设计及建造完整的城市和乡镇,并且最近一直在规划设计容纳设施齐全的社区的空间平台。 The word civil derives from the Latin for citizen. In 1782, Englishman John Smeaton used the term to differentiate his nonmilitary engineering work from that of the military engineers who predominated at the time. Since then, the term civil engineering has often been used to refer to engineers who build public facilities, although the field is much broader 土木一词来源于拉丁文词“公民”。在1782年,英国人John Smeaton为了把他的非军事工程工作区别于当时占优势地位的军事工程师的工作而采用的名词。自从那时起,土木工程学被用于提及从事公共设施建设的工程师,尽管其包含的领域更为广阔。 Scope. Because it is so broad, civil engineering is subdivided into a number of technical specialties. Depending on the type of project, the skills of many kinds of civil engineer specialists may be needed. When a project begins, the site is surveyed and mapped by civil engineers who locate utility placement—water, sewer, and power lines. Geotechnical specialists perform soil experiments to determine if the earth can bear the weight of the project. Environmental specialists study the project’s impact on the local area: the potential for air and

相关主题