搜档网
当前位置:搜档网 › 矩阵连乘算法

矩阵连乘算法

矩阵连乘算法
矩阵连乘算法

福州大学数学与计算机科学学院

《计算机算法设计与分析》上机实验报告(2)

i<=k

综上,有递推关系如下:

若将对应m[i][j]的断开位置k记为s[i][j],在计算出最优值m[i][j]后,可递归地由s[i][j]构造出相应的最优解。s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在矩阵Ak和Ak+1之间断开,即最优的加括号方式应为

(A[i:k])(A[k+1:j)。从s[1][n]记录的信息可知计算A[1:n]的最优加括号方式为(A[1:s[1][n]])(A[s[1][n]+1:n]),进一步递推,A[1:s[1][n]]的最优加括号方式为

(A[1:s[1][s[1][n]]])(A[s[1][s[1][n]]+1:s[1][s[1][n]]] )。同理可以确定A[s[1][n]+1:n]的最优加括号方式在

s[s[1][n]+1][n]处断开...照此递推下去,最终可以确定

A[1:n]的最优完全加括号方式,及构造出问题的一个最优解。

3、动态规划迭代算法设计:

用动态规划迭代方式解决此问题,可依据其递归式自底向上的方式进行计算。在计算过程中,保存已解决的子问题的答案。每个子问题只计算一次,而在后面需要时只需简单检查一下,从而避免了大量的重复计算,最终得到多项式时间的算法。

4、算法代码:

1.//3d1-2 矩阵连乘动态规划迭代实现

2.//A1 30*35 A2 35*15 A3 15*5 A4 5*10 A5 10*20 A6 20*25

3.//p[0-6]={30,35,15,5,10,20,25}

4.#include "stdafx.h"

5.#include

https://www.sodocs.net/doc/559870015.html,ing namespace std;

7.

8.const int L = 7;

9.

10.int MatrixChain(int n,int **m,int **s,int *p);

11.void Traceback(int i,int j,int **s);//构造最优解

12.

13.int main()

14.{

15.int p[L]={30,35,15,5,10,20,25};

16.

17.int **s = new int *[L];

18.int **m = new int *[L];

19.for(int i=0;i

20. {

21. s[i] = new int[L];

22. m[i] = new int[L];

23. }

24.

25. cout<<"矩阵的最少计算次数为:

"<

26. cout<<"矩阵最优计算次序为:"<

27. Traceback(1,6,s);

28.return 0;

29.}

30.

31.int MatrixChain(int n,int **m,int **s,int *p)

32.{

33.for(int i=1; i<=n; i++)

34. {

35. m[i][i] = 0;

36. }

37.for(int r=2; r<=n; r++) //r为当前计算的链长(子问题规

模)

38. {

39.for(int i=1; i<=n-r+1; i++)//n-r+1为最后一个r链的

前边界

40. {

41.int j = i+r-1;//计算前边界为r,链长为r的链的后

边界

42.

43. m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j];//将链

ij划分为A(i) * ( A[i+1:j] )

44.

45. s[i][j] = i;

46.

47.for(int k=i+1; k

48. {

49.//将链ij划分为( A[i:k] )* (A[k+1:j])

50.int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]

*p[j];

51.if(t

52. {

53. m[i][j] = t;

54. s[i][j] = k;

55. }

56. }

57. }

58. }

59.return m[1][L-1];

60.}

61.

62.void Traceback(int i,int j,int **s)

63.{

64.if(i==j) return;

65. Traceback(i,s[i][j],s);

66. Traceback(s[i][j]+1,j,s);

67. cout<<"Multiply A"<

68. cout<<" and A"<<(s[i][j]+1)<<","<

69.}

上述迭代算法的运行过程如下图所示:

当R=2时,先迭代计算

出: m[1:2]=m[1:1]+m[2:2}+p[0]*p[1]*p[2];

m[2:3]=m[2:2]+m[3:3]+p[1]*p[2]*p[3];

算法分析_实验报告3

兰州交通大学 《算法设计与分析》 实验报告3 题目03-动态规划 专业计算机科学与技术 班级计算机科学与技术2016-02班学号201610333 姓名石博洋

第3章动态规划 1. 实验题目与环境 1.1实验题目及要求 (1) 用代码实现矩阵连乘问题。 给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。考察这n 个矩阵的连乘积A1A2…A n。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序,这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,则可以依此次序反复调用2个矩阵相乘的标准算法(有改进的方法,这里不考虑)计算出矩阵连乘积。 确定一个计算顺序,使得需要的乘的次数最少。 (2) 用代码实现最长公共子序列问题。 一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X= < x1, x2,…, xm>,则另一序列Z= < z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列< i1, i2,…, ik>,使得对于所有j=1,2,…,k有Xij=Zj 。例如,序列Z=是序列X=的子序列,相应的递增下标序列为<2,3,5,7>。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X= < A, B, C, B, D, A, B>和Y= < B, D, C, A, B, A>,则序列是X和Y的一个公共子序列,序列也是X和Y的一个公共子序列。而且,后者是X和Y的一个最长公共子序列,因为X和Y没有长度大于4的公共子序列。 (3) 0-1背包问题。 现有n种物品,对1<=i<=n,已知第i种物品的重量为正整数W i,价值为正整数V i,背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分) 使用动态规划使得装入背包的物品价值之和最大。 1.2实验环境: CPU:Intel(R) Core(TM) i3-2120 3.3GHZ 内存:12GB 操作系统:Windows 7.1 X64 编译环境:Mircosoft Visual C++ 6 2. 问题分析 (1) 分析。

矩阵连乘最佳加括号方式-动态规划算法

矩阵连乘最佳加括号方式-动态规划算法 一、问题描述 给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。要算出这n个矩阵的连乘积A1A2…A n。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C 的乘积并加括号,即A=(BC)。 例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。若A是一个p×q矩阵,B是一个q×r矩阵,则计算其乘积C=AB的标准算法中,需要进行pqr次数乘。 为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵 {A1,A2,A3}连乘的情况。设这三个矩阵的维数分别为10×100,100×5,5×50。加括号的方式只有两种:((A1A2)A3),(A1(A2A3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。第二种加括号方式的计算量时第一种方式计算量的10倍。由此可见,在计算矩阵连乘积时,加括号方式,即计算次序对计算量有很大的影响。于是,自然提出矩阵连乘积的最优计算次序问题,即对于给定的相继n个矩阵{A1,A2,…,A n}(其中矩阵A i的维数为p i-1×p i,i=1,2,…,n),如何确定计算矩阵连乘积A1A2…A n的计算次序(完全加括号方式),使得依此次序计算矩阵连乘积需要的数乘次数最少。 穷举搜索法的计算量太大,它不是一个有效的算法,本实验采用动态规划算法解矩阵连乘积的最优计算次序问题。 二、算法思路

算法分析与设计实验报告

算法设计与分析实验报告 班级:计科0902班 姓名:张华敏 学号:0909090814

矩阵连乘问题 一,实验内容: 二,写一个完整的代码来完整的实现矩阵连乘问题。 三,算法设计: 在矩阵连乘问题中,根据老师所讲和自己看书对动态规划方法的理解,通过最优子结构性质。再结合书上的算法,便可顺利的写出了代码 四,遇到的问题及解决方案: 只根据算法写出具体的实现过程刚开始觉得很难,觉得无从下手,不知道该用什么结构形式来存放各个参数,也不知道该怎样具体的实施算法的细节,但是课本上给出了一段实现代码给了我很大的启发,通过借鉴树上的代码实现再结合自己的努力,才终于完成了矩阵连乘全部的代码实现,包括最少连乘次数以及剖分方法。 五,源代码 package suanfa; public class Juzhen { public void matrixchain(int p[],int m[][],int s[][]){ i nt n=p.length-1; f or(int i=1;i<=n;i++){ m[i][i]=0; } f or(int r=2;r<=n;r++){ for(int i=1;i<=n-r+1;i++){ int j=i+r-1;

m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j]; s[i][j]=i; for(int k=i+1;k

矩阵连乘(数据结构)

动态规划——矩阵连乘的问题 《问题的引出》 看下面一个例子,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次数((A1*A2)*A3):10X100X5+10X5X50=7500次 按此顺序计算需要的次数(A1*(A2*A3)):10X5X50+10X100X50=75000次 所以问题是:如何确定运算顺序,可以使计算量达到最小化。 枚举显然不可,如果枚举的话,相当于一个“完全加括号问题”,次数为卡特兰数,卡特兰数指数增长,必然不行。 《建立递归关系》 子问题状态的建模(很关键):令m[i][j]表示第i个矩阵至第j个矩阵这段的最优解。 显然如果i=j,则m[i][j]这段中就一个矩阵,需要计算的次数为0; 如果i>j,则m[i][j]=min{m[i][k]+m[k+1][j]+p[i-1]Xp[k]Xp[j]},其中k,在i与j 之间游荡,所以i<=k

所以计算顺序如上右图:相应的计算顺序对应代码为13-15行 m[1][n]即为最终求解,最终的输出想为((A1(A2 A3))((A4 A5)A6))的形式,不过没有成功,待思考... 1#include 2using namespace std; 3const int MAX = 100; 4//p用来记录矩阵的行列,main函数中有说明 5//m[i][j]用来记录第i个矩阵至第j个矩阵的最优解 6//s[][]用来记录从哪里断开的才可得到该最优解 7int p[MAX+1],m[MAX][MAX],s[MAX][MAX]; 8int n;//矩阵个数 9 10void matrixChain(){ 11for(int i=1;i<=n;i++)m[i][i]=0; 12 13for(int r=2;r<=n;r++)//对角线循环 14for(int i=1;i<=n-r+1;i++){//行循环 15int j = r+i-1;//列的控制 16 //找m[i][j]的最小值,先初始化一下,令k=i 17 m[i][j]=m[i][i]+m[i+1][j]+p[i-1]*p[i]*p[j]; 18 s[i][j]=i; 19//k从i+1到j-1循环找m[i][j]的最小值 20for(int k = i+1;k

矩阵连乘问题算法分析与设计

矩阵连乘问题《算法分析与设计》

设计性实验报告 课程名称:《算法分析与设计》矩阵连乘问题实验题目:长:组员一:成 二:成员成员三:数学与计算机科学系别:系专业班级:指导教师:实验日期: 一、实验目的和要求

实验目的 熟悉动态规划算法设计思想和设计步骤,掌握基 本的程序设计方法,培养学生用计算机解决实际问题的能力。 实验要求 1、根据实验内容,认真编写源程序代码、上机调试程序,书写实验报告。 2、本实验项目考察学生对教材中核心知识的掌握程度和解决实际问题的能力。 3、实验项目可

以采用集中与分散实验相结合的方式进行,学生利用平时实验课时间和课外时间进行 实验,要求在学期末形成完整的项目程序设计报告。 二、实验内容提要 矩阵连乘问题给定n个矩阵{A,A,…,A}, 其中,Ai与Ai+1是可乘的,n21A,A,…,A。由于矩阵乘法满足结n-1。考查这n个矩阵的连乘积i=1,2,…,n12合律,故计算矩阵的连乘积可以有 许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反 复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可 递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 三、实验步骤下面考虑矩阵连乘积的最优计算次序问题的动态规划方法。(1)分析最优解的结构(最优子结构性质)设计求解具体问题的动态规划算法的第一步是刻画该问 题的最优解结构特征。对于矩阵乘积的最优计算次序问题也不例外。首先,为方便起见,降- 1 - 矩阵乘积Ai Ai+1…Aj简记为A[i:j]。

动态规划矩阵连乘算法

问题描述:给定n个矩阵:A1,A2,...,A n,其中A i与A i+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 问题解析:由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。 完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC) 例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。 看下面一个例子,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次数

((A1*A2)*A3):10X100X5+10X5X50=7500次,按此顺序计算需要的次数(A1*(A2*A3)):10*5*50+10*100*50=75000次 所以问题是:如何确定运算顺序,可以使计算量达到最小化。 算法思路: 例:设要计算矩阵连乘乘积A1A2A3A4A5A6,其中各矩阵的维数分别是: A1:30*35; A2:35*15; A3:15*5; A4:5*10; A5:10*20; A6:20*25 递推关系: 设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]。 当i=j时,A[i:j]=A i,因此,m[i][i]=0,i=1,2,…,n 当i

矩阵连乘实验报告

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:软件12K1 学生姓名:吴旭 学号:121909020124 成绩: 指导老师:刘老师实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号 的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在A k和A k+1之间将矩阵链断开,1n,则其相应的完全加括号方式为((A1…A k)(A k+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后将计

算结果相乘得到A[1:n]。 2、建立递归关系 设计动态规划算法的第二步是递归定义最优值。对于矩阵连乘积的最优计算次序问题,设计算A[i:j],1i n,所需的最少数乘次数为m[i][j],原问题的最优值为m[1][n]。 当i=j时,A[i:j]=A i为单一矩阵,无需计算,因此m[i][i]=0,i=1,2,…n。 当i

矩阵连乘问题

一、问题描述给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2,…,n-1。要算出这n个矩阵的连乘积A1A2…An。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归地定义为:(1)单个矩阵是完全加括号的;(2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。若A是一个p×q矩阵,B是一个q×r矩阵,则计算其乘积C=AB 的标准算法中,需要进行pqr次数乘。为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵{A1,A2,A3}连乘的情况。设这三个矩阵的维数分别为10×100,100×5,5×50。加括号的方式只有两种:((A1A2)A3),(A1(A2A3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。第二种加括号方式的计算量时第一种方式计算量的10倍。由此可见,在计算矩阵连乘积时,加括号方式,即计算次序对计算量有很大的影响。于是,自然提出矩阵连乘积的最优计算次序问题,即对于给定的相继n个矩阵{A1,A2,…,An}(其中矩阵Ai的维数为pi-1×pi,i =1,2,…,n),如何确定计算矩阵连乘积A1A2…An的计算次序(完全加括号方式),使得依此次序计算矩阵连乘积需要的数乘次数最少。穷举搜索法的计算量太大,它不是一个有效的算法,本实验采用动态规划算法解矩阵连乘积的最优计算次序问题。 二、算法思路动态规划算法的基本思想是将待求解问题分成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,动态规划法经分解得到的子问题往往不是相互独立的,前一子问题的解为后一子问题的解提供有用的信息,可以用一个表来记录所有已解决的子问题的答案,不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。本实验的算法思路是: 1、计算最优值算法MatrixChain():建立两张表(即程序中的**m和**s,利用二维指针存放),一张表存储矩阵相乘的最小运算量,主对角线上的值为0,依次求2个矩阵、3个矩阵…、直到n个矩阵相乘的最小运算量,其中每次矩阵相乘的最小运算量都在上一次矩阵相乘的最小运算量的基础上求得,最后一次求得的值即为n个矩阵相乘的最小运算量;另

矩阵连乘问题

目录: 矩阵连乘问题: 1. 描述矩阵连乘问题 2. 分析矩阵连乘问题以及对递归式的推导(1)直接递归思路 (2)备忘录思路 (3)动态规划思路 3. 伪代码的方式描述算法: (1)直接递归算法 (2)备忘录算法 (3)动态规划算法 4. 把算法转换成程序实现的过程及结果(1)直接递归算法程序 (2)备忘录算法程序 (3)动态规划算法程序

1.描述矩阵连乘问题: 给定n 个矩阵{n A A A ?,2,1},其中i A 和1+i A 是可乘的,i=1,2,…,n-1。考察这n 个矩阵的连乘积n A A A ?,2,1。由于矩阵乘法具有结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说连乘积已完全加括号,则可依次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘可递归地定义为:(1)单个矩阵是完全加括号的;(2)矩阵连乘积A 是完全加括号的,则A 可表示为2个完全加括号的矩阵连乘B 和C 的乘积并加括号,即A=(BC )。 矩阵A 和B 可乘的条件是矩阵A 的列数等于矩阵B 的行数。若A 是一个p ×q 的矩阵,B 是一个q ×r 的矩阵,那么C=A ×B 就是一个p ×r 矩阵。它的计算是三重循环的,计算量是pqr 。如果加括号后矩阵的量是不同的,所以我们的问题就是要讨论如何给连乘的矩阵加括号才能使矩阵的计算量最少。 穷举搜索法:对于n 个矩阵的连乘积,设有不同的计算次序P(n)。由于可以先在第k 个和第k+1个矩阵之间将原矩阵序列分为两个矩阵子序列,k=1,2,...,n-1;然后分别对这两个矩阵子序列完全加括号;最后对所得的结果加括号,得到原矩阵序列的一种完全加括号方式。由此可得P(n)的递归式如下: 1 n=1 P (n )= ∑-=-1 1 )()(n k k n P k P n>1 解此递归方程可得,P(n)=C(n-1),而C(n)是一个指数增长的函数。因此穷举搜索法不是一个有效的算法。以下将用三种方法来解决矩阵连乘问题的最优加括号方式以及最优解。 2. 分析矩阵连乘问题以及对递归式的推导 将矩阵连乘积j i i A A A ?+,1,简记为A[i:j]。考察计算A[1:n]的最优计算次序。这个问题的一个关键特征是:计算A[1:n]的最优次序包含的计算矩阵子链A[1:k]和A[k+1:n]的次序也是最优的。这是因为:定义矩阵A i 的维数为p i-1×p i ,则A[i:k]的计算次数为p i-1×p k ,A[k+1,j]的计算次数为p k ×p j ,而这两个总的矩阵最后相乘时的计算量是固定的,为p i-1×p k ×p j 。所以,矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。 (1)、直接递归的思路:记计算A[i:j],1≤i ≤j ≤n ,所需最少数乘次数为m[i][j],则原问题的最优质为m[1][n]。由分析得知:m[i][j]可以递归的定义为: 0 i=j m[i][j]= }]][1[]][[{min 1j k i j k i p p p j k m k i m -≤≤+++ i

算法分析实验三报告

《算法设计与分析》实验报告

目录 一、实验内容描述和功能分析. 二、算法过程设计. 三、程序调试及结果(附截图). 四、源代码(附源代码).

一、实验内容描述和功能分析. 1.矩阵连乘问题 内容描述:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。 功能分析:输入包含多组测试数据。第一行为一个整数C,表示有C 组测试数据,接下来有2*C行数据,每组测试数据占2行,每组测试数据第一行是1个整数n,表示有n个矩阵连乘,接下来一行有n+1 个数,表示是n个矩阵的行及第n个矩阵的列,它们之间用空格隔开。输出应该有C行,即每组测试数据的输出占一行,它是计算出的矩阵最少连乘积次数。 例如:输入:1输出:7500 3 10 100 5 50 2.Pebble Merging 内容描述:在一个圆形操场的四周摆放着n 堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。 编程任务: 对于给定n堆石子,编程计算合并成一堆的最小得分和最大得分。 功能分析:输入由多组测试数据组成。每组测试数据输入的第1 行是正整数n,1≤n≤100,表示有n堆石子。第二行有n个数,分别表示每堆石子的个数。 对应每组输入,输出的第1 行中的数是最小得分;第2 行中的数是最大得分。 例如:输入:4 输出:43 4 4 5 9 54

二、算法过程设计. 1.矩阵连乘问题 矩阵连乘问题是通过设置数组,利用数组的横竖坐标来进行矩阵对应行与列的计算。 2.Pebble Merging 这个问题也是跟数组相关,通过寻找数组中的最大和最小值来进行计算。 三、程序调试及结果(附截图). 1.矩阵连乘问题 2.Pebble Merging

动态规划法解矩阵连乘问题

动态规划法解矩阵连乘问题 实验内容 给定n个矩阵{A1,A2,….An},其中Ai与Ai+1是可乘的,i=1,2,3。。。,n-1。我们要计算这n个矩阵的连乘积。由于矩阵乘法满足结合性,故计算矩阵连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则我们可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。 解题思路 将矩阵连乘积A(i)A(i+1)…A(j)简记为A[i:j],这里 i <= j。考察计算A[i:j]的最优计算次序。设这个计算次序在矩阵A(k)和A(k+1)之间将矩阵链断开,i <= k < j, 则其相应完全加括号方式为(A(i)A(i+1)…A(k)) * (A(k+1)A(k+2)…A(j))。 特征:计算A[i:j]的最优次序所包含的计算矩阵子链 A[i:k]和A[k+1:j]的次序也是最优的。 矩阵连乘计算次序问题的最优解包含着其子问题的最优解。 设计算A[i:j],1 <= i <= j <= n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n] 当i = j时,A[i:j]=Ai,因此,m[i,i] = 0,i = 1,2,…,n 当i < j时,m[i,j] = m[i,k] + m[k+1,j] + p(i-1)p(k)p(j)这里A(i)的维数为 p(i-1)*(i)(注:p(i-1)为矩阵A(i)的行数,p(i)为矩阵A[i]的列数) 实验 实验代码 #include #include using namespace std ; class matrix_chain { public: matrix_chain(const vector & c) { cols = c ; count = cols.size () ; mc.resize (count) ; s.resize (count) ; for (int i = 0; i < count; ++i) { mc[i].resize (count) ; s[i].resize (count) ; } for (i = 0; i < count; ++i) { for (int j = 0; j < count; ++j) { mc[i][j] = 0 ; s[i][j] = 0 ; }

矩阵连乘备忘录算法

湖南涉外经济学院计算机科学与技术专业 《算法设计与分析》课程 矩阵连乘备忘录算法 实验报告 班级: 学号: 姓名: 教师: 成绩: 2012年5月 【实验目的】 1 掌握动态规划算法和备忘录方法; 2 利用动态规划备忘录思想实现矩阵连乘; 3 分析实验结果,总结算法的时间和空间复杂度。思考是否能将算法的时间复杂度提高到 O(nlgn) 【系统环境】 Windows 07 平台 【实验工具】 VC++6.0中文企业版 【问题描述】 描述:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1可乘的,i=1,2,…,n-1。找出这个n个矩阵的连乘A1A2…An所需相乘的最少次数的方式。 例:矩阵连乘积A1A2A3A4可以有一下五种不同的完全加括号方式: (A1(A2(A3A4)))

(A1((A2A3)A4)) ((A1A2)(A3A4)) ((A1(A2A3))A4) (((A1A2)A3)A4) 【实验原理】 原理:1、矩阵连乘满足结合律,且不同的结合方式,所需计算的次数不同。 2、利用备忘录方法,用表格保存以解决的子问题答案,降低重复计算,提高效率。 思路:m初始化为0,表示相应的子问题还位被计算。在调用LookupChain时,若m[i][j]>0,则表示其中储存的是所要求子问题的计算结果,直接返回此结果即刻。否则与直接递归算法一样,自顶而下的递归计算,并将计算结果存入m[i][j]后返回。因此,LookupChain总能返回正确的值,但仅在它第一次被调用时计算,以后调用就直接返回计算结果。 方法:用MemorizedMatrixChain函数将已经计算的数据存入表中,用LookupChain函数配合MemorizedMatrixChain函数递归调用计算。 【源程序代码】 #include #include #include #define N 10 int p[N],m[N][N],s[N][N]; int LookupChain(int i,int j); //备忘录算法函数 int MemorizedMatrixChain(int n,int **m,int **s) { for(int i=1;i<=n;i++) for(int j=i;j<=n;j++) m[i][j]=0;

矩阵连乘问题

矩阵连乘问题(动态规划) 一、实验目的与要求 1、明确矩阵连乘的概念。 2、利用动态规划解决矩阵连乘问题。 二、实验题: 问题描述: 给定n个矩阵{A1,A2,...,An},其中Ai与Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 三、实验代码 #include using namespace std; const int MAX = 100; //p用来记录矩阵的行列,main函数中有说明 //m[i][j]用来记录第i个矩阵至第j个矩阵的最优解 //s[][]用来记录从哪里断开的才可得到该最优解 int p[MAX+1],m[MAX][MAX],s[MAX][MAX]; int n;//矩阵个数 int matrixChain(){ for(int i=0;i<=n;i++) m[i][i]=0; for(int r=2;r<=n;r++)//对角线循环 for(int i=0;i<=n-r;i++){//行循环 int j = r+i-1;//列的控制 //找m[i][j]的最小值,先初始化一下,令k=i m[i][j]=m[i+1][j]+p[i+1]*p[i]*p[j +1]; s[i][j]=i; //k从i+1到j-1循环找m[i][j]的最小值 for(int k = i+1;k

动态规划算法实验报告

动态规划算法实验报告

————————————————————————————————作者: ————————————————————————————————日期:

实验标题 1、矩阵连乘 2、最长公共子序列3、最大子段和 4、凸多边形最优三角剖分 5、流水作业调度 6、0-1背包问题 7、最优二叉搜索树 实验目的掌握动态规划法的基本思想和算法设计的基本步骤。 实验内容与源码1、矩阵连乘 #include #include using namespace std; const int size=4; //ra,ca和rb,cb分别表示矩阵A和B的行数和列数 void matriMultiply(int a[][4],int b[][4],int c[][4],int ra,intca,int rb,int cb) { if(ca!=rb) cerr<<"矩阵不可乘"; for(int i=0;i<ra;i++) for(int j=0;j<cb;j++) { int sum=a[i][0]*b[0][j]; for(int k=1;k

动态规划算法解矩阵连乘问题

动态规划算法解矩阵连乘问题 一、实验目的 通过上机实验,要求掌握动态规划算法的问题描述、算法设计思想、程序设计和算法复杂性分析等。 二、实验环境 VC6.0 C++,vs2005 三、实验内容 1 用动态规划算法解矩阵连乘问题 (1)问题的描述 给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。要算出这n个矩阵的连乘积A1A2…A n。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的(当然实际上可以不加); (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。若A是一个p×q矩阵,B 是一个q×r矩阵,则计算其乘积C=AB的标准算法中,需要进行pqr次数乘。 (3)为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵{A1,A2,A3}连乘的情况。设这三个矩阵的维数分别为10×100,100×5,5×50。加括号的方式只有两种:((A1A2)A3),(A1(A2A3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。第二种加括号方式的计算量时第一种方式计算量的10倍。由此可见,在计算矩阵连乘积时,加括号方式,即计算次序对计算量有很大的影响。于是,自然提出矩阵连乘积的最优计算次序问题,即对于给定的相继n个矩阵{A1,A2,…,A n}(其中矩阵Ai的维数为p i-1×p i,i=1,2,…,n),如何确定计算矩阵连乘积A1A2…A n的计算次序(完全加括号方式),使得依此次序计算矩阵连乘积需要的数乘次数最少。正如课堂中所分析,穷举法的计算量太大,它不是一个有效的算法,本实验采用动态规划算法解矩阵连乘积的最优计算次序问题。 (2)算法设计思想 动态规划算法的基本思想是将待求解问题分成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,动态规划法经分解得到的子问题往往不是相互独立的,前一子问题的解为后一子问题的解提供有用的信息,可以用一个表来记录所有已解决的子问题的答案,不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。

矩阵连乘算法

福州大学数学与计算机科学学院 《计算机算法设计与分析》上机实验报告(2)

i<=k

矩阵连乘实验报告

矩阵连乘实验报告

————————————————————————————————作者: ————————————————————————————————日期: ?

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:?软件12K1??学生姓名:吴旭 学号:121909020124 成绩: 指导老师: 刘老师?实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的 矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在Ak和A k+1之间将矩阵链断开,1≤k≤n,则其相应的完全加括号方式为((A …A k)(Ak+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后1

矩阵连乘问题

宁波工程学院电信学院计算机教研室 实验报告 一、实验目的: 通过上级实验,要求掌握动态规划算法的问题描述,算法设计思想,程序设计和算法复杂性分析等。 二、实验环境:VC6.0 三、实验内容: 1、用分治法算法解决最接近点对问题 (1)问题的描述 给定n个矩阵{nAAA ,2,1},其中iA和1 iA是可乘的,i=1,2,…,n-1。考察这n个矩阵的连乘积nAAA ,2,1。由于矩阵乘法具有结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说连乘积已完全加括号,则可依次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘可递归地定义为:(1)单个矩阵是完全加括号的;(2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘B和C的乘积并加括号,即A=(BC)。矩阵A和B可乘的条件是矩阵A的列数等于矩阵B的行数。若A 是一个p×q的矩阵,B是一个q×r的矩阵,那么C=A×B就是一个p×r矩阵。它的计算是三重循环的,计算量是pqr。如果加括号后矩阵的量是不同的,所以我们的问题就是要讨论如何给连乘的矩阵加括号才能使矩阵的计算量最少。穷举搜索法:对于n个矩阵的连乘积,设有不同的计算次序P(n)。由于可以先在第k个和第k+1个矩阵之间将原矩阵序列分为两个矩阵子序列,k=1,2,...,n-1;然后分别对这两个矩阵子序列完全加括号;最后对所得的结果加括号,得到原矩阵序列的一种完全加括号方式。 解递归方程可得,P(n)=C(n-1),而C(n)是一个指数增长的函数。因此穷举搜索法不是一个有效的算法。以下将用三种方法来解决矩阵连乘问题的最优加括号方式以及最优解。 (2)算法设计思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。

相关主题