搜档网
当前位置:搜档网 › 最新整式的乘除经典讲义(可直接用)资料

最新整式的乘除经典讲义(可直接用)资料

整式的乘除讲义

同底数幂的乘法

同底数幂的乘法法则:

n m n m a a a +=?(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a

++=??(其中m 、n 、p 均为正数); ⑤公式还可以逆用:n m n m a a a ?=+(m 、n 均为正整数)

幂的乘方与积的乘方

1. 幂的乘方法则:mn n m a a

=)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆. 2. ),()()(都为正数n m a a a mn m n n m ==.

3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底,

如将(-a )3化成-a 3 ???-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n

4.底数有时形式不同,但可以化成相同。

5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。

6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n n n b a ab =)

((n

为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

同底数幂的除法

1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a

-=÷ (a ≠0,m 、n 都是正数,且m>n).

2. 在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0.

②任何不等于0的数的0次幂等于1,即)0(10≠=a a ,如1100=,(-2.50=1),则00无意义.

③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即p p a a 1

=-( a ≠0,p 是

正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负

的,如41(-2)2-=,8

1)2(3-=-- ④运算要注意运算顺序.

整式的乘法

1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式。

2.单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序。

3.多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。 多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘

ab x b a x b x a x +++=++)())((2,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a )和(nx+b )相乘可以得到ab x ma mb mnx b nx a mx +++=++)())((2

平方差公式

1.平方差公式:两数和与这两数差的积,等于它们的平方差,

即22))((b a

b a b a -=-+。

其结构特征是:

①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。 完全平方公式

1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍, 即2222)(b ab a b a +±=±; 口决:首平方,尾平方,2倍乘积在中央;

2.结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

3.运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现222)(b a b a ±=±这样的错误。 整式的除法

1.单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

2.多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

(一)填空题

1.x 10=(-x 3)2·_________=x 12÷x ( )

2.4(m -n )3÷(n -m )2=___________.

3.-x 2·(-x )3·(-x )2=__________.

4.(2a -b )()=b 2-4a 2.

5.(a -b )2=(a +b )2+_____________.

6.(3

1)-2+π0=_________;4101×0.2599=__________. 7.用科学记数法表示-0.0000308=___________.

8.(x -2y +1)(x -2y -1)=( )2-( )2=_______________.

9.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.

(二)选择题

11.下列计算中正确的是……………………………………………………………( )

(A )a n ·a 2=a 2n (B )(a 3)2=a 5 (C )x 4·x 3·x =x 7 (D )a 2n -3÷a 3-n =a 3n -6

12.x 2m +1可写作…………………………………………………………………………( )

(A )(x 2)m +1 (B )(x m )2+1 (C )x ·x 2m (D )(x m )m +1

13.下列运算正确的是………………………………………………………………( )

(A )(-2ab )·(-3ab )3=-54a 4b 4 (B )5x 2·(3x 3)2=15x 12

(C )(-0.16)·(-10b 2)3=-b

7 (D )(2×10n )(21×10n )=102n 14.化简(a n b m )n ,结果正确的是………………………………………………………( )

(A )a 2n b mn (B )n m n b a 2 (C )mn n b a 2 (D )n m n b a 2

15.若a ≠b ,下列各式中不能成立的是………………………………………………( )

(A )(a +b )2=(-a -b )2 (B )(a +b )(a -b )=(b +a )(b -a )

(C )(a -b )2n =(b -a )2n

16.下列各组数中,互为相反数的是……………………………………………… ( )

(A )(-2)-3与2

3 (B )(-2)-2与2-2 (C )-33与(-31)3 (D )(-3)-3与(31)3

17.下列各式中正确的是………………………………………………………………( )

(A )(a +4)(a -4)=a 2-4 (B )(5x -1)(1-5x )=25x 2-1

(C )(-3x +2)2=4-12x +9x 2 (D )(x -3)(x -9)=x 2-27

18.如果x 2-kx -ab =(x -a )(x +b ),则k 应为…………………………………( )

(A )a +b (B )a -b (C )b -a (D )-a -b

(三)计算

19.(1)(-3xy 2)3·(61x 3y )2; (2)4a 2x 2·(-52a 4x 3y 3)÷(-2

1a 5xy 2);

(3)(2a -3b )2(2a +3b )2; (4)(2x +5y )(2x -5y )(-4x 2-25y 2);

(5)(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );(6)(x -3)(2x +1)-3(2x -1)2.

(四)解答题(每题6分,共24分)

20.已知a 2+6a +b 2-10b +34=0,求代数式(2a +b )(3a -2b )+4ab 的值.

21.已知a +b =5,ab =7,求2

2

2b a ,a 2-ab +b 2的值.

22.已知(a +b )2=10,(a -b )2=2,求a 2+b 2,ab 的值.

23.已知a 2+b 2+c 2=ab +bc +ac ,求证a =b =c .

人教版初中八年级数学上册专题整式的乘除讲义及答案

单项式 ?系数:单项式前面的_________ ?次数:所有字母的________ 整式 ? ? _______ ?项:组成多项式的每个单项式? ?? ?次数:___________项的次数 2 整式的乘除(讲义) ? 课前预习 1. 整式的分类: ? ?定义:数字与字母的乘积组成的代数式 ? ? ? ? ? ? ? ?定义:几个单项式的和 ? ? 2. ________________________________________________叫做同类项;把同类 项 合 并 成 一 项 叫 做 合 并 同 类 项 ; 合 并 同 类 项 时 , ________________________________________________. 3. 乘法分配律: a(b + c) = _______________. 4. 类比迁移: 老师出了一道题,让学生计算 x 5 y ÷ x 2 . 小聪是这么做的: x 5 y ÷ x 2 = x 5 y x ? x ? x ? x ? x ? y = = x 3 y x x ? x 请你类比小聪的做法计算: 8m 2n 2 ÷ 2m 2n . ? 知识点睛

③ - x 2 y ? ? (-4 y 3 ) = ______; ② ab 2c - 2ab ? ? ab = ____________________; ③ (-2a) ? a 3 - 1? = _________________; 1. 单×单:_______乘以________,_________乘以________. 2. 单×多:根据________________,转化为单×单. 3. 多×多:握手原则. 4. 单÷单:系数除以系数,字母除以字母. 5. 多÷单:借用乘法分配律. 精讲精练 1. ①■4 x y ? 2 x y 3 z = _______; ? 1 ? ? 2 ? ② 3x 2 y ? (-2 x 3 y 2 ) = _______; “■”在不引起歧义的情况 下,单项式和其他单项式或 多项式运算时,本身可以不 加括号. ④ (-3a 3 )2 ? (-2a 2 ) ; ⑤ 2 x 3 ? (-2 x y) ? (-2 x y)3 . 2. ① 2ab ? (5ab 2 + 3a 2b ) ______________________; ? 2 ? 1 ? 3 ? 2 ? 1 ? ? 4 ? ④ ( x 2 - 2 y) ? ( x y 2 )2 = _________________________; ⑤ -2( x + y 2 z - 3x 2 ) ? x 2 y = _________________________. 3. 计算: ① (3x + 4 y) ? (3x - 4 y) ; ② (m - n) ? (3m - 2n + 1) ; ③ (-2m - n) ? (3m - 2n) ; ④ (2 x - y)2 ; ⑤ (a + b - c) ? (a - b + c) .

整式的乘除培优

整式的乘除培优 一、 选择题: 1﹒已知x a =2,x b =3,则x 3a +2b 等于( ) A ﹒17 B ﹒72 C ﹒24 D ﹒36 2﹒下列计算正确的是( ) A ﹒5x 6·(-x 3)2=-5x 12 B ﹒(x 2+3y )(3y -x 2)=9y 2-x 4 C ﹒8x 5÷2x 5=4x 5 D ﹒(x -2y )2=x 2-4y 2 3、已知M =20162,N =2015×2017,则M 与N 的大小是( ) A ﹒M >N B ﹒M <N C ﹒M =N D ﹒不能确定 4、已知x 2-4x -1=0,则代数式2x (x -3)-(x -1)2+3的值为( ) A ﹒3 B ﹒2 C ﹒1 D ﹒-1 5、若x a ÷y a =a 2,()x y b =b 3,则(x +y )2的平方根是( ) A ﹒4 B ﹒±4 C ﹒±6 D ﹒16 6、计算()()3 4 a b b a ---的结果为( ) A 、()7 b a -- B 、()7b a +- C 、()7 b a - D 、()7 a b - 7、 已知a=8131,b=2741 ,c=961 ,则a ,b ,c 的大小关系是( ) B 、A .a >b >c B .a >c >b C .a <b <c D .b >c >a 8、图①是一个边长为(m+n )的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( ) A .(m+n )2﹣(m ﹣n )2=4mn B .(m+n )2﹣(m 2+n 2)=2mn C .(m ﹣n )2+2mn=m 2+n 2 D .(m+n )(m ﹣n )=m 2﹣n 2 9、若a ﹣2=b+c ,则a (a ﹣b ﹣c )+b (b+c ﹣a )﹣c (a ﹣b ﹣c )的值为( )

整式的乘除培优训练

整式的乘除法培优训练 一、指数运算律是整式乘除的基础,分别有同底数幂的乘法:,幂的乘方: ,积的乘方: ,同底数幂的除法: .学习指数运算律应该注意: (1) 运算律成立的条件; (2) 运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式. (3) 运算律的正向运用、逆向运用、综合运用. 二、乘法公式是在多项式乘法的基础上。经多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数式的证明等方面有着广泛的应用.在学习乘法公式时应该注意: (1)熟悉公式的结构特点,理解掌握公式; (2)根据待求式的特点,模仿套用公式; (3)对公式中字母的全面理解,灵活应用公式; (4)既能正用,又能逆用,且能适当变形或重新组合,综合运用公式. 例1:(1)计算:200020002000 2000199835 7153)37(++? (2)比较大小:234)2(- 1005 例2:有足够多的长方形和正方形卡片,如下图: (1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形

的代数意义是 . (2)小明想用类似方法解释多项式乘法(a+3b )(2a+b )=2a 2+7ab+3b 2,那么需用2号卡片 张,3号卡片 张. 例3:(1)在2004,2005,2006,2007这四个数中,不能表示为两个整数的平方差的是. (2)已知1999)1998)(2000(=--a a ,那么=-+-22)1998()2000(a a . 例4:已知a,b,c 满足722=+b a ,122-=-c b ,1762-=-a c , 则a+b+c 的值等于( ) 练习: 1、填空:=--?1)25.0(42324;若32=n a ,则=-126n a ( ). 3、若n n x 221+=+,2122--+=n n y ,其中n 为整数,则x 与y 的数量关系是( ) A.x=4y B.y=4x C.x=12y D.y=12x 4、如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是2和1的长方形.现有甲类纸片1张,乙类纸片4张, 则应至少取丙类纸片 张才能用它们拼成一个新的正方形. 5、计算: 7655.0469.27655.02345.122?++

整式的乘除(讲义及答案)

整式的乘除(讲义) 课前预习 1.整式的分类: ___________________________________????????????????????? 定义:数字与字母的乘积组成的代数式单项式系数:单项式前面的次数:所有字母的整式定义:几个单项式的和项:组成多项式的每个单项式次数:项的次数2.________________________________________________叫做 同类项;把同类项合并成一项叫做合并同类项;合并同类项时,________________________________________________.3. 乘法分配律:()a b c +=_______________.4.类比迁移: 老师出了一道题,让学生计算52x y x ÷.小聪是这么做的: 552 32x y x x x x x y x y x x y x x x ?????÷===?请你类比小聪的做法计算:22282m n m n ÷.

知识点睛 1. 单×单:_______乘以________,_________乘以________.2. 单×多:根据________________,转化为单×单.3. 多×多:握手原则.4. 单÷单:系数除以系数,字母除以字母.5. 多÷单:借用乘法分配律. 精讲精练1.①■342xy xy z ?=_______;②2323(2)x y x y ?-=_______;③231(4)2x y y ??-?-= ??? ______;④322(3)(2)a a -?-;⑤332(2)(2)x xy xy ?-?-. 2.①222(53)ab ab a b ?+______________________;②221232 ab c ab ab ??-?= ???____________________;③31(2)14a a ??-?-= ??? _________________;④222(2)()x y xy -?=_________________________;⑤2222(3)x y z x x y -+-?=_________________________.3.计算: ①(34)(34)x y x y +?-;②()(321)m n m n -?-+;③(2)(32)m n m n --?-;④2(2)x y -; “■”在不引起歧义的情况 下,单项式和其他单项式或 多项式运算时,本身可以不 加括号.

(完整版)整式的乘除培优(可编辑修改word版)

整式的乘除培优 一、选择题: 1﹒已知x a=2,x b=3,则x3a+2b 等于() A﹒17 B﹒72 C﹒24 D﹒36 2﹒下列计算正确的是() A﹒5x6·(-x3)2=-5x12 B﹒(x2+3y)(3y-x2)=9y2-x4 C﹒8x5÷2x5=4x5 D﹒(x-2y)2=x2-4y2 3、已知M=20162,N=2015×2017,则M 与N 的大小是() A﹒M>N B﹒M<N C﹒M=N D﹒不能确定 4、已知x2-4x-1=0,则代数式 2x(x-3)-(x-1)2+3 的值为() A﹒3 B﹒2 C﹒1 D﹒-1 5、若a x ÷a y =a2,(b x)y=b3,则(x+y)2的平方根是() A﹒4 B﹒±4C﹒±6D﹒16 6、计算-(a -b)4 (b -a)3 的结果为() A、-(a -b)7 B、-(a +b)7 C、(a-b)7 D、(b-a)7 7、已知a=8131,b=2741,c=961,则a,b,c 的大小关系是() B、A.a>b>c B.a>c>b C.a<b<c D.b>c>a 8、图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的 形状,由图①和图②能验证的式子是() A.(m+n)2﹣(m﹣n)2=4mn B.(m+n)2﹣(m2+n2)=2mn C.(m﹣n)2+2mn=m2+n2 D.(m+n)(m﹣n)=m2﹣n2 9、若a﹣2=b+c,则a(a﹣b﹣c)+b(b+c﹣a)﹣c(a﹣b﹣c)的值为()

= 90 p A.4 B.2 C.1 D.8 10、当x=1 时,ax+b+1 的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为() A.﹣16 B.﹣8 C.8 D.16 11、已知a2+a﹣3=0,那么a2(a+4)的值是() A.9 B.﹣12 C.﹣18 D.﹣15 12、在求1+6+62+63+64+65+66+67+68+69 的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6 倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②,②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0 且 a≠1),能否求出1+a+a2+a3+a4+…+a2014 的值?你的答案是() A. B. C. D.a2014﹣1 二、填空: 1、若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=﹒ 2、若(2x+3y)(mx-ny)=4x2-9y2,则mn=. 3. 已知a+b=8,a2b2=4,则1 (a2+b2)-ab=. 2 999 p 999 , q = 119 ,那么 9 q (填>,<或=) 5.已知10a= 20, 10b=1 ,则3a÷ 3b= 5 6.设A =(x -3)(x - 7),B =(x - 2)(x -8),则A B(填>,<,或=) 7.若关于x 的多项式x2-8x +m =(x - 4)2 ,则m 的值为 若关于x 的多项式x2+nx +m2=(x - 4)2 ,则m n= 4. 若

整式的乘除经典讲义教学(可直接用)

整式的乘除讲义 同底数幂的乘法 同底数幂的乘法法则: n m n m a a a +=?(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点: ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式; ②指数是1时,不要误以为没有指数; ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加; ④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=??(其中m 、n 、p 均为正数); ⑤公式还可以逆用:n m n m a a a ?=+(m 、n 均为正整数) 幂的乘方与积的乘方 1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆. 2. ),()()(都为正数n m a a a mn m n n m ==. 3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底, 如将(-a )3化成-a 3 ???-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n 4.底数有时形式不同,但可以化成相同。 5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。 6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n n n b a ab =) ((n 为正整数)。 7.幂的乘方与积乘方法则均可逆向运用。 同底数幂的除法 1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷ (a ≠0,m 、n 都是正数,且m>n). 2. 在应用时需要注意以下几点: ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0. ②任何不等于0的数的0次幂等于1,即)0(10≠=a a ,如1100=,(-2.50=1),则00无意义. ③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即p p a a 1 =-( a ≠0,p 是 正整数), 而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的; 当a<0时,a -p 的值可能是正也可能是负

(完整版)新北师大版数学七年级初一下整式的乘除

欢迎阅读 知识点总结 1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。 n m n m a a a +=?(m,n 都是正数),是幂的运算中最基本的法则 p n m p n m a a a a ++=??(其中m 、n 、p 均为正数); 公式还可以逆用:n m n m a a a ?=+(m 、n 均为正整数) 2、幂的乘方法则:mn n m a a =)((m,n 都是正数),是幂的乘法法则为基础推导出来的,但两者不能混淆. (1-a ) 3 化成-a 3 (2(33、为正整数)。 4、m>n). 5、数( ①a ②n 丨n 丨=m 7 a x +(a mx +)((9、平方差公式 平方差公式:两数和与这两数差的积,等于它们的平方差,即2 2))((b a b a b a -=-+。 a , b 是代数,可以为数,也可以为字母,也可以为代数式。其结构特征是: ①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。 10、完全平方公式 完全平方公式: 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,

即2 222)(b ab a b a +±=±; 口决:首平方,尾平方,2倍乘积在中央; 结构特征: ①公式左边是二项式的完全平方; ②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。 ③在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现2 2 2 )(b a b a ±=±这样的错误。 11、整式的除法 单项式除以单项式 单项式相除,把系数(相除)、同底数幂(相减)分别相除,作为商的因式,对于只在被除式里含有的字 1. 1A 、4a ?? ? ??-135.2 A. -3.设 (a +5A. 304.已知x 5.已知 a x A 、2527 B 、109 C 、53 D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a+b)(m+n); ②2a(m+n)+b(m+n); ③m(2a+b)+n(2a+b); ④2am+2an+bm+bn , 你认为其中正确的有 n m

最新初一数学培优竞赛专题2--整式的乘除

专题二 整式的乘除 一、知识点: 1. 同底数幂的乘法 同底数幂的乘法公式: __________________(m,n 都是整数) 2.幂的乘方与积的乘方 1)幂的乘方公式: ___________________(m,n 都是整数) 2)积的乘方公式:____________________(n 为正整数) 3. 同底数幂的除法 1)同底数幂的除法公式:___________________ (a ≠0,m 、n 都是正数,且m>n). 2)任何不等于0的数的0次幂等于1,即___________________,如1100=,(-2.50=1),则00无意义. 3)任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即___________________ ( a ≠0,p 是正整数), 而0-1,0-3都是无意义的。 4. 整式的乘法 1)单项式与单项式相乘 2)单项式与多项式相乘 3)多项式与多项式相乘 二、基础练习: 1.计算 (-3)2n+1+3×(-3)2n 结果正确的是( ) A. 32n+2 B. -32n+2 C. 0 D. 1 2.若16n m n a a a ++= ,且21m n -= ,则n m 的值为( ) A.1 B. 2 C.3 D.4 3.-a n 与(-a)n 的关系是( ) A. 相等 B. 互为相反数 C. 当n 为奇数时,它们相等; 当n 为偶数时,它们互为相反数 D. 当n 为奇数时,它们互为相反数; 当n 为偶数时,它们相等 4.若(x -3)(x+4)=x 2+px+q,那么p 、q 的值是( ) A.p=1,q=-12 B.p=-1,q=12 C.p=7,q=12 D.p=7,q=-12 5.a 4+(1-a)(1+a)(1+a 2)的计算结果是( ) A.-1 B.1 C.2a 4-1 D.1-2a 4 6.若0<y <1,那么代数式y(1-y)(1+y)的值一定是( ) A .正的 B .非负 C .负的 D .正、负不能唯一确定. 7.如果b 2m <b m (m 为自然数),那么b 的值是( ) A .b >0 B .b <0 C .0<b <1 D .b ≠1. 8.下列运算中错误的是( ) A .-(-3a n b)4=-81a 4n b 4 B .(a n+1b n )4=a 4n+4b 4n ; C .(-2a n )2·(3a 2)3=-54a 2n+6 D .(3x n+1-2x n )·5x=15x n+2-10x n+1. 9.t 2-(t+1)(t-5)的计算结果正确的是( ) A .-4t-5 B .4t+5 C .t 2-4t+5 D .t 2+4t-5.

北师大版初一数学下讲义整式的乘除

第一章:整式的乘除 1.1同底数幂的乘法 ? 复习回顾:复习七年级上册数学课本中介绍的有关乘方运算知识: ? 探索新知 1.利用乘方的意义,计算103×102. 解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105. 2.建立幂的运算法则 将上题中的底数改为a ,则有 a 3·a 2=(aaa)·(aa)=aaaaa =a 5, 即a 3·a 2=a 5=a 3+2. 用字母m ,n 表示正整数,则有 即a m ·a n =a m+n . 3.剖析法则 思考以下问题: (1)等号左边是什么运算? (2)等号两边的底数有什么关系? (3)等号两边的指数有什么关系?(4)公式中的底数a 可以表示什么? (5)当三个以上同底数幂相乘时,上述法则是否成立? 请大家试着叙述这个法则: ? 应用提高 探讨p n m a a a ??等于什么? ? 课堂训练 (1)-a 2·a 6 (2)(-x)·(-x)3 (3)y m ·y m+1 (4)()38 77?- (5)()3766?- (6)()()43 5555-??- (7)()()b a b a -?-2 (8)()()b a a b -?-2 (9)x 5·x 6·x 3 (10)-b 3·b (11)-a·(-a)3 (12)(-a)2·(-a)3·(-a) 1.2 幂的乘方与积的乘方(一) ? 复习回顾 复习已学过的幂的意义及幂运算的运算法则 1、幂的意义 2、.n m n m a a a +=?(m 、n 为正整数)同底数幂相乘,底数不变,指数相加。 ? 探索新知 根据已经学习过的知识,回忆并探讨以下实际问题: 1. 乙正方体的棱长是 2 cm, 则乙正方体的体积 V 乙 = cm 3 。 甲正方体的棱长是乙正方体的 5 倍,则甲正方体的体积 V 甲 = cm 3 。 2. 乙球的半径为 3 cm, 则乙球的体积V 乙 = cm 3 甲球的半径是乙球的10倍,则甲球的体积V 甲 = cm 3 . 如果甲球的半径是乙球的n 倍,那么甲球体积是乙球体积的 倍。 地球、木星、太阳可以近似地看作球体。木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的 倍和 倍.

整式的乘除(培优)

第3讲 整式的乘除(培优) 第1部分 基础过关 一、选择题 1.下列运算正确的是( ) A. 954a a a =+ B. 33333a a a a =?? C. 954632a a a =? D. ()743a a =- =??? ??-???? ??-20122012532135.2( ) A. 1- B. 1 C. 0 D. 1997 3.设()()A b a b a +-=+2 23535,则A=( ) A. 30ab B. 60ab C. 15ab D. 12ab 4.已知,3,5=-=+xy y x 则=+2 2y x ( ) A. 25. B 25- C 19 D 、19- 5.已知,5,3==b a x x 则=-b a x 23( ) A 、2527 B 、10 9 C 、53 D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有( ) A 、①② B 、③④ C、①②③ D 、①②③④ 7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3 B 、3 C 、0 D 、1 8.已知.(a+b)2=9,ab= -112 ,则a 2+b 2的值等于( ) A 、84 B 、78 C 、12 D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 10.已知m m Q m P 15 8,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 n m b a

整式的乘除经典讲义

整式的乘除讲义 三. 同底数幂的乘法 同底数幂的乘法法则: n m n m a a a +=?(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要 注意以下几点: ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式; ②指数是1时,不要误以为没有指数; ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加; ④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n m a a a a ++=??(其中m 、n 、p 均为正数); ⑤公式还可以逆用:n m n m a a a ?=+(m 、n 均为正整数) 四.幂的乘方与积的乘方 1. 幂的乘方法则:mn n m a a =)((m,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆. 2. ),()()(都为正数n m a a a m n m n n m ==. 3. 底数有负号时,运算时要注意,底数是a 与(-a)时不是同底,但可以利用乘方法则化成同底, 如将(-a )3化成-a 3 ???-=-). (),()(,为奇数时当为偶数时当一般地n a n a a n n n 4.底数有时形式不同,但可以化成相同。 5.要注意区别(ab )n 与(a+b )n 意义是不同的,不要误以为(a+b )n =a n +b n (a 、b 均不为零)。 6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即n n n b a ab =)((n 为正整数)。 7.幂的乘方与积乘方法则均可逆向运用。 五. 同底数幂的除法 1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷ (a ≠0,m 、n 都是正数, 且m>n). 2. 在应用时需要注意以下几点: ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0. ②任何不等于0的数的0次幂等于1,即)0(10 ≠=a a ,如1100=,(-2.50=1),则00无意义.

整式的乘除培优

整式的乘除培优 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

整式的乘除培优 一、 选择题: 1﹒已知x a =2,x b =3,则x 3a +2b 等于( ) A ﹒17 B ﹒72 C ﹒24 D ﹒36 2﹒下列计算正确的是( ) A ﹒5x 6·(-x 3)2=-5x 12 B ﹒(x 2+3y )(3y -x 2)=9y 2-x 4 C ﹒8x 5÷2x 5=4x 5 D ﹒(x -2y )2=x 2-4y 2 3、已知M =20162,N =2015×2017,则M 与N 的大小是( ) A ﹒M >N B ﹒M <N C ﹒M =N D ﹒不能确定 4、已知x 2-4x -1=0,则代数式2x (x -3)-(x -1)2+3的值为( ) A ﹒3 B ﹒2 C ﹒1 D ﹒-1 5、若x a ÷y a =a 2,()x y b =b 3,则(x +y )2的平方根是( ) A ﹒4 B ﹒±4 C ﹒±6 D ﹒16 6、计算()()3 4 a b b a ---的结果为( ) A 、()7 b a -- B 、()7 b a +- C 、()7 b a - D 、()7 a b - 7、 已知a=8131,b=2741,c=961,则a ,b ,c 的大小关系是( ) B 、A .a >b >c B .a >c >b C .a <b <c D .b >c >a 8、 图①是一个边长为(m+n )的正方形,小颖将图①中的阴影部分拼成图②的形 状,由图①和图②能验证的式子是( ) A .(m+n )2﹣(m ﹣n )2=4mn B .(m+n )2﹣(m 2+n 2)=2mn C .(m ﹣n )2+2mn=m 2+n 2 D .(m+n )(m ﹣n )=m 2﹣n 2 9、 若a ﹣2=b+c ,则a (a ﹣b ﹣c )+b (b+c ﹣a )﹣c (a ﹣b ﹣c )的值为( ) A .4 B .2 C .1 D .8 10、 当x=1时,ax+b+1的值为﹣2,则(a+b ﹣1)(1﹣a ﹣b )的值为( ) A .﹣16 B .﹣8 C .8 D .16

《整式的乘除与因式分解》培优训练及答案

整式的乘除与因式分解 一、选择题: 1.下列计算正确的是( ) A .105532a a a =+ B .632a a a =? C .532)(a a = D . 8210a a a =÷ 2.下列计算结果正确的是( ) A .4332222y x xy y x -=?- B .2253xy y x -=y x 22- C .xy y x y x 4728324=÷ D .49)23)(23(2-=---a a a 3.两个三次多项式相加,结果一定是 ( ) A .三次多项式 B .六次多项式 C .零次多项式 D .不超过三次的多项式 4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( ) A .()1+x B .()1+-x C .x D .()2+-x 5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( ) A 、2 B 、0 C 、-2 D 、-5 6.已知代数式1 2x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( ) A .2,1a b =-??=-? B .2,1 a b =? ?=? C .2,1a b =??=-? D . 2, 1a b =-??=? 7.已知22394 94b b a b a n m =÷,则( ) A .3,4==n m B .1,4==n m C .3,1==n m D .3,2==n m 8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为( ) A .m 2+1 2mn B .2 2mn n - C .2 2m mn + D .22 2m n +

整式的乘除经典讲义

欢迎共阅 整式的乘除讲义 三.同底数幂的乘法 同底数幂的乘法法则:n m n m a a a +=?(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点: ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式; ②指数是1时,不要误以为没有指数; ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加; 1.2.)(a m 3.456 7五.1.2.-3都是无意义的;当a>0时,a -p 的值一定是正的;当a<0时,a -p 的值可能是正也可能是负的,如41(-2) 2-=,8 1)2(3-=-- ④运算要注意运算顺序. 六.整式的乘法 1.单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。 单项式乘法法则在运用时要注意以下几点: ①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆; ②相同字母相乘,运用同底数的乘法法则; ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。 2.单项式与多项式相乘 单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 单项式与多项式相乘时要注意以下几点: ①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同; ②运算时要注意积的符号,多项式的每一项都包括它前面的符号; ③在混合运算时,要注意运算顺序。 3.多项式与多项式相乘 多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。 x +(nx+b )1即(a 12倍, 即)(b a ±2①公式左边是二项式的完全平方; ②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。 3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现222)(b a b a ±=±这样的错误。 九.整式的除法 1.单项式除法单项式 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式; 2.多项式除以单项式 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要

北师大版七年级下册-第1章《整式的乘除》培优拔尖习题训练(带答案)

北师大版第1章《整式的乘除》培优拔尖习题训练 一.选择题(共10小题) 1.下面计算正确的是() A.a2?a3=a5B.3a2﹣a2=2 C.4a6÷2a3=2a2D.(a2)3=a5 2.化简(x+4)(x﹣1)+(x﹣4)(x+1)的结果是() A.2x2﹣8 B.2x2﹣x﹣4 C.2x2+8 D.2x2+6x 3.若要使4x2+mx+成为一个两数差的完全平方式,则m的值应为()[ A.B.C.D. 4.下列计算错误的是() A.(﹣2a3)3=﹣8a9B.(ab2)3?(a2b)2=a7b8 C.(xy2)2?(9x2y)=x6y6D.(5×105)×(4×104)=2×1010 5.已知长方形ABCD可以按图示方式分成九部分,在a,b变化的过程中,下面说法正确的有() ①图中存在三部分的周长之和恰好等于长方形ABCD的周长 ②长方形ABCD的长宽之比可能为2 ③当长方形ABCD为正方形时,九部分都为正方形 ^ ④当长方形ABCD的周长为60时,它的面积可能为100. A.①②B.①③C.②③④D.①③④ 6.若(x2+x+b)?(2x+c)=2x3+7x2﹣x+a,则a,b,c的值分别为()A.a=﹣15,b=﹣3,c=5 B.a=﹣15,b=3,c=﹣5 C.a=15,b=3,c=5 D.a=15,b=﹣3,c=﹣5

7.如图1,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下部分沿图1中的虚线剪开后重新拼成一个梯形(如图2),利用这两幅图形面积,可以验证的乘法公式是() ~ A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2 C.a(a+b)=a2+ab D.(a+b)(a﹣b)=a2﹣b2 8.若(a﹣c+b)2=21,(a+c+b)2=2019,则a2+b2+c2+2ab的值是()A.1020 B.1998 C.2019 D.2040 9.我们知道,同底数幂的乘法法则为a m?a n=a m+n(其中a≠0,m、n为正整数),类似地我们规定关于任意正整数m、n的一种新运算:h(m+n)=h(m)?h(n);比如h(2)=3,则h(4)=h(2+2)=3×3=9,若h(2)=k(k≠0),那么h(2n)?h(2020)的结果是() A.2k+2020 B.2k+1010C.k n+1010D.1022k 10.观察下列各式: (x2﹣1)÷(x﹣1)=x+1. % (x3﹣1)÷(x﹣1)=x2+x+1, (x4﹣1)÷(x﹣1)=x3+x2+x+1, (x5﹣1)÷(x﹣1)=x4+x3+x2+x+1, 根据上述规律计算2+22+23+…+262+263的值为() A.264﹣1 B.264﹣2 C.264+1 D.264+2 二.填空题(共8小题) 11.2015年诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种长度约为毫米的病毒,把用科学记数法表示为. 12.已知x2﹣2(m+3)x+9是一个完全平方式,则m=. :

北师版七年级整式的乘除培优辅导练习

46、已知:x+y=4,x 2+y 2 =10,求(x -y )2 的值。 47、若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。 48、已知:x 2+y 2=26,4xy=12,求(x+y )2和(x-y )2的值。 49、已知:x+y=7,xy=-8,求5x 2+5y 2的值。 50、已知:x 2+y 2+z 2-2x-4y-6z+14=0,求(xz )y 的值。 51.[(x +21y )2+(x -21y )2](2x 2-2 1 y 2),其中x =-3,y =4. 52.已知x +x 1=2,求x 2+21x ,x 4+41 x 的值. 53.已知(a -1)(b -2)-a (b -3)=3,求代数式2 2 2b a -ab 的值. 54.已知x 2+x -1=0,求x 3+2x 2+3的值. 55.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值. 57.若a 、b 、c 、为三角形的三边,且a 2+b 2+c 2-ab-bc-ac=0,试确定三角形的形状。

58.、若m 2+m -1=0,求m 3+2m 2 +3的值。 59、已知:a+b=5,ab=3,求代数式a 3b -2a 2b 2+ab 3的值。 公式练习 2.若x 2-y 2=30,且x -y=-5,则x+y 的值是( ) 3.(a+b -1)(a -b+1)=(_____)2-(_____)2. A .5 B .6 C .-6 D .-5 4.计算:(a+2)(a 2+4)(a 4+16)(a -2). (1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数); (2)(3+1)(32 +1)(34 +1)…(32008 +1)-4016 32 . 6.利用平方差公式计算:2009×2007-20082., 2 2007 200720082006 -?,2 2007200820061 ?+. 完全平方式常见的变形有: ab b a b a 2)(222-+=+

46【提高】《整式的乘除与因式分解》全章复习与巩固(培优课程讲义例题练习含答案)

整式的乘除与因式分解 全章复习与巩固(提高) 【学习目标】 1. 掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算; 2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算; 3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算; 4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解. 【知识网络】 【要点梳理】 【高清课堂 整式的乘除与因式分解单元复习 知识要点】 要点一、幂的运算 1.同底数幂的乘法: (m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方: (m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方: (n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >). 同底数幂相除,底数不变,指数相减. 5.零指数幂:()0 10.a a =≠即任何不等于零的数的零次方等于1.

要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁. 要点二、整式的乘法和除法 1.单项式乘以单项式 单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 2.单项式乘以多项式 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式). 3.多项式乘以多项式 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++. 要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2 x a x b x a b x ab ++=+++. 4.单项式相除 把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式. 5.多项式除以单项式 先把这个多项式的每一项分别除以单项式,再把所得的商相加. 即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++ 要点三、乘法公式 1.平方差公式:22()()a b a b a b +-=- 两个数的和与这两个数的差的积,等于这两个数的平方差. 要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式. 平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项” 的平方减去“相反项”的平方. 2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=- 两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 要点四、因式分解 把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等. 要点诠释:落实好方法的综合运用: 首先提取公因式,然后考虑用公式;

相关主题