搜档网
当前位置:搜档网 › 偏微分方程数值习题解答

偏微分方程数值习题解答

偏微分方程数值习题解答
偏微分方程数值习题解答

李微分方程数值解习题解答 1-1 如果0)0('

=?,则称0x 是)(x J 的

驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解

证明:由)(λ?的定义与内积的性线性性质,得

),()),((2

1

)()(0000x x b x x x x A x x J λλλλλ?+-++=+=

),(2

),()(2

00x Ax x b Ax x J λλ+

-+=

),(),()(0'x Ax x b Ax λλ?+-=

必要性:由0)0('

=?,得,对于任何n R x ∈,有

0),(0=-x b Ax ,

由线性代数结论知,

b Ax b Ax ==-00,0

充分性: 由b Ax =0,对于任何n R x ∈,

0|),(),()0(00'=+-==λλ?x Ax x b Ax

即0x 是)(x J 的驻点. §1-2

补充: 证明)(x f 的不同的广义导数几乎处处相等.

证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的广义导数,由广义导数的定义可知,对于任意

)()(0I C x ∞∈?,有

??-=b

a b

a dx x x f dx x x g )()()()('

1?? ??-=b

a b

a dx x x f dx x x g )()()()('2?? 两式相减,得到

)(0)()(021I C x g g b

a ∞

∈?=-??? 由变分基本引理,21g g -几乎处处为零,即21,g g 几乎处处相等.

补充:证明),(v u a 的连续性条件(1.2.21) 证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式

||

||.||||||||.|||||)(||),(|'''''v u M v u M dx quv v pu v u a b

a +≤+=?11*||||.||||2v u M ≤,其中},max{'*M M M =

习题:

1 设)('x f 为)(x f 的一阶广义导数,试用类似的方法定义)(x f 的k 阶导数,...2,1(=k ) 解:一阶广义导数的定义,主要是从经典导数经过分部积分得到的关系式来定义,因此可得到如下定义:

对于)()(2I L x f ∈,若有)()(2I L x g ∈,使得对

于任意的)(0

I C ∞

∈?,有 ?

?-=b

a

k k

b

a dx x x f dx x x g )()()

1()()()(??

则称)(x f 有k 阶广义导数,)(x g 称为)(x f 的k 阶

广义导数,并记k

k dx

f

d x g =)(

注:高阶广义导数不是通过递推定义的,可能有高阶导数而没有低阶导数.

2.利用)(2I L 的完全性证明))()((1I H I H m 是

Hilbert 空间.

证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即

0||||||||||||0''01→-+-=-m n m n m n f f f f f f

因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使

0||||,0||||0'0→-→-g f f f n n ,以下证明

0||||1→-f f n (关键证明dx

df

g =)

由Schwarz 不等式,有

00||||.|||||)())()((|??f f x x f x f n b

a n -≤-?

00'''|||||||||)())()((|??f f dx x x g x f n b

a n -≤-?

对于任意的)()(0I C x ∞∈?,成立

??=∞

→b

a b

a n n dx x x f dx x x f )()()()(lim ??

??=∞

→b

a b a n

n dx x x g dx x x f )()()()(lim '??

由??-=b

a n b

a n

dx x x f dx x x f )()()()(''??

取极限得到dx x x f dx x x g b

a b

a ??-=)()()()('??

即')(f x g =,即)(1I H f ∈,且

0||

||||

||||||0''01→-+-=-f f f f f f n n n

故)(1I H 中的基本列是收敛的,)(1I H 是完全的. 3.证明非齐次两点边值问题

证明:边界条件齐次化

令)()(0a x x u -+=βα,则0u u w -=满足齐次边界条件.w 满足的方程为00Lu f Lu Lu Lw -=-=,即

w 对应的边值问题为

???==-=0

)(,0)('

b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价

求)(min )(,**1

2*1

w J w J H C w E

H

w E ∈=∈I 其中),(),(21

)(0*

w Lu f w w a w J --=.而

C

u u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~

)

,(),(21)(000000*

而200)()(),(),(C b u b p u u a u Lu +-=-β

从而**)()()(~

)(C b u b p u J

w J +-=β 则关于w 的变分问题P 等价于:求

α=∈)(,12*a u H C u I

使得

)(min )()(*1u J u J a u H u α

=∈=

其中)()(),(),(2

1

)(b u b p u f u u a u J β--=

4就边值问题(1.2.28)建立虚功原理 解:令)(0a x u -+=βα,0u u w -=,则w 满足

)(,0)('

00==-=-=b w a w Lu f Lu Lu Lw

等价于:1

E H v ∈?

0),(),(0=--v Lu f v Lw

应用分部积分,

??+-=-=-b a b a b a dx dx

dv dx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),(( 还原u ,

)

()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--

于是,边值问题等价于:求α=∈)(,1a u H u ,使得

1E H v ∈?,成立

0)()(),(),(=--b v b p v f v u a β

注:形式上与用v 去乘方程两端,应用分部积分得到的相同. 5试建立与边值问题

等价的变分问题.

解:取解函数空间为)(20I H ,对于任意)(20I H v ∈ 用v 乘方程两端,应用分部积分,得到

0),(),(44=-+=-v f u dx u

d v f Lu

而??-==b a b a b a dx dx

dv

dx u d v dx u d vdx dx u d v dx u d .|),(33334444 dx dx

v d dx u d dx dx v

d dx u d dx dv dx u d b a b a b a ??=+-=2222222222| 上式为),(][2222v f dx uv dx

v

d dx u d b a =+?

定义dx uv dx

v

d dx u d v u a b

a ][),(2222+=?,为双线性形式.

变分问题为:求)(20I H u ∈,)(20I H v ∈?

),(),(v f v u a =

1-4

1.用Galerkin Ritz -方法求边值问题

??

?==<<=+-1

)1(,0)0(1

02"u u x x u u 的第n 次近似)(x u n ,基函数

n i x i x i ,...,2,1),sin()(==π?

解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满足齐次边界条件,且

)1(,0)0(2

0==-=-=w w x x Lu Lu Lw

第n 次近似n w 取为∑==n i i i n c w 1?,其中),...2,1(n i c i =满足的Galerkin Ritz -方程为

n j x x c a j n

i i j i ,...,2,1),(),(2

1=-=∑=??? 又

x

d jx ix ij dx x j x i dx

x j x i ij dx a j i j

i

j i ?

???-=

+=+=π

π

π

πππππ

??????)cos()cos(2

)sin()sin()cos()cos()(),(1010

21

0''

?

-+π

π

π

jx ix sin sin 21

由三角函数的正交性,得到

?????≠=+=j i j i i a j i ,

0,212),(22π??

而]1)1[()

(2)sin()1(),(3

1

02

--=-=-?j

j j dx x j x x x x ππ? 于是得到

?????+-=-=为偶数为奇数j j j j a x x c j j j j 0

)

1()(8),(),(2

232

ππ???

最后得到

∑+=-+---+=]2

1

[12

33]

)12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,用0)1(=u 代替右边值条件,)(x u n 是用Galerkin Ritz -方法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差. 证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为

338n

R n π≤

3.就边值问题(1.2.28)和基函数

),...,2,1()()(n i a x x i i =-=?,写出Galerkin Ritz -

方程

解:边界条件齐次化,取

)(0a x u -+=βα,0u u w -=, w 对应的微分方程为

)(,0)('

00==-=-=b w a w Lu f Lu Lu Lw

对应的变分方程为

0),(),(0=--v Lu f v w a

)]([)(000a x q dx dp

qu dx du p dx d Lu -++-=+-=βαβ

??+-=-b

a b a dx x pv b v b p v dx

dp )()()(' 变分方程为

dx v qu x pv b v b p v f v w a b

a ?--+=])([)()(),(),(0'ββ

取n i a x x i i ,...,2,1,)()(=-=?,则Galerkin -Ritz 方程为

??∑-++--+=-=b

a i b

a i i n

j j j

i

dx

a x x q dx a x i x p

b b p f

c a )]()[()()()

()(),(),(1

1

βαβ?β??

??+=b

a j i j i j i dx q p a ][),(''??????

取1,0,1===f q p ,具体计算

1=n , )(1),(11a b dx a b

a -==???

22

1)(21)()()(21a b a b a b a b d -=---+-=ββ,

)(211a b c -=,即解)(21

01a x u u -+= 2=n :

22111)()(2),(),(),(a b dx a x a a b a b

a -=-=-=?????

32

22)(3

4

)(4),(a b dx a x a b

a -=-=???

3

2232

2

2)(3

1

)()()(31)(2)()(a b a b a b a b dx

a x a

b dx a x d b

a b a -=---+-=---+-=??ββββ 得到方程组为

????

?

? ??--=???? ??????

?

?----3221322

)(31)(21c )(3

4)()(a b a b c a b a b a b a b

特别取1,0==b a ,有

?????

?

??=???? ?????? ??31213411121c c

求解得到1,2

1

,6131122=-=-=c c c

其解为202)(2

1

)(a x a x u u ---+=

C h2 椭圆与抛物型方程有限元法

§1.1 用线性元求下列边值问题的数值解:

10,2

sin

242

"

<<=+

-x x y y π

π

0)1(,0)0('==y y

此题改为4/1,0)1()0(,1"

====+-h y y y y

解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数.

Galerkin 形式的变分方程为),(),(v f v Lu =,

其中

??+

-=10

2

10"

4

),(uvdx vdx u v Lu π,?=1

)(2sin 2),(dx x xv v f π

又dx v u dx v u v u vdx u ???=+-=-10'

'

10'

'10

'

10"

|

因此dx uv v u v u a )4

(),(1

2

'

'?+

在单元],[1i i i x x I -=中,应用仿射变换(局部坐标)h

x x i 1

--=ξ

节点基函数为

)3,2,1(,

0,,,1)(111=???

??

????

≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξ?

??

??????????-+++=+

+=????1022

21022

222

2'111)1(41]41[]4

[),(10

2

1

ξξπξξπ?π???d h d h

h dx

a x x x x

取2/1=h ,则计算得12

4),(2

11π??+

=a

122)1(41[),(2

1

0221πξξξπ??+-=-+-=?d h h a

??-+++=10101)1)(2

1

21(2sin )0(2sin [2),(ξ

ξξπξξξπ?d d h h f ??-++=1010)1(4

)1(sin 2sin ξξξπξξξπd d h

ξξξπ?d h f ?+=102)2

1

21(2sin 2),(

代数方程组为

???

? ??=???? ?????? ??),(),(),(),(),(),(212122212111??????????f f y y a a a a 代如求值.

取4/1=h ,未知节点值为4321,,,u u u u ,方程为

4,3,2,1),(),(4

1

==∑=j f u

a j i i

j

i

???

应用局部坐标ξ表示,

??-+++=10221

022])1(4

1[)41(),(ξξπξξπ??d h

h d h h a j j

24

8]8

8[2

1

022

πξξπ+

=+

=?d

ξξξπ??d h

h a j j ])1(4

1[),(1

02

1?-+-=++

96

4)1(1642

1

2

πξξξπ+-=-+

-=?d 96

4),(2

1π??+

-=-j j a

系数矩阵为}96

4,24

8,96

4{2

2

2

πππ+

-+

+

-=diag A

取1=f ,4

1

)1(),(1

01

0=-+=??ξξξξ?d h d h f j

??-+++=+10110)1)]((2

sin[2)](2sin[2),(ξ

ξξπ

ξ

ξξπ

?d h x h d h x h f j j j ??-++++=1010)1)](4

41(2sin[21)]44(2sin[42ξξξπξξξπd j d j

??++?=+++++-+=1001

10|)]8)1([cos(821]8)1(sin[21]8

)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j

+

2.就非齐次第三边值条件

22'11')()(,)()(βαβα=+=+b u b u a u a u

导出有限元方程.

解:设方程为f qu pu Lu =+-='')( 则由

)

,()]()[()()]()[()(),(|),)(('

'

1122'

''''v pu a u a v a p b u b v b p v pu v pu v pu b a

----=-=αβαβ

变分形式为:),(1b a H v ∈?

)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++

)(),(0b u u a u u N ==

)

()()()(),()()()()()()()(),(),(),(1212''a v a p b v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表示为)(),(v F v u A =

设节点基函数为),...,2,1,0)((N j x j =? 则有限元方程为

),...,1,0()(),(0N j F u A j N

i i j i ==∑=???

具体计算使用标准坐标ξ.

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

偏微分方程数值解试题及答案

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分) 令?-+=-=b a dx fu qu dx du p u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式

偏微分方程数值解实验报告

偏微分方程数值解实验报告

1、用有限元方法求下列边值问题的数值解:''()112x -y +y =2s i n ,0∈∈??∈(0,)?, 其中取1ν= 要求画出解曲面。迭代格式如下: 1221212111111111122142212n n n n n n j j j j j j n n n n n n j j j j j j V V V V V V h h V V V V V V h h τ++++++++++-+-??-()-()()-()??++?????? ??-+-+??=+??????

1、 %Ritz Galerkin方法求解方程 function u1=Ritz(x) %定义步长 h=1/100; x=0:h:1; n=1/h; a=zeros(n-1,1); b=zeros(n,1); c=zeros(n-1,1); d=zeros(n,1); %求解Ritz方法中内点系数矩阵 for i=1:1:n-1 b(i)=(1/h+h*pi*pi/12)*2; d(i)=h*pi*pi/2*sin(pi/2*(x(i)+h))/2+h*pi*pi/2*sin(pi/2*x(i+1))/2; end %右侧导数条件边界点的计算 b(n)=(1/h+h*pi*pi/12); d(n)=h*pi*pi/2*sin(pi/2*(x(i)+h))/2; for i=1:1:n-1 a(i)=-1/h+h*pi*pi/24; c(i)=-1/h+h*pi*pi/24; end %调用追赶法 u=yy(a,b,c,d) %得到数值解向量 u1=[0,u] %对分段区间做图 plot(x,u1) %得到解析解 y1=sin(pi/2*x); hold on plot(x,y1,'o') legend('数值解','解析解') function x=yy(a,b,c,d) n=length(b); q=zeros(n,1); p=zeros(n,1); q(1)=b(1); p(1)=d(1); for i=2:1:n

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

偏微分方程数值解试题06B答案

专业班级 姓名 学号 开课系室数学与计算科学学院 考试日期

偏微分方程数值解试卷 一(15分)、(1)简述用差分方法求解抛物型方程初边值问题的数值解的一般步骤.(2)写出近似一阶偏导数 n m x u |??的三种有限差分逼近及其误差阶,写出近似 n m x u |22 ??的差分逼近及其误差阶. 评分标准: (1) 7分,三个离散4分,其他步骤3分 (2) 8分,每个格式及误差2分。 二(15分)、(1)以抛物型方程的差分格式为例,解释差分格式的相容性,稳定性和收敛性概念,分析相容性,稳定性和收敛性与误差的关系,简述 Lax 等价性定理。(2) 简述差分格式稳定性分析的Fourier 级数法(或称为Neumann Von 方法,分离变量法)的一般步骤。 (1)8分,解释概念6分,等价关系2分 (2)7分,典型波2分,放大因子与条件3分,其他2分 三(20分)、对于边值问题 ?? ???=?=∈=??+???0 |) 1,0()1,0(),(,92 222G u G y x y u x u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截 断误差的阶。 (2)取3/1=h ,求边值问题的数值解(写出对应的方程组的矩阵形式并求解) (3)就取5/1=h 的情况写出对应方程组的系数矩阵(用分块矩阵表示)。 解:(1)7分,离过程与格式

第二页(共五页) 四(20分)、对于初边值问题??? ????≤≤==<<=≤<<

偏微分方程数值解课程设计

课程设计报告 课程:偏微分方程数值解学号: 姓名: 班级: 教师:

《偏微分方程数值解》 课程设计指导书 一.课程设计的目的 1.帮助掌握偏微分方程数值解相关知识。 2.理解偏微分方程数值解差分隐格式解决自由振动方程问题的方法。 3.锻炼编写程序代码的能力。 二.设计名称 差分法求自由振动问题的周期解。 三.设计要求 1.要求写出差分隐格式的理论方法。 2.要求编写matlab 程序,画出函数图形。 3.要求写出实验总结及心得体会。 四.设计题目 用差分法求自由振动问题的周期解: 2222000,,0|0,|sin (0,)(2,)t t u u x t t x u u x t u t u t π==???-=-∞<<∞>???? ??==??? =??? 要求用差分隐格式求解,其中14 θ= 。 五.设计细则 1.区域剖分: 构造上式的差分逼近,取空间步长h 和时间步长τ,用两族平行直线 ?? ?===±±=== ,2,1,0,, ,2,1,0,n n t t j jh x x n j τ 作矩形网格。 2.离散格式: 显格式: 于网点),(n j t x 用Taylor 展式,并整理方程得: ??? ?? ??--++=+-++==-+-++-121121102 10102100 )1(2)(),()()1()]()([2),(n j n j n j n j n j j j j j j j j u u r u u r u x x r x x r u x u τ?????

隐格式: 上述显格式并不是绝对稳定的差分格式,为了得到绝对稳定的差分格式,用第1-n 层、 n 层、1+n 层的中心差商的权平均去逼近xx u ,得到下列差分格式: ? ??? ?? ???+-++--++-=+-+-++==----+-++-+++-++-]22)21(2[2), ()()1()]()([2),(2111112112111112 211102 10102100h u u u h u u u h u u u a u u u x x r x x r u x u n j n j n j n j n j n j n j n j n j n j n j n j j j j j j j j θθθττ?????其中10≤≤θ是参数。当0=θ时就是显格式,而当4 1 =θ时可以证明该格式绝对稳定。 隐格式的矩阵形式是: ??? ???????? ???????????=??????????????????????????????????????????????? ?-+-+-+-+--+-+-+++122111121121 12222 222 2222221212121J J j n J n J n j n n z z z z z u u u u u r r r r r r r r r r r r θθθθ θθθθθ θ θθ 其中: 1 111111122]2()2)(21[(-----+-+-++-++--=n j n j n j n j n j n j n j n j j u u u u u u u u r z θθ 3.格式稳定性: 1)显格式: 显格式稳定的充分必要条件是:网格比1

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

偏微分方程数值解(试题)

偏微分方程数值解试题 1、考虑一维的抛物型方程: 2200, [0,], 0t T (,), (,)(,0)() x x u u x t x u x t u u x t u u x x ππνπ?==??=∈≤≤??=== (1)导出时间离散是一阶向前Euler 格式,空间离散是二阶精度的差分格式; (2)讨论(1)中导出的格式的稳定性; (3)若时间离散为二阶精度的蛙跳格式, 11 2n n n t t u u u t t +-=?-= ?? 空间离散是二阶精度的中心差分,问所导出的格式稳定吗?为什么? 2、考虑Poission 方程 2(,)1, (,)0, in AB and AD (,)0, in BC and CD u x y x y u n u x y -?=∈Ω ?=?= 其中Ω是图1中的梯形。 使用差分方法来离散该方程。由于梯形的对称性,可以考虑梯形的一半,如图2, 图2 从物理空间到计算区域的几何变换 图1 梯形

为了求解本问题,采用如下方法:将Ω的一半投影到正方形区域?Ω ,然后在?Ω上使用差分方法来离散该方程。在计算区域?Ω 上用N N ?个网格点,空间步长为1/(1)N ξη?=?=-。 (1)引入一个映射T 将原区域Ω(带有坐标,x y )变换到单位正方形?Ω(带有坐标,ξη)。 同时导出在新区域上的方程和边界条件。 (2)在变换区域,使用泰勒展开导出各导数项在区域内部和边界点上的差分格式。 3、对线性对流方程0 constant >0u u a a t x ??+=??,其一阶迎风有限体积法离散格式为 1?n j u +=?n j u a t x ?-?(?n j u 1?n j u --) (1)写出0a <时的一阶迎风有限体积法的离散格式; (2)写出a 为任意符号的常数的一阶迎风有限体积法的守恒形式。 (3)使用0 u u u t x ??+=??说明一阶迎风有限体积法不是熵保持的格式。 4、对一维Poission 方程 , (0,1) (0)(1)0 x xx u xe x u u ?-=∈? ==? 将[]01,分成(1)n +等分,写出用中心差分离散上述方程的差分格式,并问: (1)该差分格式与原微分方程相容吗?为什么? (2)该差分格式稳定吗?为什么? (3)该差分格式是否收敛到原微分方程的解?为什么? (4)取(1)6n +=,写出该差分格式的矩阵表示。 5、叙述二重网格方法的执行过程,并对一维常微分方程边值问题 2 25, (0,1) (0)(1)0 xx u x x x u u πππ?-=∈? ==?(sin(5)+9sin(15)) 给出限制算子和延拓算子矩阵(以细网格h :7n =,粗网格2h :3n =为例)。 6、对一阶波动方程 01(,0)sin(), (0,1)2(0,)(1,)u u t x u x x x u t u t π???+=???? ? =∈?? =??? (1)写出用中心差分进行空间离散,用一阶向后Euler 进行时间离散的差分格式;

偏微分方程数值解实验报告

精品文档 偏微分方程数值解 上 机 实 验 报 告 (一)实验一 一、上机题目: 用线性元求解下列边值问题的数值解:

精品文档 ′′22?? ?? ??,0

精品文档 (二)实验二 四、上机题目: 求解 Helmholtz 方程的边值问题: u k 2u 1 ,于(0,1)*(0,1) u0,于1{ x0,0y1} U{0x1, y 1} 1{ x0,0y1} U{0x1, y1} u 0,于2{0x1, y 0} U { x1,0y1} n 其中 k=1,5,10,15,20 五、实验程序:

偏微分方程数值解(试题)

1 / 7 偏微分方程数值解试题 1、考虑一维的抛物型方程: 2200, [0, ], 0t T (,), (,)(,0)() x x u u x t x u x t u u x t u u x x ππνπ?==??=∈≤≤??=== (1)导出时间离散是一阶向前Euler 格式,空间离散是二阶精度的差分格式; (2)讨论(1)中导出的格式的稳定性; (3)若时间离散为二阶精度的蛙跳格式, 11 2n n n t t u u u t t +-=?-=?? 空间离散是二阶精度的中心差分,问所导出的格式稳定吗?为什么? 2、考虑Poission 方程 2(,)1, (,)0, in AB and AD (,)0, in BC and CD u x y x y u n u x y -?=∈Ω ?=?= 其中Ω是图1中的梯形。 使用差分方法来离散该方程。由于梯形的对称性,可以考虑梯形的一半,如图2, 图2 从物理空间到计算区域的几何变换 图1 梯形

2 / 7 为了求解本问题,采用如下方法:将Ω的一半投影到正方形区域?Ω ,然后在?Ω上使用差分方法来离散该方程。在计算区域?Ω 上用N N ?个网格点,空间步长为1/(1)N ξη?=?=-。 (1)引入一个映射T 将原区域Ω(带有坐标,x y )变换到单位正方形?Ω(带有坐标,ξη)。 同时导出在新区域上的方程和边界条件。 (2)在变换区域,使用泰勒展开导出各导数项在区域内部和边界点上的差分格式。 3、对线性对流方程 0 constant >0u u a a t x ??+=??,其一阶迎风有限体积法离散格式为 1?n j u +=?n j u a t x ?-?(?n j u 1?n j u --) (1)写出0a <时的一阶迎风有限体积法的离散格式; (2)写出a 为任意符号的常数的一阶迎风有限体积法的守恒形式。 (3)使用0 u u u t x ??+=??说明一阶迎风有限体积法不是熵保持的格式。 4、对一维Poission 方程 , (0,1)(0)(1)0 x xx u xe x u u ?-=∈?==? 将[]01,分成(1)n +等分,写出用中心差分离散上述方程的差分格式,并问: (1)该差分格式与原微分方程相容吗?为什么? (2)该差分格式稳定吗?为什么? (3)该差分格式是否收敛到原微分方程的解?为什么? (4)取(1)6n +=,写出该差分格式的矩阵表示。 5、叙述二重网格方法的执行过程,并对一维常微分方程边值问题 225, (0,1)(0)(1)0 xx u x x x u u πππ?-=∈?==?(sin(5)+9sin(15)) 给出限制算子和延拓算子矩阵(以细网格h :7n =,粗网格2h :3n =为例)。 6、对一阶波动方程 1(,0)sin(), (0,1)2(0,)(1,)u u t x u x x x u t u t π???+=?????=∈??=??? (1)写出用中心差分进行空间离散,用一阶向后Euler 进行时间离散的差分格式;

偏微分方程数值解试题参考答案

偏微分方程数值解 一(10分)、设矩阵A 对称正定,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,证明下列两个问题等价:(1)求n R x ∈0使)(min )(0x J x J n R x ∈=;(2)求下列方程组的解:b Ax = 解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 因此0=λ是)(λ?的极小值点,0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的x , )(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的表示式3分, 每问3分,推理逻辑性1分 二(10分)、对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)()(),,(|{11 0==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(10 b a H v ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程数值解例题答案

二、改进的Euler 方法 梯形方法的迭代公式(1.10)比Euler 方法精度高,但其计算较复杂,在应用公式(1.10)进行计算时,每迭代一次,都要重新计算函数),(y x f 的值,且还要判断何时可以终止或转下一步计算.为了控制计算量和简化计算法,通常只迭代一次就转入下一步计算.具体地说,我们先用Euler 公式求得一个初步的近似值1+n y ,称之为预测值,然后用公式(1.10)作一次迭代得1+n y ,即将1+n y 校正一次.这样建立的预测-校正方法称为改进的Euler 方法: 预测: ),,(1n n n n y x hf y y +=+ 校正 : )].,(),([2 111+++++=n n n n n n y x f y x f h y y (1.15) 这个计算公式也可以表示为 11(,), (,), 1(). 2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+?? ?=+??? 例1 取步长0.1h =,分别用Euler 方法及改进的Euler 方法求解初值问题 d (1),01, d (0) 1. y y xy x x y ?=-+≤≤???=? 解 这个初值问题的准确解为()1(21)x y x e x =--. 根据题设知 ).1(),(xy y y x f +-= (1) Euler 方法的计算式为 )],1([1.01n n n n n y x y y y +?-=+ 由1)0(0==y y , 得 ,9.0)]101(1[1.011=?+??-=y ,8019.0)]9.01.01(9.0[1.09.02=?+??-=y 这样继续计算下去,其结果列于表9.1. (2) 改进的Euler 方法的计算式为 110.1[(1)],0.1[(1)], 1(), 2p n n n n c n p n p n p c y y y x y y y y x y y y y ++?=-?+?=-?+??? ?=+??? 由1)0(0==y y ,得

偏微分方程数值解试题参考答案

x ∈R n 2 ( Ax, x) , J ( x + x) = ? (1) = ? (0) + ( Ax, x) > J ( x ) ,因此 x 是 J ( x ) 的最小值点. (4 分) 2 二(10 分)、对于两点边值问题: ? dx dx a(u , v) = ?b ( p . + q u v)dx = ?b fvdx = f (v) , ? v ∈ H 1 (a , b ) dx dx a a 偏微分方程数值解 一(10 分)、设矩阵 A 对称正定,定义 J ( x ) = 1 ( Ax , x ) - (b , x ) ( x ∈ R n ) ,证明下 2 列两个问题等价:(1)求 x ∈ R n 使 J ( x ) = min J ( x ) ;(2)求下列方程组的解:Ax = b 解: 设 x ∈ R n 是 J ( x ) 的最小值点,对于任意的 x ∈ R n ,令 ?(λ) = J ( x + λx) = J ( x ) + λ( Ax - b , x) + λ2 (3 分) 因此 λ = 0 是 ?(λ) 的极小值点 , ? ' (0) = 0 ,即对于任意的 x ∈ R n , ( Ax - b , x) = 0 ,特 0 别取 x = Ax - b ,则有 ( Ax - b , Ax - b ) =|| Ax - b || 2 = 0 ,得到 Ax = b . (3 分) 0 0 反 之 , 若 x ∈ R n 满 足 Ax = b , 则 对 于 任 意 的 x , 1 0 0 0 评分标准: ?(λ) 的表示式 3 分, 每问 3 分,推理逻辑性 1 分 ? d du ?Lu = - ( p ) + qu = f x ∈ (a, b ) ?? u (a) = 0, u (b ) = 0 其中 p ∈ C 1 ([a , b ]), p ( x ) ≥ min p ( x ) = p x ∈[a,b ] min > 0, q ∈ C ([a , b ]), q ≥ 0, f ∈ H 0 ([a , b ]) 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的 Ritz 形式和 Galerkin 形式的变分方程。 解 : 设 H 1 = {u | u ∈ H 1 (a , b ), u (a ) = u (b ) = 0} 为求解函数空间 , 检验函数空间 . 取 v ∈ H 1 (a, b ) ,乘方程两端,积分应用分部积分得到 (3 分) du dv 即变分问题的 Galerkin 形式. (3 分)

偏微分方程数值习题解答

李微分方程数值解习题解答 1-1 如果0)0(' =?,则称0x 是)(x J 的 驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 证明:由)(λ?的定义与内积的性线性性质,得 ),()),((2 1 )()(0000x x b x x x x A x x J λλλλλ?+-++=+= ),(2 ),()(2 00x Ax x b Ax x J λλ+ -+= ),(),()(0'x Ax x b Ax λλ?+-= 必要性:由0)0(' =?,得,对于任何n R x ∈,有 0),(0=-x b Ax , 由线性代数结论知, b Ax b Ax ==-00,0 充分性: 由b Ax =0,对于任何n R x ∈, 0|),(),()0(00'=+-==λλ?x Ax x b Ax

即0x 是)(x J 的驻点. §1-2 补充: 证明)(x f 的不同的广义导数几乎处处相等. 证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的广义导数,由广义导数的定义可知,对于任意 )()(0I C x ∞∈?,有 ??-=b a b a dx x x f dx x x g )()()()(' 1?? ??-=b a b a dx x x f dx x x g )()()()('2?? 两式相减,得到 )(0)()(021I C x g g b a ∞ ∈?=-??? 由变分基本引理,21g g -几乎处处为零,即21,g g 几乎处处相等. 补充:证明),(v u a 的连续性条件(1.2.21) 证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式

偏微分方程数值解法

《偏微分方程数值解法》 课程设计 题目:六点对称差分格式解热传导方程的初边值 问题 姓名:王晓霜 学院:理学院 专业:信息与计算科学 班级:0911012 学号:091101218 指导老师:翟方曼 2012年12月14日

一、题目 用六点对称差分格式计算如下热传导方程的初边值问题 222122,01,01(,0),01 (0,),(1,),01x t t u u x t t x u x e x u t e u t e t +???=<<<≤?????=≤≤??==≤≤??? 已知其精确解为 2(,)x t u x t e += 二、理论 1.考虑的问题 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。 现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T =τ为时间步长,其中N ,M 是自然数, jh x x j ==, ()N j ,,1,0Λ=; τk y y k ==, ()M k ,,1,0Λ=

偏微分方程数值解试卷

一、(10分)简叙偏微分方程数值解研究的内容。建立一个偏微分方程数值格式,需要研究和讨论哪些问题?一个好的数值格式应该到达哪些要求? 二、(10分)简叙用差分方法求解偏微分方程数值解的方法和步骤。 三、(10分)请解释收敛性、稳定性、相容逼近性三个概念。它们之间有何区别和联系? 四.对如下两点边值问题: ?? ???==<<=+-,0)1( )0(,10 ,222u u x f u dx u d 将区间[0,1]作剖分:N N x x x x <<<<=-1100 , (1) 在上述网格剖分下建立中心差分格式; (10分) (2) 写出局部截断误差;并问当网格剖分满足什么条件 时,上述差分格式的误差阶为2; (10分) (3) 利用极值定理证明解的存在唯一性。 (10分) 四、

(1) 中心差分格式: )()()(2))()()()((2 1111u R x f x u h x u x u h x u x u h h i i i i i i i i i i i +=+---+- -+++ (2) 局部截断误差: )(3 )(2 331h O dx u d h h u R i i i i +??????--=+ 显然当剖分为等距时,误差阶为2 (3) 用极值定理证存在唯一性: 只需证明齐次(边值与右端恒零)问题只有平凡解。实际上,设i u 是齐次问题的解,则由极值定理,i u 既不能在区间内部取正的极大,也不能取负的极小,因此0=i u 。 七.已知两点边值问题:??? ??==<<=-0 )1( )0(10 ,22u u x f dx u d (A ) (1) 写出问题(A )的虚功原理(含证明); (25分) (2) 写出建立线性有限元方程组h h h b U A =的主要步骤; (10 分) (3) 对于线性有限元方程组h h h b U A =,设h A 产生扰动h A ?,h b 产

偏微分方程数值解法试题与答案

x 1 ?若步长趋于零时,差分方程的截断误差 R m 0,则差分方程的解 U i m 趋近于微分方 程的解U m ?此结论 ________ (错或对); 1 2.一 阶 Sobolev 空间 H ( ) f (x,y) f , f x , f y L ?() 关于内积(f,g )1 _____________________________________ 是Hilbert 空间; 3 ?对非线性(变系数)差分格式,常用 ____________ 系数法讨论差分格式的 ________ 稳定性; 4?写出y x 3在区间[1,2]上的两个一阶广义导数: ______________________________________ _____ ____ ______________ _ ____ ________ ; 5 ?隐式差分格式关于初值是无条件稳定的 ?此结论 ________ (错或对)。 (13分)设有椭圆型方程边值问题 0.1作正方形网格剖分 。 (1) 用五点菱形差分格式将微分方程在内点离散化; (2) 用截断误差为 O (h 2)的差分法将第三边界条件离散化; (3) 整理后的差分方程组为 U C 三.(12)给定初值问题 u x,0 x 1 取时间步长 0.1,空间步长h 0.2。试合理选用一阶偏心差分格式(最简显格式) 2 u ~2 x 2 u ~2 y 0 x 0.3 0.2 x 0.3 2y 1, — u n 2x y 0.2

并以此格式求出解函数u(x,t)在x 0.2,t 0.2处的近似值。 x

1.所选用的差分格式是: 2 .计算所求近似值: 1 a k 1 四.(12分)试讨论差分方程 u l 1 k k k 1 u | r u | 1 u | , r h a 1 h 逼近微分方程 u a u 0 t x 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点( l+1/2,k+1/2 )展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。 2 —2 ,考虑 Du Fort-Frankel 格式 X 试论证该格式是否总满足稳定性的 Von-Neumann 条件? 六. (12分)(1 )由Green 第一公式推导 Green 第二公式: (2) 对双调和方程边值问题 n 2 选择函数集合(空间)为: 推导相应的双线性泛函和线性泛函: A (u,v ) F (v ) 相应的虚功问题为: 极小位能问题为 七. ( 12分)设有常微分方程边值问题 y y f (x ) , a x b y a 1, y b 1 五.(12分) 对抛物型方程 U |k1 U |k 2 |k 1 (U |k1 U |k1) U |k 1 ) 2 (u)vdxdy G (u) u vdxdy :[v v u ]ds n f (x,y) (x,y) g 1(x , y), g 2(x, y) (x,y),

相关主题