搜档网
当前位置:搜档网 › Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO2 Solar Cells

Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO2 Solar Cells

Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO2 Solar Cells
Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO2 Solar Cells

Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO2Solar Cells Huajun Tian,Linhua Hu,Changneng Zhang,Weiqing Liu,Yang Huang,Lie Mo,Lei Guo,

Jiang Sheng,and Songyuan Dai*

Key Laboratory of No V el Thin Film Solar Cells,Institute of Plasma Physics,Chinese Academy of Sciences,

P.O.Box1126,Hefei,Anhui230031,PR China

Recei V ed:October30,2009;Re V ised Manuscript Recei V ed:December14,2009

In this paper,the photovoltaic performance and charge recombination of the dye-sensitized solar cells(DSCs)

based on nitrogen-doped TiO2electrodes were investigated in detail.A negative shift of the?atband potential

(V fb)of nitrogen-doped TiO2?lm was attributed to the formation of an O-Ti-N bond,and it was indicated

that the position of the edge of the V fb is shifted to negative,resulting in the improvement of the open circuit

voltage for DSC with nitrogen doping.The UV-vis spectrum of the nitrogen-doped?lm exhibited a visible

absorption in the wavelength range from400to500nm.The back electron transfer of the nitrogen-doped

DSC was studied by measuring the electrochemistry impedance spectra(EIS),and the EIS for DSCs showed

that the enhanced electron lifetime for nitrogen-doped TiO2solar cells could be attributed to the formation of

O-Ti-N in the TiO2electrode to retard the recombination reaction at the TiO2photoelectrode/electrolyte

interface as compared to the undoped TiO2solar cells.The photovoltaic performance of the DSC under high

temperature conditions and one soaking in sun light for more than1000h indicated that the nitrogen-doped

TiO2solar cells exhibited better stability.It indicated that the formation of O-Ti-N in the TiO2electrode

in?uences the performance of the DSC.Especially,the introduction of nitrogen into the DSC can stabilize

the DSC system due to the replacement of oxygen-de?cient titania by nitrogen-doped TiO2.

1.Introduction

Dye-sensitized solar cells(DSCs)based on nanoporous TiO2 electrodes have received much attention for the development of low-cost,high-ef?ciency solar energy conversion.1-8Under light irradiation,the sensitizers become photoexcited and rapidly inject electrons into the TiO2conduction band.The oxidized sensitizer is effectively scavenged by the redox system,which itself is regenerated at the counter electrode by passing electrons through the external load.The injected conduction-band elec-trons can recombine with oxidized dye molecules or react with redox species in electrolyte.Many methods for retarding the charge recombination of DSC have been attempted such as the use of some novel dyes,9core-shell structure,10,11and doping nonmetal to improve the performance of DSCs.12

As one crucial component in DSCs,the nanostructure TiO2 electrode has some oxygen de?ciency in the crystal structure.13-15The oxygen de?ciency could create electron-hole pairs.The oxidizing holes can react with the dye or be scavenged by iodide ions.16Those de?ciencies result in shortening the lifetime of the DSC,and doping nitrogen into the TiO2crystal structure can just perfect the oxygen de?ciency and decrease the back reaction mentioned above. Since2001,Asahi et al.reported that improved photocatalytic acting of TiO2under visible irradiation can be achieved by nitrogen doping,and much research about nitrogen doping in TiO2?lm has been investigated extensively.17-19Recently, research about nitrogen-doped TiO2electrodes,especially that reported by Ma et al.,has obtained some achievements,12 but there is no detailed study about the charge recombination of DSCs based on nitrogen-doped TiO2electrodes.

In this paper,a simple and useful technology of preparing nitrogen-doped TiO2pastes based on a modi?ed sol-gel method is introduced,and the mechanism of charge recombination of DSCs based on nitrogen-doped TiO2electrodes is discussed in detail.The photovoltaic performance and photostability of a DSC after the addition of nitrogen into the TiO2electrode is also researched.

2.Experimental Section

2.1.Synthesis of Nitrogen-Doped Nanoporous TiO2.Ni-trogen-doped TiO2material was synthesized via a modi?ed sol-gel method using urea as the nitrogen source.An appropri-ate mount of urea was dissolved in90mL of deionized water prior to hydrolysis of titanium isopropoxide(Fluka)under vigorous stirring.Titanium isopropoxide(50mL,Fluka)was added dropwise to the prepared solution containing urea.The whole procedure is slow under vigorous stirring.The formed precipitate solution was stirred vigorously for2-3h,and then stirred for8-15h at80°C to form transparent sol and heated at200°C in an autoclave for10h to obtain gelatin.The remaining procedures were the same as those described in ref20.

2.2.Fabrication of Dye-Sensitized TiO2Photoanode and DSC Assembly.Nanocrystalline TiO2?lms were fabricated by a screen-printing technique.The TiO2(nitrogen-doped and undoped TiO2)pastes were deposited on the conducting glass substrates(F-doped SnO2),followed by sintering at450°C for 30min.The thicknesses of the three different?lms were18, 17.7,and19.4μm,respectively,which was determined by a pro?lometer(XP-2,AMBIOS Technology,Inc.,USA).After being cooled to120°C,the?lms were immersed into an ethanol solution(0.5mM)of dye N719[cis-dithiocyanate-N,N′-bis-(4-carboxylate-4′-tetrabutylamonium-carboxylate-2,2′-ipyridine)ru-thenium(II)].The counter electrode was platinized by spraying

*Corresponding author.Tel:+86-551-5591377.Fax:+86-551-5591377.

E-mail:sydai@https://www.sodocs.net/doc/599027012.html,.

J.Phys.Chem.C2010,114,1627–16321627

10.1021/jp9103646 2010American Chemical Society

Published on Web01/05/2010

H 2PtCl 6solution onto transparent conductive oxide (TCO)glass and ?red in air at 410°C for 20min.The platinized counter electrode was placed directly on the top of the dyed TiO 2?lm sealed with thermal adhesive ?lms (Surlyn,Dupont).And the electrolyte was ?lled from a hole made on the counter electrode,which was later sealed by a cover glass and thermal adhesive ?lms.The electrolyte consists of anhydrous lithium iodide,iodine,3-methoxypropionitrile (MePN)purchased from Fluka,and 1,2-dimethyl-3-propylimidazolium iodide (DMPII),meth-ylbenzimidazole (MBI)obtained from Aldrich.3.Characterization

The crystallite size of nitrogen-doped TiO 2and the electrode microstructure were studied using a ?eld emission scanning electron microscope (FE-SEM,sirion200,FEI Corp).The crystallinity of the nitrogen-doped TiO 2?lm was determined using X-ray diffraction analysis (XRD,MXPAHF,Mark Corp.,Japan)measurement with Cu K R (γ)0.1541nm).The crystallite size D was calculated by the Sherrer equation.The substitution of the oxygen sites with nitrogen atoms in the titania structure was con?rmed by X-ray photoelectron spectroscopy (XPS,Thermo Electron Corp.,US).The UV -visible (UV -vis)absorption spectra were obtained from a UV -vis spectropho-tometer (TU-1901,PGeneral Instrument Inc.,China).The ?atband potential (V fb )of the nanostructure TiO 2electrode was performed by measuring absorbance at 780nm as a function of the applied potential.The optical absorption comes from intraband transitions or from free carrier absorption,and the absorbance in the experiment is proportional to the density of electrons in the conduction band.21For spectroscopic electro-chemistry measurement,a 4μm-thick TiO 2?lm formed the working electrode (2cm 2surface area)of a three-electrode photoelectrochemical cell employing a platinum wire counter

electrode and a Ag/AgCl reference electrode.Potential control was carried out on a CHI 660A potentiostat,and the applied potential was scanned at 5mV/s.A 780nm monochromatic light source was obtained from a UV -vis spectrophotometer (TU-1901,PGeneral Instrument Inc.,China).For each deter-mination of V fb ,a new working electrode and freshly prepared electrolyte solution were used.The photovoltaic performance,including short-circuit current (I sc ),open-circuit voltage (V oc ),?ll factor (FF),and energy conversion ef?ciency (η)of the DSC was measured with a Keithley model 2420digital source meter controlled by Test point software under a xenon lamp (100mW/cm 2;uniform illumination is less than 3%in an active area of 30cm ×30cm,Changchun Institute of Optics Fine Mechanic and Physics,Chinese Academy of Sciences)and calibrated with a standard crystalline silicon solar cell (the 18th Research Institute of Electronics Industry Ministry,China).Linear sweep voltammeter (LSV)curves of the DSCs were performed to obtain the dark current with an electrochemical workstation (CHI660A,CH Instruments,Inc.,USA).Impedance measure-ments were carried out with an IM6ex electrochemical worksta-tion (Zahner-Elektrick,Germany)in the frequency range of 20mHz to 1000kHz at room temperature.The working electrode was a dyed TiO 2electrode of DSC,and the auxiliary electrode,and the reference electrode was a platinized counter electrode of DSC.The amplitude of the alternative signal was 5mV.4.Results and Discussion

Nitrogen-doped TiO 2materials prepared by modi?ed sol -gel method using urea as the nitrogen carrier display a pale yellow color and are characterized by various spectroscopic features.The FE-SEM micrographs of the TiO 2electrodes with the corresponding undoped and nitrogen-doped material are shown in Figure 1a,b,respectively.Highly porous nanostructure

could

Figure 1.FE-SEM micrographs of the undoped and nitrogen-doped titania ?lms:(a,c)undoped titania ?lm;(b,d)nitrogen-doped titania ?lm.

1628J.Phys.Chem.C,Vol.114,No.3,2010Tian et al.

be observed for both the thin?lms from the FE-SEM micro-graphs.In Figure1b,d,the average particle size of a nitrogen-doped TiO2nanoparticle is about25nm.The micrographs of the nitrogen-doped TiO2nanoparticles using urea as the nitrogen source and the undoped TiO2nanoparticles indicated that the addition of the urea prior to hydrolysis of titanium isopropoxide has no obvious in?uence on the titania crystallite size compared to the undoped titania.

The XRD spectrum of the nitrogen-doped titania powder is shown in Figure2,which shows that the crystal phases of the nitrogen-doped titania and undoped titania powder were anatase. Additionally,their average crystallite sizes calculated from the broadening of the(101)XRD peak of the anatase phase were 19.1and17.6nm,respectively.From the XRD data,it can be seen that there is a little shift in the(101)peak positions for nitrogen-doped TiO2,as reported in Jagadale’s work on N-doped TiO2by the sol-gel method.22

In particular,the substitution of oxygen sites with nitrogen atoms in the titania structure was con?rmed by XPS.The binding energy peak of N1s for the nitrogen-doped TiO2in Figure3shows that two XPS peaks at about399.6and401.7 eV were observed.These lie in the range(396-404eV) observed by other authors,23-27and are typical of nitrogen-doped titanium dioxide.In most cases,a peak at396eV was detected and attributed to binding energy in Ti-N.28However,in some recent papers,the feature of396eV was completely absent,and peaks at higher binding energies(396-404eV)were observed.23-27Burda et al.indicated that,when nitrogen is substituted for the oxygen in the initial O-Ti-O structure,the electron density around N is reduced,and the N1s binding energy in an O-Ti-N is higher than that in an N-Ti-N environment.26Therefore,the peak at399eV indicated that the nitrogen-doped titania probably has an O-Ti-N structure.22,26 Di Valentin et al.indicated that preparation methods and conditions largely affected nitrogen XPS spectral features.29In the case of the sample described here and prepared via sol-gel, peaks at396eV were never observed.In summary,the signals at399.6and401.7eV observed should be attributed to the O-Ti-N structure and the molecular adsorbed nitrogen species, respectively.

The observed XPS peak for the Ti2p in Figure4a showed signi?cant change upon nitrogen https://www.sodocs.net/doc/599027012.html,pared with the binding energy of undoped TiO2(458.8eV for Ti2p),the binding energy of Ti2p(458.4eV)decreases after nitrogen doping.This suggested that the nitrogen incorporates into the TiO2lattice and substitutes for oxygen.26The O1s XPS spectra in Figure4b also showed signi?cant changes upon nitrogen incorporation.O1s peak at530.1comes from Ti-O-Ti linkages in TiO2,and the undoped sample shows an O1s peak at530.1 eV,versus a shift to529.6eV,which is observed for nitrogen-doped samples.

The UV-vis absorption spectra of undoped TiO2and N-doped TiO2?lms are shown in https://www.sodocs.net/doc/599027012.html,pared with the spectra of undoped TiO2?lm,N-doped TiO2?lm presents a signi?cant absorption in the visible region between400and500 nm,which is the typical absorption feature of N-doped TiO2. In addition,the V fb of TiO2electrodes were studied in this work. It is considered that the presence of O-Ti-N structure in TiO2 could in?uence the performance of the TiO2photoelectrode,and then in?uence the photovoltaic performance of DSC.The V fb of a TiO2electrode can be determined by the absorption spectroscopic method used by Redmond.21The potential was scanned at5mV/s.V fb is considered as the potential from which the two traces begin to depart from each other.Figure6

shows Figure4.Ti2p(a)and O1s(b)XPS spectrum of nitrogen-doped and undoped titania

powder.

Figure2.XRD for nitrogen-doped and undoped titania

powder.

Figure3.N1s XPS spectrum of nitrogen-doped titania

powder.

Figure 5.UV-visible absorption spectra of nitrogen-doped and

undoped titania?lms.

Charge Recombination in Nitrogen-Doped TiO2DSCs J.Phys.Chem.C,Vol.114,No.3,20101629

that V fb shifts to the negative by 0.06and 0.1eV compared with that in the absence of nitrogen TiO 2electrode.

Figure 7shows the current -voltage curves of the DSC based on the nitrogen-doped and undoped TiO 2photoelectrodes.The performance properties of DSCs are summarized in Table 1.In Table 1,it is apparent that V oc and FF shift to the higher values with the concentration of urea increasing.The maximal V oc is found to be 752mV,increasing by 3.8%compared with the minimum V oc of 724mV.Furthermore,the FF increased by 5.2%relative to that of the undoped one.While the J sc and ηdecrease with the increasing quantity of nitrogen source,the V oc increases in the presence of nitrogen compared with that in the absence of nitrogen,which may be explained by the V fb of the TiO 2photoelectrode (Figure 6).Under Fermi level pinning,these two parameters are linked by eq 1.30

where V red is the standard reduction potential of a redox couple,assuming that V red does not vary with the addition of nitrogen.It is expected that V oc should change with V fb ,but the data in Figure 6indicated that V fb shifts to the negative direction appreciably.So the increase of V oc of DSC should be attributed mostly to the addition of the nitrogen into the TiO 2,retarding the dark current shown in Figure 8or to the decrease of the charge recombination.In addition,the addition of the nitrogen into the TiO 2increases the V fb ,and reduces the difference between the higher quasi-Fermi level and the lowest unoccupied molecular orbital (LUMO)of N719dye,which results in the

weakening of the driving force for the photoelectron injecting from the dye excited state into the conduction band of TiO 2,and the increase of the titania crystallite size also in?uences the dye N719absorption of TiO 2?lm.This could explain why the short-circuit photocurrent density J sc decreases appreciably.It is well-known that charge recombination is still one of the most limiting factors for DSC performance.The addition of nitrogen into the titania can suppress the production of dark current.The results are shown in Figure 8.It is known that when a negative potential is applied between the photoanode and counter electrode,the electrons transfer under the electric ?eld force and also are trapped by different recombination pathways.By comparison of doped DSCs and bare DSCs,it illustrates that nitrogen-doped DSCs exhibit smaller dark current,which indicates that nitrogen doping could successfully retard the charge recombination at the TiO 2/dye/electrolyte interface.Thus,the nitrogen-doped titania-introduced formation of O -Ti -N structure can suppress the reduction of I 3-on the TiO 2electrode.In addition,the resistance to the back electron transfer was characterized by measuring the impedance spectra (Figure 9).The equivalent circuit model of DSC is shown as in Figure 10.If the back electron transfer is suppressed,V oc and FF can be improved.In Figure 9,three arcs are distinguished in

the

Figure 6.Absorbance measured at 780nm as a function of applied potential for a nanostructured undoped and nitrogen-doped TiO 2elec-

trode.

Figure 7.Current -voltage curves of DSCs based on nitrogen-doped and undoped TiO 2electrodes.

TABLE 1:Performance Characteristics of DSCs Based on Nitrogen-Doped and Undoped Titania Electrodes

DSC

V oc (mV)J sc (mA/cm 2)FF (%)η(%)undoped

72412.061.5 5.34nitrogen-doped (TiO2:Urea )1:0.5)74511.062.3 5.10nitrogen-doped (TiO2:Urea )1:1)

752

10.1

64.7

4.90

V oc )|V fb -V red |

(1)

Figure 8.LSV curves of nitrogen-doped DSCs and bare DSCs in the

dark.

Figure 9.Nyquist plots and Bode plots for DSC based on undoped and nitrogen-doped TiO 2photoanodes,measured at a forward bias of -0.71V in the dark.The lines show the ?tted results in Nyquist plots.

1630J.Phys.Chem.C,Vol.114,No.3,2010Tian et al.

frequency regime of 103-105(ω1/ω2),1-103(ω3)and 0.1-1Hz (ω4),from left to right.These arcs are assigned to resistances at the conducting layer/TiO 2(ω1),Pt/electrolyte (ω2),and TiO 2/dye/electrolyte (ω3)interface and diffusion of the I 3s /I s redox electrolyte (ω4).31

In Figure 9,it is noted that the doping of nitrogen into the TiO 2increased the impedance component corresponding to ω3.The increase in the resistance at the TiO 2/dye/electrolyte interface is as much as 10%,while the change in other impedance components was negligible.The increase in the resistance of ω3indicated that the addition of nitrogen increases the surface resistance of TiO 2photoelctrodes and suppresses the back transfer of photogenerated electrons from nitrogen-doped TiO 2nanoparticles to the electrolyte at TiO 2/dye/electrolyte (ω3)interface.

In the Bode plots,it can be seen that the addition of nitrogen into the TiO 2shifts the midfrequency peak to lower frequencies,increasing at the same time its amplitude,as seen in Figure 9.The result of the midfrequency peak shifts to lower frequencies,corresponding to an increase of the electron lifetime calculated from the 32.7to 44.5ms.It con?rms that the nitrogen doping into the TiO 2photoanode can improve the performance of DSC.The effect of Xe-light and high-temperature (70°C)aging on the performance of nitrogen-doped and undoped TiO 2photoanode DSCs is shown in Figure 11.However,high temperature in?uences device performance.The FF of the N-doped DSC could nearly keep its initial value,and the V oc also could retain nearly 90%.Compared with the undoped DSC,

the J sc of the nitrogen-doped DSC can remain nearly unchanged.It is well-known that the oxidizing holes created by oxygen de?ciency,which exists in pure TiO 2,can react with the dye,and the doping nitrogen could replace the oxygen de?ciency.12So the excellent performance J sc of DSC could be explained by the fact that the doping nitrogen in the TiO 2photoanode could retard the dye degradation,attributing to the formation of O -Ti -N in TiO 2.Additionally,the ηof the nitrogen-doped DSC remained at nearly 80%compared with the 72%of the undoped DSC under high temperature (70°C)conditions after over 1000h.It can be seen that the formation of O -Ti -N in the TiO 2electrode in?uences the performance of the DSC.Especially,the introduction of nitrogen into the DSC can stabilize the DSC system as a result of the replacement of oxygen-de?cient titania by nitrogen-doped titania.Research on the improved ef?ciency of nitrogen-doped DSCs is in progress.5.Conclusions

In this paper,the charge recombination in dye-sensitized TiO 2solar cells based on nitrogen-doped TiO 2photoanodes was investigated.Nitrogen-doped TiO 2thin ?lms were prepared with a modi?ed sol -gel process in order to develop a simple and novel method for preparing a nitrogen-doped TiO 2photoanode of DSC.The TiO 2photoanode with nitrogen doping could successfully retard the charge recombination,and the introduc-tion of nitrogen replaced the oxygen de?ciency in the titania crystal lattice.The enhanced electron lifetime for doped TiO 2solar cells could be attributed to the formation of O -Ti -N in the TiO 2electrode to retard the recombination reaction at the TiO 2photoelectrode/electrolyte interface,as compared to the undoped TiO 2solar cells.Additionally,the V fb of TiO 2is also affected slightly by the presence of the doping nitrogen.As a result,the position of the edge of the V fb is shifted to the negative direction as the content of urea addition increases.During the stability test under one sun light soaking and a high temperature condition (70°C)for more than 1000h,the DSC based on the nitrogen-doped TiO 2photoanode is more stable.Other methods of preparing a nitrogen-doped TiO 2photoanode of DSC are still being researched.

Acknowledgment.This work was ?nancially supported by the National Basic Research Program of China under Grant No.2006CB202600,the National High Technology Research and Development Program of China under Grant No.2009AA050603,and Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering under Grant No.KGCX2-YW-326.References and Notes

(1)Regan,B.O.;Gratzel,M.Nature 1991,353,737–740.

(2)Knodler,R.;Sopka,J.;Harbach,F.;Grunling,H.W.Sol.Energy Mater.Sol.Cells 1993,30,277–281.

(3)Hagfeldt, A.;Didriksson, B.;Palmqvist,T.;Lindstxom,H.;Sodergren,S.;Tensmo,H.R.;Lindquist,S.Sol.Energy Mater.Sol.Cells 1994,31,481–488.

(4)Smestad,G.;Bignozzi,C.;Argazzi,R.Sol.Energy Mater.Sol.Cells 1994,32,259–272.

(5)Smestad,G.Sol.Energy Mater.Sol.Cells 1994,32,273–288.(6)Kay,A.;Gratzel,M.Sol.Energy Mater.Sol.Cells 1996,44,99–117.

(7)Pettersson,H.;Gruszecki,T.Sol.Energy Mater.Sol.Cells 2001,70,203–212.

(8)Dai,S.Y.;Wang,K.J.;Weng,J;Sui,Y.F.;Huang,Y.;Xiao,S.F.;Chen,S.H.;Hu,L.H.;Kong,F.T.;Pan,X.;Shi,C.W.;Guo,L.Sol.Energy Mater.Sol.Cells 2005,85,447–455.

(9)Karthikeyan,C.S.;Katja,P.;Wietasch,H.;Thelakkat,M.Sol.Energy Mater.Sol.Cells 2007,91,432–439.

(10)Zaban,A.;Chen,S.G.;Chappel,S.;Gregg,https://www.sodocs.net/doc/599027012.html,mun.2000,

2231–2232.

Figure 10.Equivalent circuits of DSC.Bottom line shows the interpretation of the electrical elements of the equivalent circuit.(A)Electron transfer at the FTO/TiO 2interface;(B)electron transport and back reaction at the mesoscopic TiO 2/dye/electrolyte interface;(C)diffusion of I 3-in the electrolyte;(D)charge transfer at electrolyte/Pt-FTO

interface.

Figure 11.Photovoltaic parameters (normalized values)evolution with aging time for DSCs based on nitrogen-doped and undoped TiO 2photoanodes under one sun light soaking.

Charge Recombination in Nitrogen-Doped TiO 2DSCs J.Phys.Chem.C,Vol.114,No.3,20101631

(11)Chappel,S.;Chen,S.G.;Zaban,https://www.sodocs.net/doc/599027012.html,ngmuir.2002,18,3336–3342.

(12)Ma,T.;Akiyama,M.;Abe,E.;Imai,I.Nano Lett.2005,5,2543–2547.

(13)Inakamura,I.;Negishi,N.;Kutsuna,S;Ihara,T.;Sugihara,S.; Takeuchi,K.J.Mol.Catal.A:Chem.2000,161,205–212.

(14)Ihara,T.;Miyoshi,M.;Iriyama,Y.;Matsumoto,O;Sugihara,S. Appl.Catal.,B:En V iron.2003,42,403–409.

(15)Irie,H.;Watanabe,Y.;Hashimoto,K.J.Phys.Chem.B2003,107, 5483–5486.

(16)Mrowetz,M.;Balcerski,W.;Colussi,A.J.;Hoffmann,M.R.J. Phys.Chem.B2004,108,17269–17273.

(17)Asahi,R.;Morkawa,T.;Ohwaki,T.;Aoki,K.;Taga,Y.Science 2001,293,269–271.

(18)Lindgren,T.;Mwabora,J.M.;Avendano Soto,E.D.;Jonsson,J.; Hoel,A.;Granqvist,C.-G.;Lindquist,S.-E.J.Phys.Chem.B2003,107, 5709–5716.

(19)Sakthivel,S.;Kisch,H.ChemPhysChem2003,4,487–490.

(20)Hu,L.H.;Dai,S.Y.;Wang,K.J.Acta Phys.Sin.2003,52,2135–2139(in Chinese).

(21)Redmond,G.;Fitzmaurice,D.J.Phys.Chem.1993,97,1426–1430.

(22)Jagadale,T.C.;Takale,S.P.;Sonawane,R.S.;Joshi,H.M.;Patil, S.I.;Kale,B.B.;Ogale,S.B.J.Phys.Chem.C2008,112,14595–14602.

(23)Sakthivel,S.;Janczarek,M.;Kisch,H.J.Phys.Chem.B2004, 108,19384–19387.

(24)Diwald,O.;Thompshon,T.L.;Zubkov,T.;Goralski,E.G.;Walck, S.D.;Yates,J.T.,Jr.J.Phys.Chem.B2004,108,6004–6008.

(25)Gole,J.L.;Stout,J.D.;Burda,C.;Lou,Y.B.;Chen,X.B.J. Phys.Chem.B2004,108,1230–1240.

(26)Chen,X.B.;Burda,C.J.Phys.Chem.B2004,108,15446–15449.

(27)Nakamura,R.;Tanaka,T.;Nakato,Y.J.Phys.Chem.B2004,108, 10617–10620.

(28)Saha,N.C.;Tompkins,H.G.J.Appl.Phys.1992,72,3072–3079.

(29)Di Valentin,C.;Pacchioni,G.;Selloni,A.;Livraghi,S.;Giamello,

E.J.Phys.Chem.B2005,109,11414–11419.

(30)Kang,T.S.;Chun,K.H.;Hong,J.S.;Moon,S.H.;Kim,K J. Electrochem.Soc.2000,147,3049–3053.

(31)Hoshikawa,T.;Yamad,M.;Kikuchi,R.;Eguchi,K J.Electrochem. Soc.2005,152,E68-E73.

JP9103646

1632J.Phys.Chem.C,Vol.114,No.3,2010Tian et al.

简单的四则运算计算器程序

简单的四则运算计算器程序

注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

附件:程序源代码 // sizheyunsuan.cpp : Defines the entry point for the console application. #include #include const int MAX=100; class Operand{ private: double operS; public: Operand(){} Operand(double opers){ operS=opers; } void set(double opers){ operS=opers; } double get() { return operS;} }; class Operator{ private: char operF; int priority; public: Operator(){} Operator(char operf) { operF=operf; switch(operf) { case'(':priority=-1;break; case'+':priority=0;break; case'-':priority=0;break; case'*':priority=1;break; case'/':priority=1;break; case')':priority=2;break; } } void set(char operf){ operF=operf; } char get(){ return operF;} int getpriority(){ return priority; } };

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

计算器使用说明书

计算器使用说明书目录 取下和装上计算器保护壳 (1) 安全注意事项 (2) 使用注意事项 (3) 双行显示屏 (7) 使用前的准备 (7) k模式 (7) k输入限度 (8) k输入时的错误订正 (9) k重现功能 (9) k错误指示器 (9) k多语句 (10) k指数显示格式 (10) k小数点及分隔符 (11) k计算器的初始化 (11) 基本计算 (12) k算术运算 (12) k分数计算 (12) k百分比计算 (14) k度分秒计算 (15) kMODEIX, SCI, RND (15) 记忆器计算 (16) k答案记忆器 (16) k连续计算 (17) k独立记忆器 (17) k变量 (18) 科学函数计算 (18) k三角函数/反三角函数 (18) Ch。6 k双曲线函数/反双曲线函数 (19) k常用及自然对数/反对数 (19) k平方根﹑立方根﹑根﹑平方﹑立方﹑倒数﹑阶乘﹑ 随机数﹑圆周率(π)及排列/组合 (20) k角度单位转换 (21) k坐标变换(Pol(x, y)﹐Rec(r, θ)) (21) k工程符号计算 (22) 方程式计算 (22) k二次及三次方程式 (22) k联立方程式 (25) 统计计算 (27)

标准偏差 (27) 回归计算 (29) 技术数据 (33) k当遇到问题时 (33) k错误讯息 (33) k运算的顺序 (35) k堆栈 (36) k输入范围 (37) 电源(仅限MODEx。95MS) (39) 规格(仅限MODEx。95MS) (40) 取下和装上计算器保护壳 ?在开始之前 (1) 如图所示握住保护壳并将机体从保护壳抽出。 ?结束后 (2) 如图所示握住保护壳并将机体从保护壳抽出。 ?机体上键盘的一端必须先推入保护壳。切勿将显示屏的一端先推入保护壳。 使用注意事项 ?在首次使用本计算器前务请按5 键。 ?即使操作正常﹐MODEx。115MS/MODEx。570MS/MODEx。991MS 型计算器也必须至少每3 年更换一次电池。而MODEx。95MS/MODEx。100MS型计算器则须每2 年更换一次电池。电量耗尽的电池会泄漏液体﹐使计算器造成损坏及出现故障。因此切勿将电量耗尽的电池留放在计算器内。 ?本机所附带的电池在出厂后的搬运﹑保管过程中会有轻微的电源消耗。因此﹐其寿命可能会比正常的电池寿命要短。 ?如果电池的电力过低﹐记忆器的内容将会发生错误或完全消失。因此﹐对于所有重要的数据﹐请务必另作记录。 ?避免在温度极端的环境中使用及保管计算器。低温会使显示画面的反应变得缓慢迟钝或完全无法显示﹐同时亦会缩短电池的使用寿命。此外﹐应避免让计算器受到太阳的直接照射﹐亦不要将其放置在诸如窗边﹐取暖器的附近等任何会产生高温的地方。高温会使本机机壳褪色或变形及会损坏内部电路。 ?避免在湿度高及多灰尘的地方使用及存放本机。注意切勿将计算器放置在容易触水受潮的地方或高湿度及多灰尘的环境中。因如此会损坏本机的内部电路。 双行显示屏

Java带计算过程的计算器课程设计报告

保存计算过程的计算器 Java程序设计课程设计报告保存计算过程的计算器 目录 1 概述.............................................. 错误!未定义书签。 1.1 课程设计目的............................... 错误!未定义书签。 1.2 课程设计内容............................... 错误!未定义书签。 2 系统需求分析.......................................... 错误!未定义书签。 2.1 系统目标................................... 错误!未定义书签。 2.2 主体功能................................... 错误!未定义书签。 2.3 开发环境................................... 错误!未定义书签。 3 系统概要设计.......................................... 错误!未定义书签。 3.1 系统的功能模块划分......................... 错误!未定义书签。 3.2 系统流程图................................. 错误!未定义书签。4系统详细设计........................................... 错误!未定义书签。 5 测试.................................................. 错误!未定义书签。 5.1 测试方案................................... 错误!未定义书签。 5.2 测试结果................................... 错误!未定义书签。 6 小结.................................................. 错误!未定义书签。参考文献................................................ 错误!未定义书签。附录................................................ 错误!未定义书签。 附录1 源程序清单...................................... 错误!未定义书签。

vmware部署实施手册

vmware部署实施手册 目录............................................................................................................................................. ESXI 1.ESXi 4 安装............................................................................................................................. . 系统安装以及设置.............................................................................................................. 2.vShpere Client安装................................................................................................................ . vSphere Client 安装........................................................................................................ .虚拟机管理............................................................................................................................ 3.平台管理 . 平台查看以及功能..................................................................................................................................... . 新建虚拟机.编辑虚拟机设置..................................................................................................................... . VMware Tool 安装...................................................................................................................................... . 虚拟机克隆................................................................................................................................................. .虚拟机模板制作......................................................................................................................................... . 从虚拟机模板部署新的虚拟机................................................................................................................. . 虚拟机迁移................................................................................................................................................. 域控 装条件 在运行中输入“Dcpromo”进行安装 用户帐号的添加和管理 文件重定向策略 NAS存储 登录NAS系统 网络设置 安全 服务 共享 备份 现况 ESXI安装 4 安装 通过 DVD 引导文本安装模式简介 . 系统安装以及设置 接下来将ESXi 安装光盘放在光驱并开启服务器。服务器从光盘启动后将出现如下 界面,选择下图中的“ESXi Installer”进入安装过程。

实用计算器程序

目录 1.基本功能描述 (1) 2.设计思路 (1) 3.软件设计 (10) 3.1设计步骤 (10) 3.2界面设计 (10) 3.3关键功能实现 (12) 4.结论与心得 (14) 5.思考题 (15) 6.附录 (17) 6.1调试报告 (17) 6.2测试结果 (18) 6.3关键代码 (21)

实用计算器程序 1.基本功能描述 (1)可以计算基本的运算:加法、减法、乘法、除法。 (2)可以进行任意加减乘除混合运算。 (3)可以进行带任意括号的任意混合运算。 (4)可以进行单目科学运算:1/x、+/-、sqrt、x^2、e^2等。 (5)可以对显示进行退格或清除操作。 (6)可以对计算结果自动进行存储,并在用户需要的时候查看,并且可在其基础上进行再运算操作。 (7)界面为科学型和普通型,可在两界面间通过按钮转换。 2.设计思路 计算器属于桌面小程序,适合使用基于对话框的MFC应用程序设计实现。首先要思考的问题是:我的程序需要实现什么样的功能?需要哪些控件?需要哪些变量?需要哪些响应? 我们知道基于对话框的MFC应用程序的执行过程是:初始化、显示对话框,然后就开始跑消息循环列表,当我们在消息循环列表中获取到一个消息后,由相应的消息响应函数执行相应的操作。根据这个流程我们制定出计算器程序的程序框架主流程图,如下页图1所示。 根据程序主流程图可以看出,我们需要一些能响应用户操作的响应函数来实现我们的计算器相应按键的功能。

图1 程序主流程图 说明:所以流程图由深圳市亿图软件有限公司的流程图绘制软件(试用版)绘制,转 存PDF后导出为图片加入到word中的,所以可能会打印效果不好,但确实为本人绘制。

vmware vsphere 6.7虚拟化配置手册

Vmware虚拟化完整配置VSPHERE 6.7虚拟化搭建及配置 kenny

目录 一、安装环境介绍 (3) 二、安装与配置vmware vsphere 6.7 (4) 1、安装vsphere 6.7 (4) 2、配置密码 (4) 3、配置DNS、主机名和IP地址 (5) 三、配置Starwind V8 (7) 四、安装vcenter server 6.7 (10) 1、安装vcenter server(自带嵌入式数据库) (10) 2、配置外部数据库SQL SERVER 2008 (15) 3、使用外部数据库安装Vcenter server (19) 五、创建数据中心和群集HA (24) 1、新建数据中心 (24) 2、创建群集HA (24) 六、添加ESXI主机和配置存储、网络 (26) 1、添加ESXI主机到群集中 (26) 2、配置存储 (28) 3、添加网络 (30) 七、创建虚拟机 (32) 1、上传镜像至共享存储 (32) 2、新建虚拟机 (33) 3、将虚拟机克隆为模板 (37) 4、通过模板部署新虚拟机 (39) 八、物理机迁移至ESXI(P2V) (44) 1、迁移windows物理机 (44) 2、迁移Linux物理机 (49) 九、vmotion迁移测试 (51) 十、HA高可用测试 (53) 十一、VMware vSphere FT双机热备 (54) 十二、vSphere Data Protection配置部署 (57)

1、部署VDP模板 (57) 2、配置VDP (62) 3、创建备份作业 (68) 十三、附录 (72)

vmwarevsphere6.7虚拟化配置手册

Vmware 虚拟化完整配置VSPHERE 6.7虚拟化搭建及配置 kenny

目录 一、安装环境介绍 (3) 二、安装与配置vmware vsphere 6.7 (4) 1、安装 vsphere 6.7 (4) 2、配置密码 (4) 3、配置 DNS、主机名和 IP 地址 (5) 三、配置 Starwind V8 (6) 四、安装 vcenter server 6.7 (9) 1、安装 vcenter server( 自带嵌入式数据库) (9) 2、配置外部数据库SQL SERVER 2008 (14) 3、使用外部数据库安装Vcenter server (17) 五、创建数据中心和群集HA (21) 1、新建数据中心 (21) 2、创建群集 HA (21) 六、添加 ESXI主机和配置存储、网络 (23) 1、添加 ESXI主机到群集中 (23) 2、配置存储 (24) 3、添加网络 (26) 七、创建虚拟机 (28) 1、上传镜像至共享存储 (28) 2、新建虚拟机 (29) 3、将虚拟机克隆为模板 (33) 4、通过模板部署新虚拟机 (35) 八、物理机迁移至ESXI( P2V) (40) 1、迁移 windows 物理机 (40) 2、迁移 Linux 物理机 (45) 九、 vmotion 迁移测试 (47) 十、 HA 高可用测试 (49) 十一、 VMware vSphere FT 双机热备 (50) 十二、 vSphere Data Protection 配置部署 (52) 1、部署 VDP模板 (52)

2、配置 VDP (57) 3、创建备份作业 (63) 十三、附录 (68)

第二章 一元函数微分学

第二章 一元函数微分学 §2.1 导数与微分 (甲)内容要点 一、导数与微分概念 1、导数的定义 设函数)(x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量)()(00x f x x f y -?+=?。如果极限 x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000 存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0 x x y =' , x x dx dy =, )(x x dx x df =等,并称函数)(x f y =在点0x 处可导。如果上面的极限不存在,则 称函数)(x f y =在点0x 处不可导。 导数定义的另一等价形式,令x x x ?+=0,0x x x -=?,则 000 ()() ()lim x x f x f x f x x x →-'=- 我们也引进单侧导数概念。 右导数:0 000000()()()() ()lim lim x x x f x f x f x x f x f x x x x + ++→?→-+?-'==-? 左导数:0 000000()()()()()lim lim x x x f x f x f x x f x f x x x x - --→?→-+?-'==-? 则有 )(x f 在点0x 处可导)(x f ?在点0x 处左、右导数皆存在且相等。 2.导数的几何意义与物理意义 如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。 切线方程:000()()()y f x f x x x '-=-

vmwarevsphere日常操作手册

虚拟化操作手册2018年1月23日

目录 一、vsphere虚拟化管理 (3) 1) 虚拟化组成及介绍 (3) 2) ESXi (3) 3) 登录vcenter (8) 4) 新建虚拟机 (9) 5) 虚拟机的开启、安装操作系统和关闭 (22) 6) 安装VMTOOLS (26) 7) 更改虚拟机CPU和内存配置 (27) 8) 增加虚拟机硬盘 (31) 9) 虚拟机增加网卡 (37) 10) 新建portgroup (41) 11) 虚拟机在ESXI主机间迁移 (44) 12) 虚拟机在存储LUN间迁移 (47) 13) 克隆虚拟机 (49) 14) 倒换成模板 (52) 15) 模板倒换成虚拟机 (55) 16) 删除虚拟机 (58) 17) 对ESXi的物理主机关机维护操作 (59) 三、P2V转换 (61) 1) 安装Converter Server (61) 2) 登录Converter Server client (63) 3) Linux P2V (63) 4) Windows P2V (69)

一、vsphere虚拟化管理 1)虚拟化组成及介绍 Vsphere 包括vcenter和ESXI主机组成. 虚拟机运行在ESXI主机上。 ESXI系统安装在物理服务器上。 Venter是虚拟化的管理平台,它安装在一台虚拟机上。 2)ESXi 连接服务器,或者从HP服务器的iLo管理界面中,登录ESXi界面。 如果不是hp服务器可以用管理界面进行管理。或者直接到机房的物理服务器前进行如下操作

按F2,登录。

常用的操作就两块,网络和troubleshooting。 其中troubleshooting中的restart management agents选项,用在vcenter无法管理ESXi主机时。

JAVA保存计算过程的计算器课程设计报告

JAVA保存计算过程的计算器课程设计 报告 1 2020年4月19日

保存计算过程的java计算器 目录 1 概述................................................................................. 错误!未定义书签。 1.1 课程设计目的 ............................................... 错误!未定义书签。 1.2 课程设计内容 ............................................... 错误!未定义书签。 2 系统需求分析 .................................................................... 错误!未定义书签。 2.1 系统目标 ....................................................... 错误!未定义书签。 2.2 主体功能 ....................................................... 错误!未定义书签。 2.3 开发环境 ....................................................... 错误!未定义书签。 3 系统概要设计 .................................................................... 错误!未定义书签。 3.1 系统的功能模块划分.................................... 错误!未定义书签。 3.2 系统流程图 ................................................... 错误!未定义书签。4系统详细设计 .................................................................... 错误!未定义书签。 5 测试 .................................................................................... 错误!未定义书签。 5.1 测试方案 ....................................................... 错误!未定义书签。 5.2 测试结果 ....................................................... 错误!未定义书签。 6 小结 .................................................................................... 错误!未定义书签。参考文献 ............................................................................... 错误!未定义书签。附录.................................................................................... 错误!未定义书签。

vmware vsphere 6.7虚拟化完整祥细配置手册

Vmware服务器虚拟化完整配置 VSPHERE 6.7虚拟化搭建及配置 Simon

目录 一、安装环境介绍 (3) 二、安装与配置vmware vsphere 6.7 (4) 1、安装vsphere 6.7 (4) 2、配置密码 (4) 3、配置DNS、主机名和IP地址 (5) 三、配置Starwind V8虚拟存储 (6) 四、使用windows 2012R2创建ISCSI存储 (9) 1、添加角色和功能 (9) 2、配置ISCSI链接 (10) 五、安装vcenter server 6.7 for windows (17) 1、安装vcenter server(自带嵌入式数据库) (17) 2、配置外部数据库SQL SERVER 2008 (22) 3、使用外部数据库安装Vcenter server (25) 六、安装Vcenter Server 6.7 for linux (29) 1、安装Linux版本的Vcenter (29) 七、创建数据中心和群集HA (42) 1、新建数据中心 (42) 2、创建群集HA (42) 八、添加ESXI主机和配置存储、网络 (44) 1、添加ESXI主机到群集中 (44) 2、配置存储 (45) 3、添加网络 (47) 九、创建虚拟机 (49) 1、上传镜像至共享存储 (49) 2、新建虚拟机 (49) 3、将虚拟机克隆为模板 (53) 4、通过模板部署新虚拟机 (55) 十、物理机迁移至ESXI(P2V) (60) 1、迁移windows物理机 (60) 2、迁移Linux物理机 (65)

3、使用Acronis BR迁移linux物理机 (66) 十一、vmotion迁移测试 (81) 十二、HA高可用测试 (83) 十三、VMware vSphere FT双机热备 (84) 十四、vSphere Data Protection配置部署 (86) 1、部署VDP模板 (86) 2、配置VDP (90) 3、创建备份作业 (96) 十五、部署vRealize Operations Manager (101) 1、部署ova模版 (101) 2、配置vRealize Operations Manager (104) 十六、部署VMware-vRealize-Log-Insight (110) 1、部署OVF模版 (110) 十七、附录 (117)

VMware虚拟化配置手册

VMware虚拟化配置手册 1.服务器安装 硬件要求 确保主机符合 ESXi 6.0 支持的最低硬件配置。 必须具有以下硬件和系统资源,才能安装和使用 ESXi 6.0: ESXi 6.0 将仅在安装有 64 位 x86 CPU 的服务器上安装和运行。 ESXi 6.0 要求主机至少具有两个内核。 ESXi 6.0 仅支持 LAHF 和 SAHF CPU 指令。 已知的 64 位处理器: 所有 AMD Opteron 处理器 所有 Intel Xeon 3000/3200、3100/3300、5100/5300、5200/5400、5500/5600、7100/7300、7200/7400 和 7500 处理器 至少 2 GB 的内存。 一个或多个千兆或 10GB 以太网控制器。 一个或多个以下控制器的任意组合: 基本 SCSI 控制器。Adaptec Ultra-160 或 Ultra-320、LSI Logic Fusion-MPT 或者大部分 NCR/SymbiosSCSI。 RAID 控制器。Dell PERC(Adaptec RAID 或 LSI MegaRAID)、HP Smart Array RAID 或IBM(Adaptec) ServeRAID 控制器。 SCSI 磁盘或包含未分区空间用于虚拟机的本地(非网络)RAID LUN。 ESXi 为多个 64 位客户机操作系统提供支持。 使用 64 位客户机操作系统运行虚拟机的主机有下列硬件要求: 对于基于 AMD Opteron 的系统,处理器必须为 Opteron Rev E 或更高版本。 对于基于 Intel Xeon 的系统,处理器必须包括对 Intel 的 Virtualization Technology (VT) 的支持。许多CPU 支持 VT 的服务器可能默认禁用 VT,因此必须手动启用 VT。如果CPU 支持 VT 但在 BIOS 中看不到此选项,请联系供应商以获得可启用 VT 支持的 BIOS 版本。 安装EXSI Server 在安装之前,首先检查物理服务器CPU的Virtualization Technology (VT)是否打开,统计局服务器型号为Lenovo R680 ,默认情况下,VT是关闭的。需进入BIOS打开。 安装步骤 CIMC界面 配置本地PC的IP地址为1.1.1.2(与管理口地址1.1.1.1为同一网段)

JAVA保存计算过程的计算器课程设计报告

J A V A保存计算过程的 计算器课程设计报告-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

保存计算过程的java计算器 目录 1 概述 ....................................................................................................... 错误!未定义书签。 课程设计目的....................................................................... 错误!未定义书签。 课程设计内容....................................................................... 错误!未定义书签。 2 系统需求分析 .......................................................................................... 错误!未定义书签。 系统目标............................................................................... 错误!未定义书签。 主体功能............................................................................... 错误!未定义书签。 开发环境............................................................................... 错误!未定义书签。 3 系统概要设计 .......................................................................................... 错误!未定义书签。 系统的功能模块划分........................................................... 错误!未定义书签。 系统流程图........................................................................... 错误!未定义书签。4系统详细设计 .......................................................................................... 错误!未定义书签。 5 测试........................................................................................................... 错误!未定义书签。 测试方案............................................................................... 错误!未定义书签。 测试结果............................................................................... 错误!未定义书签。 6 小结........................................................................................................... 错误!未定义书签。参考文献...................................................................................................... 错误!未定义书签。附录 .......................................................................................................... 错误!未定义书签。 附录1 源程序清单 ...................................... 错误!未定义书签。

VMware vSphere 管理员手册-运维人员

虚拟化平台管理员手册

目录

概述 主要描述了虚拟化项目安装实施完成后,何管理整个VMware平台。介绍了如何通过VMware vClient登陆VMware vCenter Server集中管理vSphere平台。并提供了如何对ESXI主机进行网络、存储和HA群集配置管理进行详细描述。

1.1目标读者 本文档专供需要安装VMware vCenter Server和ESXI的管理员、用户使用。 本文档的目标读者为熟悉数据中心操作且具有丰富经验的 Windows 或 Linux 系统管理员。 1.2VMware vSphere 组件 每个VMwarevCenter Server系统管理多台ESXI主机。可以在多个工作站上运行vSphere Client 和 vSphere Web Access。 VMware vSphere 的主要组件包括: 1.VMwareESXI 提供一个虚拟化层,该层可将物理主机的处理器、内存、存储器及网络资源抽象化为多台虚拟机。 2.VMwarevCenter Server VMware vCenter Server是一种可充当网络上连接的ESX/ESXI主机的中心管理员的服务。该服务指导虚拟机和主机上的操作。VMware vCenter Server是 vCenter 的工作核心。可以将多个 vCenterServer 系统加入到链接模式组。这样可允许您登录任何一个VMware vCenter Server实例,并且还可以查看和管理组中所有VMware vCenter Server系统的清单。 VMware vCenter Server附加模块为VMware vCenter Server提供附加的功能和特征。一般情况下,附加模块(有时也称为插件)为单独发布的模块,安装在VMware vCenter Server上,可以独立升级。附加模块可以与VMware vCenter Server系统安装在同一台计算机上,也可以安装在不同计算机上。安装附加模块之后,可以激活该模块的客户端组件,该组件可使用用户界面 (UI) 选项增强vSphere Client的功能。附加模块包括vCenter UpdateManager、vCenter Converter 和vCenter Guided Consolidation 服务。 3.vSphere Client

Java课程设计保存过程的计算器

Java 课程设计报告 保存计算过程的计算器的设计 专业 计算科学与技术(网络技术) 学生姓名 班 级 学号 1 指导教师 完成日期

目录 1设计要求 (1) 2总体设计 (1) 2.1 CalculatorWindow类设计 (2) 2.2 NumberButton类设计 (2) 2.3 OperationButton类设计 (2) 2.4 HandleDigit类设计 (2) 2.5 HandleOperation类设计 (2) 2.6 HandleDot类设计 (3) 2.7 HandleEquality类设计 (3) 2.8 HandleSin类设计 (3) 2.9 HandleBack类设计 (3) 2.10 HandleClear类设计 (3) 2.11 HandlePOrN类设计 (3) 3详细设计 (3) 3.1CalculatorWindow类 (3) 3.2NumberButton类 (9) 3.3 OperationButton类 (10) 3.4 HandleDigit类 (11) 3.5 HandleOperation类 (13) 3.6 HandleDot类 (16) 3.7 HandlePOrN类 (18) 3.8 HandleEquality类 (19) 3.9 HandleSin类 (22) 3.10 HandleBack类 (24) 3.11 HandleClear类 (26) 4代码调试问题 (28) 5软件发布 (28) 6程序运行效果 (28) 7设计心得 (30)

保存过程的计算器的设计 1 设计要求 Windows 2000/XP系统中的“计算器”是一个方便实用的计算机工具,但是没有提供显示计算过程的功能。本计算器所遵循的计算规则与Windows 2000/XP系统中的“计算器”相同,出了具有普通的计算功能外,还具有现实计算过程,保存计算过程的功能。 (1)单击“计算器”上的数字按钮(0、1、2、3、4、5、6、7、8、9)可以设置参与计算的运算数。 (2)单击“计算器”上的运算符按钮(+、-、*、/)可以选择运算符号。 (3)单击“计算器”上的函数按钮可以显示相应的函数值。 (4)单击“计算器”上的“=”按钮显示计算结果。 (5)在一个文本框中显示当前的计算过程,在一个文本区中显示以往的计算过程和发生计算时的系统时间。 (6)单击“保存”按钮可以将文本区中的全部计算过程保存到文件;单击“复制”按钮可以将文本区中选中的文本复制到剪贴板;单击“清除”按钮可以清楚文本区中的全部内容。 2 总体设计 在设计计算器时,可以编写11个Java源文件:CalculatorWindow.java、NumberButton.java、OperationButton.java、HandleDigit.java、HandleOperation.java、HandleDot.java、HandleEquality.java、HandleSin.java、HandleBack.java、HandleClear.java、HandlePOrN.java。 计算器除了上述的11个Java源文件给出的类外,还需要Java提供的一些重要的类,入JButton、JTextField、JTextArea和LinkedList等。 图2.1 类之间的组合关系

项目环境搭建手册

CRM项目搭建流程 一、前提条件 开发环境 前台 JDK 1.6 IDE: Eclipse for javaEE 3.7 SVN 插件版本 1.7.4 Tomcat 插件 Server:Tomcat 6 后台 Oracle PL/SQL Developer 开发代码 从 svn 检出 URL http://192.168.254.103/svn/yccrm-code 代码管控 SVN 二、搭建流程 代码导入 1.创建代码目录 demo_code,创建工作空间 workspace_demo 2.打开 eclipse,switch workspace 到 workspace_demo 下,并将 Preferences→Geberal 下的 Content Type→Text 和 Workespace 的默认编码设置为 UTF-8 3.修改 SVN 版本为 1.7.4,这样,就可以只在项目根目录下生成一个.svn 文件夹而不是每个目录下生成。

4.Show view 到 SVN 下打开 SVN Repositories 视图,新建 Repository Location:http://192.168.254.103/svn/yccrm-code 5.检出 crmbase 和 crmweb 代码到 demo_code 目录 6.delete 掉自动生成在工作空间的项目,但不要删除物理文件

7.新建 java project,选择 crmweb 文件夹作为 Location,Finish。 8. 新建 java project,选择 crmweb 文件夹作为 location,Next,在 Source 选项卡下勾选 Allow output folder for source folders 并更改 Default output folder 为crmweb/WebContent/WEB-INF/classes,Finish。

相关主题