搜档网
当前位置:搜档网 › 高三物理难题

高三物理难题

高三物理难题
高三物理难题

1、如图所示,水平面上固定有高AC=H 、倾角为30°的直角三角形光滑斜面,有一长为2H 、质量为m 的均匀细绳一端拴有质量为m 且可看作质点的小球,另一端在外力F 作用下通过斜面顶端的光滑小定滑轮从A 点开始沿斜面缓慢运动到B 点,不计一切摩擦以及绳绷紧时的能量损失,则该过程中( )

A .绳子的重力做功为0

B .绳的重力势能增加了41mgH

C .绳的机械能增加了21mgH

D .小球对绳的拉力做功mgH

2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为l ,两导轨间连有一电阻R ,导轨平面与水平面的夹角为θ,在两虚线间的导轨上涂有薄绝缘涂层且无磁场作用.匀强磁场的磁感应强度大小为B ,方向与导轨平面垂直.质量为m 的导体棒从h 高度处由静止释放,在刚要滑到涂层处时恰好匀速运动.导体棒始终与导轨垂直且仅与涂层间有摩擦,动摩擦因数μ=tan θ,其他部分的电阻不计,重力加速度为g ,下列说法正确的是( )

A .导体棒到达涂层前做加速度减小的加速运动

B .在涂层区导体棒做减速运动

C .导体棒到达底端的速度为

D .整个运动过程中产生的焦耳热为mgh ﹣

3、如图所示的竖直平面内,水平条形区域I 和Ⅱ内有方向垂直竖直面向里的匀强磁场,其宽度均为d ,I 和Ⅱ之间有一宽度为h 的无磁场区域,h >d .一质量为m 、边长为d 的正方形线框由距区域I 上边界某一高度处静止释放,在穿过两磁场区域的过程中,通过线框的电流及其变化情况相同.重力加速度为g ,空气阻力忽略不计.则下列说法正确的是( )

A.线框进入区域Ⅰ时与离开区域Ⅰ时的电流方向相同

B.线框进入区域Ⅱ时与离开区域Ⅱ时所受安培力的方向相同

C.线框有可能匀速通过磁场区域Ⅰ

D.线框通过区域Ⅰ和区域Ⅱ产生的总热量为Q=2mg(d+h)

4、如图所示,在水平面上有两条光滑的长直平行金属导轨MN、PQ,电阻忽略不计,导轨间距离为L,磁感应强度为B的匀强磁场垂直于导轨所在平面.质量均为m的两根金属a、b放置在导轨上,a、b接入电路的电阻均为R.轻质弹簧的左端与b杆连接,右端固定.开

始时a杆以初速度v0向静止的b杆运动,当a杆向右的速度为v时,b杆向右的速度达到最大值v m,此过程中a杆产生的焦耳热为Q,两杆始终垂直于导轨并与导轨接触良好,则b 杆达到最大速度时()

A.b杆受到弹簧的弹力为

B.a杆受到的安培力为

C.a、b杆与弹簧组成的系统机械能减少量为Q

D.弹簧具有的弹性势能为mv02﹣mv2﹣mv m2﹣2Q

5、如图所示,电阻不计的金属导轨PQ、MN水平平行放置,间距为L,导轨的P、M端接到匝数比为n1:n2=1:2的理想变压器的原线圈两端,变压器的副线圈接有阻值为R的电阻.在两导轨间x≥0区域有垂直导轨平面的磁场,磁场的磁感应强度B=B0sin2kπx,一阻值不计的

导体棒ab垂直导轨放置且与导轨接触良好.开始时导体棒处于x=0处,从t=0时刻起,导体棒ab在沿x正方向的力F作用下做速度为v的匀速运动,则()

A.导体棒ab中产生的交变电流的频率为kv

B.交流电压表的示数为2B0Lv

C.交流电流表的示数为

D.在t时间内力F做的功为

6、如图所示,三根绝缘轻杆构成一个等边三角形,三个顶点分别固定A、B、C三个带正电的小球.小球质量分别为m、2m、3m,所带电荷量分别为q、2q、3q.CB边处于水平面上,ABC处于竖直面内,整个装置处于方向与CB边平行向右的匀强磁场中.现让该装置绕过中心O并与三角形平面垂直的轴顺时针转过120°角,则A、B、C三个球所构成的系统的()

A.电势能不变B.电势能减小C.重力势能减小D.重力势能增大

7、如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d,杆上的A点与定滑轮等高,杆上的B点在A点下方距离为d处.现将环从A处由静止释放,不计一切摩擦阻力,下列说法正确的是()

A.环到达B处时,重物上升的高度

B.环到达B处时,环与重物的速度大小相等

C.环从A处释放时,环的加速度为g

D.环从A到B,环减少的机械能等于重物增加的机械能

8、如图所示,一轻质弹簧的下端,固定在水平面上,上端叠放着两个质量均为M的物体A、B(物体B与弹簧栓接),弹簧的劲度系数为k,初始时物体处于静止状态.现用竖直向上的拉力F作用在物体A上,使物体A开始向上做加速度为a的匀加速运动,测得两个物体的v ﹣t图象如图乙所示(重力加速度为g),则()

A.施加外力的瞬间,A、B间的弹力大小为M(g﹣a)

B.A、B在t1时刻分离,此时弹簧弹力大小恰好为零

C.弹簧恢复到原长时,物体B的速度达到最大值

D.B与弹簧组成的系统的机械能先逐渐增加,后保持不变

9、如图所示,物体A经一轻质弹簧与下方地面上物体B相连,弹簧的劲度系数为k,A、B 质量均为m且都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向,现在挂钩上挂一质量为m的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升.若将物体C换成另一个质量为2m的物体D,仍从上述初始位置由静止状态释放,则这次物体B刚离地时,物体A的()

A.加速度为零B.加速度为g

C.动能为D.动能为

10、如图所示,在光滑的水平地面上有一个表面光滑的物块P,它的质量为M,一长为L的轻杆下端用光滑铰链连接于O点,O点固定于地面上,轻杆的上端连接着一个可视为质点的小球Q,它的质量为m,且M=5m.开始时,小球斜靠在物块左侧,它距地面的高度为h,物块右侧受到水平向左推力F的作用,整个装置处于静止状态.若现在撤去水平推力F,则下列说法中正确的是()

A.物块先做匀加速运动,后做匀速运动

B.在小球和物块分离前,当轻杆与水平面的夹角为θ时,小球的速度大小

C .小球与物块分离时,小球一定只受重力作用

D .在小球落地之前,小球的机械能一直减少

11、如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L=lm ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R=0.40Ω的电阻,质量为m=0.01kg 、电阻为r=0.30Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻

不计,g=10m/s 2

(忽略ab 棒运动过程中

对原磁场的影响)则

A .金属棒两端a 、b 的电势a b ??<

B .金属棒的最大速度为7m/s

C .磁感应强度B 的大小为0.2T

D .在金属棒ab 开始运动的1.5s 内,电

阻R 上产生的热量为J 26.0

12、如图所示,电阻不计的平行的金属导轨间距为L ,下端通过一阻值为R 的电阻相连,宽度为x 0的匀强磁场垂直导轨平面向上,磁感强度为B .一电阻不计,质量为m 的金属棒获得沿导轨向上的初速度后穿过磁场,离开磁场后继续上升一段距离后返回,并匀速进入磁场,金属棒与导轨间的滑动摩擦系数为μ,不计空气阻力,且整个运动过程中金属棒始终与导轨垂直.

(1)金属棒向上穿越磁场过程中通过R 的电量q ;

(2)金属棒下滑进入磁场时的速度v 2;

(3)金属棒向上离开磁场时的速度v 1;

(4)若金属棒运动过程中的空气阻力不能忽略,且空气阻力与金属棒的速度的关系式为f=kv ,其中k 为一常数.在金属棒向上穿越磁场过程中克服空气阻力做功W ,求这一过程中金属棒损耗的机械能△E .

13、如图所示的滑轮,它可以绕垂直于纸面的光滑固定水平轴O 转动,轮上绕有轻质柔软细线,线的一端系一质量为3m 的重物,另一端系一质量为m ,电阻为r 的金属杆.在竖直

平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为Bo的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF 处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降.运动过程中金属杆始终与导轨垂直且接触良好,忽略所有摩擦,求:

(1)重物匀速下降的速度v;

(2)重物从释放到下降h的过程中,电阻R中产生的焦耳热Q R;

(3)若将重物下降h时的时刻记作t=0,从此时刻起,磁感应强度逐渐减小,若此后金属杆中恰好不产生感应电流,则磁感应强度B怎样随时间t变化(写出B与t的关系式).

14、如图所示,足够长的光滑平行金属导轨cd和ef水平放置,在其左端连接倾角为θ=37°的光滑金属导轨ge、hc,导轨间距均为L=1m,在水平导轨和倾斜导轨上,各放一根与导轨

垂直的金属杆,金属杆与导轨接触良好、金属杆a、b质量均为m=0.1kg、电阻R a=2Ω,R b=3Ω,其余电阻不计,在水平导轨和倾斜导轨区域分别有竖直向上和竖直向下的匀强磁场B1,B2,且B1=B2=0.5T.已知从t=0时刻起,杆a在外力F1作用下由静止开始水平向右运动,杆b在水平向右的外力F2作用下始终保持静止状态,且F2=0.75+0.2t(N).(sin37°=0.6,cos37°=0.8,g取10m/s2)

(1)通过计算判断杆a的运动情况;

(2)从t=0时刻起,求1s内通过杆b的电荷量;

(3)已知t=0时刻起,2s内作用在杆a上的外力F1做功为5.33J,则这段时间内杆b上产生的热量为多少?

15、如图甲所示,光滑且足够长的平行金属导轨MN、PQ固定在倾角θ=30°的倾斜平面内,两导轨间的距离L=1m,导轨两端分别连接两定值电阻R1=6Ω,R2=3Ω,导轨上垂直放一质

量为m=1kg的金属杆,杆在导轨间部分的电阻r=2Ω,导轨的电阻不计,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向下.现用一拉力F沿导轨向上拉金属杆,使金属杆以一

定的初速度开始向上运动,杆与导轨始终接触良好。图乙所示为通过R1中电流的平方I12随时间t的变化关系图象,已知5s末金属杆的速度为3m/s,求:

(1)匀强磁场磁感应强度的大小

(2)1.4s时刻金属杆所受安培力的大小和方向;

(3)0-5s内拉力F和金属杆重力沿导轨分力的合力所做的功.

16、如图,两个倾角均为θ=37°.的绝缘斜面,顶端相同,斜面上分别固定着一个光滑的不计电阻的U型导轨,导轨宽度都是L=1.0m,底边分别与开关S1、S2连接,导轨上分别放置一根和底边平行的金属棒a和b,a的电阻R1=10.0Ω、质量m1=2.0kg,b的电阻R2=8.0Ω、质量m2=l.0kg.U,型导轨所在空间分别存在着垂直斜面向上的匀强磁场,大小分别为B1=1.0T,B2=2.0T,轻细绝缘线绕过斜面顶端很小的光滑定滑轮连接两金属棒的中点,细线与斜面平行,两导轨足够长,sin37°=0.6,cos37°=0.8,g=10.0m/s2.开始时,开关S1、S2都断开,轻

细绝缘线绷紧,金属棒a和b在外力作用下处于静止状态.求:

(1)撤去外力,两金属棒的加速度多大?

(2)同时闭合开关S1、S2,当金属棒a和b通过的距离s=40m时,速度达到最大,求在这个过程中,两金属棒产生的焦耳热之和是多少?

17、如图,足够长斜面倾角θ=30°,斜面上A 点上方光滑,A 点下方粗糙,μ=

,光滑水平面上B 点左侧有水平向右的匀强电场E=105V/m ,可视为质点的小物体C 、D 质量分别为

m C =4kg ,m D =1kg ,D 带电q=3×10﹣4

C ,用细线通过光滑滑轮连在一起,分别放在斜面及水平面上的P 和Q 点由静止释放,B 、Q 间距离d=1m ,A 、P 间距离为2d .取g=10m/s 2,求:

(1)物体C 第一次运动到A 点时的速度v 0;

(2)物体C 第一次经过A 到第二次经过A 的时间t .

18、如图所示,电阻不计,宽度为L 的光滑水平轨道和倾角为θ=30°的光滑倾斜轨道连接在一起,整个轨道处于竖直向下的匀强磁场中,磁感应强度为B ,质量为m 、电阻为R 、长度为L 的两相同导体棒ab 和cd 分别垂直水平轨道和倾斜轨道放置,一轻绳与cd 棒相连,另一端通过光滑的定滑轮连接质量为m 的物块P ,当ab 棒以某速度水平匀速运动时,物块P 恰好静止,则此时

A.ab 棒向右运动

B.ab 棒向左运动

C.ab 棒的速度大小为223mg 32L

B R D.cd 棒所受安培力大小为

mg 33,方向水平向左

19、质量均为m 的A 、B 两物体通过劲度系

数为k 的弹簧相连接,A 物体置于地面上,B 物体用通过定滑轮的细绳与正方形线圈C 相连接,如图所示。正方形线圈的总质量为3m ,总电阻为R ,边长为L 。正方形线圈的下方有磁感应强度大小为B 0、方向垂直纸面向里的匀强磁场,磁场上边缘虚线边界与线圈下边始终平行。初始时用力控制住线圈,使细绳伸直而没有拉力,然后将线圈由静止释放,线圈下落一段距离后进入磁场,发现线圈刚好一般进入磁场时速度达到最

大,且A 物体也刚好离开地面。不计弹簧和细绳的质量,不计细绳

与滑轮间的摩擦,也不计细绳发生的形变。求:(重力加速度为g )

(1)线圈释放时其下边与磁场上边缘间的距离及线圈最大速度的大

(2)从线圈进入磁场到达到最大速度的过程中产生的焦耳热

20、如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L ,左、右;两端各接有阻值为R 的电阻,一质量为m 、长度为L 的金属棒MN 垂直放置在导轨上,金属棒的电阻为r ,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度为B ,金属棒在水平向右的外力作用下,由静止开始做加速运动,保持外力的功率P 不变,经过时间t 金属棒开始做匀速运动,则

A.金属棒匀速运动的时的速度为BL R P 2r 22)(+

B.t 时间内导轨两端电阻R 上消耗的功率恒为

P R R )

r 2(2+ C.t 时间内回路中产生的焦耳热为2

24)2(L B r R mP Pt +- D.t 时间内通过金属棒的电荷量为r

R P t 22+ 21、如图甲所示,两个平行轨道竖直放置,导轨间距为L=2m 。金属棒MN 在导轨间部分电阻r=2Ω,金属棒质量m=0.4kg ,导轨的最上端接阻值为R=8Ω的定值电阻。虚线00’下方无穷大区域存在匀强磁场,磁场方向垂直纸面向里。将金属棒从图示位置由静止释放,下落过程中的v-t 图像如图乙所示。不计导轨的电阻和一切摩擦,金属棒与导轨始终接触良好,取重力加速度为2

/10s m g =,则

A.释放金属棒的位置到00’的距离为10m

B.匀强磁场的磁感应强度大小为1T

C.1-2s 内,定值电阻R 产生的热量为J 32

A

B

D.1-2s内,金属棒克服安培力做的功为J

32

22、如图甲所示,与水平面成θ=30°角的两足够长光滑金属导轨平行放置,间距L=0.5m。定值电阻R0与电阻箱R并联后接在金属导轨的上端,整个装置处在方向垂直于导轨平面向上、磁感应强度大小B=1T的匀强磁场中。现将一质量为m、长度为L、垂直导轨放置的导体棒cd从图示位置由静止释放,可测得导体棒cd沿倾斜导轨下滑的最大速度v m ,改变电阻箱R

的阻值,多次测量后得到

R

v

m

1

1

-的关系图像如图乙所示。不计导轨和导体棒cd的电阻,重力加速度g取2

m/s

10,则下列判断中正确的是A.导体棒cd刚开始下滑时的加速度大小为2

m/s

5

B.电阻箱R和定值电阻R0产生的热量之和等于导体棒cd减小的重力势能

C.导体棒cd的质量为kg

10

5.22-

?

D.定值电阻R0的阻值为Ω

2

23、如图所示,两根相距L=0.1m的足够长的光滑平行金属导轨PM、QN倾斜放置,导轨与水平面的夹角θ=30°,导轨间有一匀强磁场,匀强磁场的方向垂直于导轨平面向上,磁感应强度大小B=1T,导轨的上端与水平正对放置的两金属板a、b相连,板间距d=0.05m,板间固定有一带电微粒。金属棒EF水平并垂直放在导轨上,金属棒EF的质量为M=0.1kg,其在导轨间部分的电阻与定值电阻阻值相等,均为R=0.02Ω,。现将金属棒EF由静止释放,当其速度达到稳定时释放板间带电微粒,带电微粒恰好保持静止。不计金属导轨的电阻,金属棒EF在下滑过程中与导轨接触良好,重力加速度g取2

m/s

10,则下列说法正确的是

A.a 板电势高于b 板电势

B.微粒可能带正电

C.带电微粒的比荷为5C/kg

D.金属棒EF 下滑的稳定速度为1m/s

24、如图所示,一边长L=0.2m 、质量m 1=1.0kg 、电阻R=0.1Ω的正方形导线框abcd ,与一质量为m=2.0kg 的物块通过轻质细线跨过一光滑定滑轮相连。正方形线框放在倾角?

=301θ的光滑斜面上,光滑斜面上有垂直斜面向下的匀强磁场,磁感应强度大小B=2.5T ,磁场宽度d 1=0.3m ,起初线框ad 边与磁场下边的距离为d 2=1.0m 。物块放在倾角为?=532θ的斜面上,物块和斜面间的摩擦因数μ=0.5。现将物块由静止释放,经一段时间后发现当线框ad 边从磁场上边缘穿出时,线框恰好做匀速运动。

(6.053cos ,8.053sin m /s 102

=?=?=,g )求:

(1)线框ad 边从磁场上边缘穿出时绳中拉力的功率

(2)线框穿过磁场的整个过程中产生的焦耳热

25、如图所示,一轻弹簧的劲度系数为k ,其一端固定在倾角为θ的光滑斜面底端,另一端与物块A 连接,物块B 紧挨着物块A 放置,两物块A 、B 的质量均为m ,初始时均静止。现θ θ

E

F Q P

R

a b

N M

B m

用平行于斜面向上的力F 拉动物块B ,使物块B 做加速度为a 的匀加速运动,重力加速度为g ,则

A.拉力F 一定是恒力

B.在A 、B 分离时刻,弹簧形变量为k

ma mg +θsin C.整个过程中物块A 与弹簧组成的系统机械能守恒

D.从开始到A 、B 分离时刻,拉力F 做的功比弹簧弹力做的功少

26、如图所示,劲度系数为k 的轻弹簧一端固定在墙上,另一端与置于水平面上质量均为m 的物体A 、B 接触(A 与B 和弹簧均未连接),弹簧水平且无形变。用水平力F 缓慢推动物体B ,在弹性限度内弹簧长度被压缩了0x ,此时物体A 、B 静止。已知物体A 与水平面间的动摩擦因数为μ,物体B 与水平面间的摩擦不计。撤去F 后,物体A 、B 开始向左运动,重力加速度为g 。则

A .撤去F 后,物体A 和

B 先做匀加速运动,再做匀减速运动

B .撤去F 瞬间,物体A 、B 的加速度大小为m mg kx a 20μ-=

C .物体A 、B 一起向左运动距离0x 后相互分离

D .物体A 、B 一起向左运动距离k mg

x x μ-=0后相互分离

27、如图所示,光滑水平轨道MN 、PQ 和光滑倾斜轨道NF 、QE 在N 、Q 点连接,倾斜轨道倾角为θ,轨道间距均为L 。水平轨道间连接着阻值为R 的电阻,质量分别为M 、m ,电阻分别为R 、r 的导体棒a 、b 分别放在两组轨道上,导体棒均与轨道垂直,a 导体棒与水平放置的轻质弹簧通过绝缘装置连接,弹簧另一端固定在竖直墙壁上。水平轨道所在的空间区域存在竖直向上的匀强磁场,倾斜轨道空间区域存在垂直轨道平面向上的匀强磁场,该磁场区域仅分布在QN 和EF 之间的区域内,QN 、EF 距离为d ,两个区域内的磁感应强度分别为1B 、2B ,以QN 为分界线且互不影响。现在用一外力F 将导体棒a 向右拉至某一位置处,然后把导体棒b 从紧靠分界线QN 处由静止释放,导体棒b 在出磁场边界EF 前已达最大速度。当导体棒b 在磁场中运动达稳定状态,撤去作用在a 棒上的外力后发现a 棒仍能静止一段时间,然后又来回运动并最终停下来。求:

(1)导体棒b 在倾斜轨道上的最大速度

(2)撤去外力后,弹簧弹力的最大值

(3)如果两个区域内的磁感应强度B 1=B 2=B 且导体棒电阻R=2r ,从b 棒开始运动到a 棒最终静止的整个过程中,电阻R 上产生的热量为Q ,求弹簧最初的弹性势能

28、如图所示,物体A 经一轻质弹簧与下方地面上物体B 相连,弹簧的劲度系数为k ,A 、B 质量均为m 且都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向,现在挂钩上挂一质量为m 的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将物体C 换成另一个质量为2m 的物体D ,仍从上述初始位置由静止状态释放,则这次物体B 刚离地时,物体A 的( )

A .加速度为零

B .加速度为g 3

1g C .动能为k g m 322 D .动能为k

g m 322

2

29、如图所示,在光滑的水平地面上有一个表面光滑的物块P ,它的质量为M ,一长为L 的轻杆下端用光滑铰链连接于O 点,O 点固定于地面上,轻

杆的上端连接着一个可视为质点的小球Q ,它的质量为m ,

且M=5m .开始时,小球斜靠在物块左侧,它距地面的高

度为h ,物块右侧受到水平向左推力F 的作用,整个装置

处于静止状态.若现在撤去水平推力F ,则下列说法中正

确的是( )

A .物块先做匀加速运动,后做匀速运动

B .在小球和物块分离前,当轻杆与水平面的夹角为θ时,小球的速度大小

θ

θ2sin 51)sin (2+-L h g C .小球与物块分离时,小球一定只受重力作用

D .在小球落地之前,小球的机械能一直减少

高考物理万能答题模板汇总

2019高考物理万能答题模板汇总 高考物理万能答题模板(一) 题型1〓直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题. 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 题型2〓物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化. 题型3〓运动的合成与分解问题

题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解. 思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析. 题型4〓抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上. 思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足 vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解. 题型5〓圆周运动问题 题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速

高三物理复习专题--有关地磁场类问题集锦

有关地磁场类问题集锦 1.十九世纪二十年代,以塞贝克(数学家)为代表的科学家已认识到:温度差会引起电流。安培考虑到地球自转造成了太阳照射后正面与背面的温度差,从而提出如下假设:地球磁场是绕地球的环形电流引起的,则该假设中的电流的方向是( ) A.由西向东垂直磁子午线 B.由东向西垂直磁子午线; C.由南向北沿磁子午线方向 D.由赤道向两极沿磁子午线方向 注:磁子午线是地球磁场N 极与S 极在地球表面的连线 2.20世纪50时年代,科学家提出了地磁场的“电磁感应学说”,认为当太阳强烈活动影响地球而引起磁暴时,磁暴在外地核中感应产生衰减时间较长的电流,此电流产生了地磁场。连续的磁暴作用可维持地磁场。则外地核中的电流方向为(地磁场N 极与S 极在地球表面的连线称为磁子午线)( ) A.垂直磁子午线由西向东 B 垂直磁子午线由东向西 C.沿磁子午线由南向北 D 沿磁子午线由北向南 3.根据安培假设的思想,认为磁场是由于运动电荷产生的,这种思想如果对地磁场也适用,而目前在地球上并没有发现相对地球定向移动的电荷,那么由此可断定地球应该( ) A.带负电 B带正电 C.不带电 D无法确定 4.一根沿东西方向的水平导线,在赤道上空自由下落的过程中,导线上各点的电势( ) A.东端最高 B.西端最高 C.中点最高 D.各点一样高 5.在赤道附近有一竖直向下的匀强电场,在此区域内有一根沿东西方向放置的直导体棒,由水平位置自静止落下,不计空气阻力,则导体棒两端落地的先后关系是( ) A.东端先落地 B.西端先落地 C.两端同时落地 D.无法确定 6.在赤道上,地磁场可以看作是沿南北方向并且与地面平行的匀强磁场,磁感应强度是5×10-5T.如果赤 道上有一条沿东西方向的直导线,长40m,载有20A的电流,地磁场对这根导线的作用力大小是 ( ) A.4×10-8N B.2.5×10-5N C.9×10-4N D.4×10-2N 7.关于磁通量的说法中,正确的是( ) A.穿过一个面的磁通量等于磁感强度和该面面积的乘积 B.在匀强磁场中,穿过某平面的磁通量等于磁感应强度与该面面积的乘积 C.穿过一个面的磁通量就是穿过该面的磁感线条数 D.地磁场穿过地球表面的磁通量为零。 8.为了利用海洋资源,海洋工作者有时根据水流切割地磁场所产生的感应电动势 来测量海水的流速。假设海洋某处地磁场竖直分量为B=0.5×10-4 T ,水流是南北 流向,如图1所示,将两电极竖直插入此处海水中,且保持两电极的连线垂直水 流方向。若两电极相距L=20m ,与两电极相连的灵敏电压表读数为U=0.2mV ,则 海水的流速大小为( ) A.10m/s B.0.2m/s C.5m/s D.2m/s 9.指南针静止时,其N 极指向如图2中虚线所示。若在其上方放置水平方向的导线,并通以直流电,则指南针转向图中实线位置。据此可知( ) A.导线南北放置,通有向北的电流 B.导线南北放置,通有向南的电流 C.导线东西放置,通有向西的电流 D.导线东西放置,通有向东的电流 10.欧姆在探索通过导体的电流和电压、电阻关系 时,因无电源和电流表,他利用金属在冷水和热水中产生电动势 代替电源,用小磁针的偏转检测电源,具体做法是:在地磁场作 用下处于水平静止的小磁针上方,平行于小磁针水平放置一直 导线, 当该导 图1 西 东

高三物理难题汇总

1 如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:(1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向 2 如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰撞后,C的速度是多大? (2)到A、B都与挡板碰撞为止,C的位移为多少? 3 为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1 ,放手后,木板沿斜面下滑,稳定后弹簧示数为 F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上) 图 12

4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度03 2v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。 5 如图,足够长的水平传送带始终以大小为v =3m/s 的速度向左运动,传送带上有一质量为M =2kg 的小木盒A ,A 与传送带之间的动摩擦因数为μ=0.3,开始时,A 与传送带之间保持相对静止。先后相隔△t =3s 有两个光滑的质量为m =1kg 的小球B 自传送带的左端出发,以v 0=15m/s 的速度在传送带上向右运动。第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t 1=1s/3而与木盒相遇。求(取g =10m/s 2) (1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大? (2)第1个球出发后经过多长时间与木盒相遇? (3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少? 6 如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm ,A 板比B 板电势高300V , B A v 0

2018高三物理几种类型磁场难题及解析

2018高三物理几种类型磁场难题及解析 1、一个质量为m,带电量为q的带电粒子(不计重力),以初速v0沿X轴正方向运动,从图中原点O处开始进入一个 边界为圆形的匀强磁场中,已知磁场方向垂直于纸面,磁感强度大小为B.粒子飞出磁场区域后,从P处穿过Y轴,速度方向与Y轴正方向的夹角为θ=300, 如图所示,求: (1)圆形磁场的最小面积。 (2)粒子从原点O处开始进入磁场到达P点经历的时间。 2、如图所示,在空间中固定放置一绝缘材料制成的边长为L的刚性等边三边形框架△DEF,DE边上S点() 处有一发射带正电的粒子源,发射粒子的方向皆在图中截面内且垂直于DE边向下.发射的电量皆为q,质量皆为m,但速度v有各种不同的值.整个空间充满磁感应强度大小为B,方向垂直截面向里的均匀磁场。设粒子与△DEF 边框碰撞时没有能量损失和电量传递。求: (1)带电粒子速度的大小为v时,做匀速圆周运动的半径 (2)带电粒子速度v的大小取那些数值时,可使S点发出 的粒子最终又垂直于DE边回到S点? (3)这些粒子中,回到S点所用的最短时间是多少? 3、如图甲所示为电视机中显象管示意图,电子枪中灯丝加热阴极而逸出电子,这些电子再经加速电场加速后,从O 点进入由磁偏转线圈产生的偏转磁场中,经偏转磁场后打到荧光屏MN上,使荧光屏发出荧光形成图象。不计逸出电子的初速度和重力。已知电子质量为m,电量为e,加加速电场的电压为U。偏转线圈产生的磁场分布在边长为L 的正方形abcd区域内,磁场方向垂直纸面,且磁感应强度随时间变化的规律如图乙所示。在每个周期内磁感应强

度都是从-B均匀变化到B。磁场区域的左边界的中点与O点重合,ab边与OO′平行,右边界bc与荧光屏之间的距离为S。由于磁场区域较小,且电子运动的的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,即为稳定的匀强磁场,不计电子之间的相互作用。 1)求电子射出电场时的速度大小。 2)为使所有的电子都能从磁场的bc 边射出,求偏转线圈产生磁场的磁感应强度的最大值。 3)荧光屏上亮线的最大长度是多少? 4、如图(a)所示,在x≥0的区域内有如图(b)所示大小不变、方向随时间周期性变化的磁场,磁场方向垂直纸面 向外时为正方向。现有一个质量为m,电量为q的带正电的粒子(不计重力),在t=0时刻从坐标原点O以速度v 沿与x轴正方向成30°射入磁场,粒子运动一段时间后到达P点,此时粒子的速度与x轴正方向的夹角仍为30°。 如图(a)所示 (1)若B0为已知量,试求带电粒子在磁场中运动的轨道半径R和周期T0的表达式。 (2)若B0为未知量,但已知P点的坐标为(a,0),带电粒子第一次通过x轴时就经过P点,求磁场变化周期T 应满足的条件。 (3)若B0为未知量,但已知P点的坐标为(a,0),且带电粒子通过P点的时间大于T/2,求磁感应强度B0和磁场变化周期T。 5、如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形 区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60o。一质量为m、带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30o角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。

高考物理难题集锦(一)含问题详解

高考物理难题集锦(一) 1、如图所示,在直角坐标系x O y平面的第Ⅱ象限有半径为R的圆O1分别与x轴、y轴相切于C(-R,0)、D (0,R)两点,圆O1存在垂直于x O y平面向外的匀强磁场,磁感应强度为B.与y轴负方向平行的匀强电场左边界与y轴重合,右边界交x轴于G点,一带正电的粒子A(重力不计)电荷量为q、质量为m,以某一速率垂直于x轴从C点射入磁场,经磁场偏转恰好从D点进入电场,最后从G点以与x轴正向夹角为45°的方向射出电场.求: (1)OG之间的距离; (2)该匀强电场的电场强度E; (3)若另有一个与A的质量和电荷量相同、速率也相同的粒 子A′,从C点沿与x轴负方向成30°角的方向射入磁场, 则粒子A′再次回到x轴上某点时,该点的坐标值为多少? 2、如图所示,光滑绝缘水平面的上方空间被竖直的分界面MN分隔成两部分,左侧空间有一水平向右的匀强电 场,场强大小,右侧空间有长为R=0.114m的绝缘轻绳, 绳的一端固定于O点,另一端拴一个质量为m小球B在竖直面沿顺 时针方向做圆周运动,运动到最低点时速度大小v B=10m/s(小球B 在最低点时与地面接触但无弹力)。在MN左侧水平面上有一质量 也为m,带电量为的小球A,某时刻在距MN平面L位置由静止 释放,恰能与运动到最低点的B球发生正碰,并瞬间粘合成一个整 体C。(取g=10m/s2) (1)如果L=0.2m,求整体C运动到最高点时的速率。(结果保留1位小数) (2)在(1)条件下,整体C在最高点时受到细绳的拉力是小球B重力的多少倍?(结果取整数) (3)若碰后瞬间在MN的右侧空间立即加上一水平向左的匀强电场,场强大小,当L满足什么条件时,整体C可在竖直面做完整的圆周运动。(结果保留1位小数) 3、如右图甲所示,间距为d的平行金属板MN与一对光滑的平行导轨相连,平行导轨间距L=d/2,一根导体棒ab 以一定的初速度向右匀速运动,棒的右侧存在一个垂直纸面向里,大小为B的匀强磁场。棒进入磁场的同时,粒子源P释放一个初速度为0的带电粒子,已知带电粒子质量为m,电量为q.粒子能从N板加速到M板,并从M 板上的一个小孔穿出。在板的上方,有一个环形区域存在大小也为B,垂直纸面向外的匀强磁场。已知外圆半径为2d,里圆半径为d.两圆的圆心与小孔重合(粒子重力不计) (1)判断带电粒子的正负,并求当ab棒的速度为v0时,粒子到达M板的速度v;

高中物理力学难题(答案)

解:A、C、t 1时刻与t 3 时刻,物体正加速,故加速度与速度同向,而加速度和合力同向, 故合力与速度同方向,故A正确,C正确; B、D、t 2时刻与t 4 时刻,物体正减速,故合力与速度反向,故B错误,D错误; 故选:AC.

本题可以假设从以下两个方面进行讨论.(1)斜劈A表面光滑(设斜面的倾角为θ,A的质量为m A,B的质量为m B) A、同时撤去F1和F2,物体在其重力沿斜面向下的分力m B gsinθ的作用下也一定沿斜面向下做匀加速直线运动.故A是正确的; B、如果撤去F1,使A相对地面发生相对运动趋势的外力大小是F N2sinθ=m B gcosθsin θ,方向向右.如图1所示.由于m B gcosθsinθ<(m B gcosθ+F1sinθ)sinθ,所以A所受地面的摩擦力仍然是静摩擦力,其方向仍然是向左,而不可能向右.故B错误的; C、撤去F2,在物体B仍向下运动的过程中,A所受地面摩擦力的变化情况要从A受

地面摩擦力作用的原因角度去思考即寻找出使A相对地面发生相对运动趋势的外力的变化情况.通过分析,使A相对地面有向右滑动趋势的外力是(m B gcosθ+F1sinθ)sinθ.如图2、3所示.与F2是否存在无关.所以撤去F2,在物体B仍向下运动的过程中,A所受地面的摩擦力应该保持不变.故C错误的; D、根据以上判断,故D正确的; 因此,在斜劈表面光滑的条件下,该题的答案应该是AD.那么,答案会不会因为斜劈表面粗糙而不同呢? (2)斜劈A表面粗糙(设A表面的动摩擦因数为μ)在斜劈A表面粗糙的情况下,B在F1、F2共同作用下沿斜面向下的运动就不一定是匀加速直线运动,也可能是匀速直线运动.如果在此再陷入对B的运动的讨论中,势必加大判断的难度.退一步海阔天空.是不是可以不必纠缠于B的受力分析,看一看A会怎么样呢? 由题意知,在B沿斜劈下滑时,受到A对它弹力F N和滑动摩擦力f.根据牛顿第三定

高考物理专题电磁学知识点之电磁感应难题汇编含答案解析

高考物理专题电磁学知识点之电磁感应难题汇编含答案解析 一、选择题 1.如图所示,竖直放置的长直导线通有恒定电流,有一矩形线框与导线在同一平面内,在下列情况中线框中不能产生感应电流的是() A.导线中的电流变大B.线框以PQ为轴转动 C.线框向右平动D.线框以AB边为轴转动 2.如图所示,L1和L2为直流电阻可忽略的电感线圈。A1、A2和A3分别为三个相同的小灯泡。下列说法正确的是() A.图甲中,闭合S1瞬间和断开S1瞬间,通过A1的电流方向不同 B.图甲中,闭合S1,随着电路稳定后,A1会再次亮起 C.图乙中,断开S2瞬间,灯A3立刻熄灭 D.图乙中,断开S2瞬间,灯A2立刻熄灭 3.如图所示,用粗细均匀的同种金属导线制成的两个正方形单匝线圈a、b,垂直放置在磁感应强度为B的匀强磁场中,a的边长为L,b的边长为2L。当磁感应强度均匀增加时,不考虑线圈a、b之间的影响,下列说法正确的是() A.线圈a、b中感应电动势之比为E1∶E2=1∶2 B.线圈a、b中的感应电流之比为I1∶I2=1∶2 C.相同时间内,线圈a、b中产生的焦耳热之比Q1∶Q2=1∶4 D.相同时间内,通过线圈a、b某截面的电荷量之比q1∶q2=1∶4 4.如图所示,将直径为d,电阻为R的闭合金属环从匀强磁场B中拉出,这一过程中通过金属环某一截面的电荷量为()

A .24 B d R π B .2Bd R π C .2Bd R D .2Bd R π 5.磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v 0刷卡时,在线圈中产生感应电动势,其E -t 关系如图所示.如果只将刷卡速度改为 2 v ,线圈中的E -t 关系图可能是( ) A . B . C . D . 6.一个简易的电磁弹射玩具如图所示,线圈、铁芯组合充当炮筒,硬币充当子弹。现将一个金属硬币放在铁芯上(金属硬币半径略大于铁芯半径),电容器刚开始时处于无电状态,先将开关拨向1,电容器充电,再将开关由1拨向2瞬间,硬币将向上飞出。则下列说法正确的是( ) A .当开关拨向1时,电容器上板带负电 B .当开关由1拨向2时,线圈内磁感线方向向上 C .当开关由1拨向2瞬间,铁芯中的磁通量减小 D .当开关由1拨向2瞬间,硬币中会产生向上的感应磁场 7.如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使

(完整版)高中物理磁场部分难题专练(非常好)

2.如图所示,带正电的物块A放在不带电的小车B上,开始时都静止,处于垂直纸面向里的匀强磁场中.t=0时加一个水平恒力F向右拉小车B,t=t1时A相对于B开始滑动.已知地面是光滑的.AB间粗糙,A带电量保持不变,小车足够长.从t=0开始A、B的速度﹣时间图象,下面哪个可能正确() A.B.C.D. 解答:解:分三个阶段分析本题中A、B运动情况: 开始时A与B没有相对运动,因此一起匀加速运动.A所受洛伦兹力向上,随着速度的增加而增加,对A根据牛顿第二定律有:f=ma.即静摩擦力提供其加速度,随着向上洛伦兹力的增加,因此A与B之间的压力减小,最大静摩擦力减小,当A、B之间的最大静摩擦力都不能提供A的加速度时,此时AB将发生相对滑动. 当A、B发生发生相对滑动时,由于向上的洛伦兹力继续增加,因此A与B之间的滑动摩擦力减小,故A的加速度逐渐减小,B的加速度逐渐增大. 当A所受洛伦兹力等于其重力时,A与B恰好脱离,此时A将匀速运动,B将以更大的加速度匀加速运动. 综上分析结合v﹣t图象特点可知ABD错误,C正确.故选C. 3.如图所示,纸面内有宽为L水平向右飞行的带电粒子流,粒子质量为m,电量为+q,速率为v0,不考虑粒子的重力及相互间的作用,要使粒子都汇聚到一点,可以在粒子流的右侧虚线框内设计一匀强磁场区域,则磁场区域的 形状及对应的磁感应强度可以是哪一种()(其中B0=,A、C、D选项中曲线均为半径是L 的圆弧,B 选项中曲线为半径是的圆) A.B.C.D. 解答:解:由于带电粒子流的速度均相同,则当飞入A、B、C这三个选项中的磁场时,它们的轨迹对应的半径均相同.唯有D选项因为磁场是2B0,它的半径是之前半径的2倍.然而当粒子射入B、C两选项时,均不可能汇聚于同一点.而D选项粒子是向上偏转,但仍不能汇聚一点.所以只有A选项,能汇聚于一点. 故选:A

高中物理常见连接体问题总结

常见连接体问题 (一)“死结”“活结” 1.如图甲所示,轻绳AD跨过固定在水 平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用 铰链固定在竖直墙上,另一端G通过细绳EG 拉住,EG与水平方向也成30°,轻杆的G点 用细绳GF拉住一个质量也为10 kg的物体.g 取10 m/s2,求 (1)细绳AC段的张力FAC与细绳EG的张力FEG 之比; (2)轻杆BC对C端的支持力; (3)轻杆HG对G端的支持力. (二)突变问题 2。在动摩擦因数μ=0.2的水平 质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为 零,当剪断轻绳的瞬间,取g=10m/s2,求: (1)此时轻弹簧的弹力大小 (2)小球的加速度大小和方向. (三)力的合成与分解 3.如图所示,用一根细线系住重力为、半径 为的球,其与倾角为的光滑斜面劈接触, 处于静止状态,球与斜面的接触面非常小, 当细线悬点固定不动,斜面劈缓慢水平向左 移动直至绳子与斜面平行的过程中,下述正确 的是(). A.细绳对球的拉力先减小后增大 B.细绳对球的拉力先增大后减小 C.细绳对球的拉力一直减小 D.细绳对球的拉力最小值等于G (四)整体法 4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。在力F的作用下一起沿水平方

向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N 和摩擦力f正确的是() A.N=m1g+m2g-Fsinθ B.N=m1g+m2g-Fcosθ C.f=Fcosθ D.f=Fsinθ (五)隔离法 5.如图所示,水平放置的木板上面放置木块,木板与木块、木板与地面间的摩擦因数分别为μ1和μ2。已知木块质量为m,木板的质量为M,用定滑轮连接如图所示,现用力F匀速拉动木块在木板上向右滑行,求力F的大小? 6.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg, 吊板的质量为10 kg,绳及定滑轮的质量,滑 轮的摩擦均可不计,取重力加速度g=10 m/s2 ,当人以440 N的力拉绳时,人与吊板的加 速度a和人对吊板的压力F分别为()A.a=1 m/s2,FN=260 N B.a=1 m/s2,FN=330 N C.a=3 m/s2,FN=110 N D.a=3 m/s2,FN=50 N 7.如图所示,静止在水平面上的三角架的质量为M,它中间用两根质量不计的轻质弹簧连着一质量为m的小球,当小球上下振动,三角架对水平面的压力为零的时刻,小球加速度的方向与大小是() A.向下,m Mg B.向上,g C.向下,g D.向下,m g m M) ( (六)综合 8. 如图所示,一夹子夹住木块,在力F作用下向上提升,夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦均为f,若木块不滑动,力F的最大值是()

高三物理调研测试题难题

高三物理调研测试题难题15题赏析 1.(盐城一调)如图所示,斜劈A 静止放置在水平地面上。质量为m 的物体B 在外力F 1和F 2的共同作用下沿斜劈表面向下运动。当F 1方向水平向右,F 2方向沿斜劈的表面向下时斜劈受到地面的摩擦力方向向左。则下列说法中正确的是AB A .若同时撤去F 1和F 2,物体 B 的加速度方向一定沿斜面向下 B .若只撤去F 1,在物体B 仍向下运动的过程中,A 所受地面摩擦力方向可能向右 C .若只撤去F 2,在物体B 仍向下运动的过程中,A 所受地面摩擦力方向可能向右 D .若只撤去F 2,在物体B 仍向下运动的过程中,A 所受地面摩擦力不变 感悟与反思: A 、 B 选项有两种解法,一是隔离法,二是利用摩擦角确定的特点,第二种解法更为简单,但只有少部分学生能够掌握; C 、 D 选项只要选斜劈为对象,撤去F 2后,斜劈受力为发生任何变化。 2.(扬州期末)如图所示,L 1和L 2为平行的虚线,L 1上方和L 2下方都是垂直纸面向里的磁感应强度相同的匀强磁场,AB 两点都在L 2上.带电粒子从A 点以初速v 与L 2成300斜向上射出,经过偏转后正好过B 点,经过B 点时速度方向也斜向上,不计重力,下列说法中正确的是AB A .带电粒子经过 B 点时的速度一定跟在A 点的速度相同 B .若将带电粒子在A 点时的初速度变大(方向不变)它仍能经过B 点 C .若将带电粒子在A 点时初速度方向改为与L 2成600角斜向上,它就不一定经过B 点 D. 粒子一定带正电荷 感悟与反思: AB 选项考查基本知识,C 选项考查这种运动的周期性,也能检查学生的错误思维定势。 3.(扬州期末15分)倾斜雪道的长为50 m ,顶端高为30 m ,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图所示。一滑雪运动员在倾斜雪道的顶端以水平速度v 0=10 m/s 飞出,在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿斜面的分速度而不弹起。除缓冲外运动员可视为质点,过渡轨道光滑,其长度可忽略。设滑雪板与雪道的动摩擦因数μ=0.2,求: (1)运动员落在倾斜雪道上时与飞出点之间的距离; (2)运动员落到倾斜雪道瞬间沿斜面的速度大小; (3)运动员在水平雪道上滑行的距离(取g =10 m/s 2)。 解:(1)如图,运动员飞出后做平抛运动 0x v t = 2 12 y gt = 由y=x tanθ得飞行时间t =1.5 s ……1分 落点的x 坐标:x =v 0t =15 m ……2分 落点离斜面顶端的距离:θ cos 1x s = =18.75m ……2分 (2)落点距地面的高度:h =(L -s 1)sinθ=18.75m 接触斜面前的x 分速度:v x =10m/s ……1分 y 分速度:v y =gt=15m/s ……1分 沿斜面的速度大小为:θθsin cos y x B v v v +== 17m/s ……3分 (3)设运动员在水平雪道上运动的距离为s 2,由功能关系得: 2 121cos ()2 B mgh mv mg L s mgs μθμ+ =-+ ……3分 F 1 F 2

高三物理高考物理题型归纳汇编图像问题

图像问题 一、物理规律在图象中的直接体现类型。 在高中物理教材中有许多知识点涉及到图象,如速度时间图象,振动图象,波动图象,分子间作用力图象,伏安特性曲线图象,电压时间图象,电流时间图象等,这些图象在高考中均有所体现。这种方式考查图象知识是高考中常用的一种方法。 [例1](07北京)电阻R 1、R 2交流电源按照图1所示方式连接,R 1=10Ω,R 2=20Ω。合上开关后S 后,通过电阻R 2的正弦交变电流i 随时间t 变化的情况如图2所示。则 A 、通过R 1的电流的有效值是1.2A B 、R 1两端的电压有效值是6V C 、通过R 2的电流的有效值是 D 、R 2两端的电压有效值是 [解析]:本题考查交流电有效值知识,并利用图象直接给出了所需信息。由图象可知,电路中电流最大值为 ,则有效值为0.6A ,R 1两端电压为6V ,R 2两端电压为12V ,所以本题选B 。 【变式训练1】(96上海)物体做平抛运动时,描述物体在竖直方向的分速度v y (取向下为正)随时间变化的图线是下图中的( ) 二、利用图象中各物理量之间的关系间接求出其他物理量类型。 这种类型一是要知道所求物理量与图象所反映物理量的关系,二是还要能从图象中读出所反映物理量的变化规律。 [例2]质点所受的力F 随时间变化的规律如图所示,力的方向始终在一直线上。已知t =0时质点的速度为零。在图3所示的t 1、t 2、t 3和t 4各时刻中,哪一时刻质点的动能最大 A .t 1 B .t 2 C .t 3 D .t 4 [解析]:该题可从不同角度去认识理解,可以从力与加速度和速度关系的角度去认识,也可以从动量与动能关系的角度去认识。 ①从力与加速度和速度的角度分析看,在该题F -t 图象中,从0-t 2过程,F 的大小虽然有变化,但方向与v 的方向始终一致,即a 与v 的方向也始终一致,因此在该过程中v 一直在增大,并在t 2时刻达到最大,故动能也最大。 ②从动能与动量的角度分析看,解题关键在于能找到E K 与P 的关系,同时对图象熟悉。在该题的F —t 图中,斜线与横轴所包围的面积为冲量I =F· t ,再由动量定理可知物体所受合外力的冲量等于动量的变化。由图可知在t 2时刻动量最大,由动量和动能关系式(2mE k =p 2 ) t t t t

高三物理难题

1、如图所示,水平面上固定有高AC=H 、倾角为30°的直角三角形光滑斜面,有一长为2H 、质量为m 的均匀细绳一端拴有质量为m 且可看作质点的小球,另一端在外力F 作用下通过斜面顶端的光滑小定滑轮从A 点开始沿斜面缓慢运动到B 点,不计一切摩擦以及绳绷紧时的能量损失,则该过程中( ) A .绳子的重力做功为0 B .绳的重力势能增加了41mgH C .绳的机械能增加了21mgH D .小球对绳的拉力做功mgH 2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为l ,两导轨间连有一电阻R ,导轨平面与水平面的夹角为θ,在两虚线间的导轨上涂有薄绝缘涂层且无磁场作用.匀强磁场的磁感应强度大小为B ,方向与导轨平面垂直.质量为m 的导体棒从h 高度处由静止释放,在刚要滑到涂层处时恰好匀速运动.导体棒始终与导轨垂直且仅与涂层间有摩擦,动摩擦因数μ=tan θ,其他部分的电阻不计,重力加速度为g ,下列说法正确的是( ) A .导体棒到达涂层前做加速度减小的加速运动 B .在涂层区导体棒做减速运动 C .导体棒到达底端的速度为 D .整个运动过程中产生的焦耳热为mgh ﹣ 3、如图所示的竖直平面内,水平条形区域I 和Ⅱ内有方向垂直竖直面向里的匀强磁场,其宽度均为d ,I 和Ⅱ之间有一宽度为h 的无磁场区域,h >d .一质量为m 、边长为d 的正方形线框由距区域I 上边界某一高度处静止释放,在穿过两磁场区域的过程中,通过线框的电流及其变化情况相同.重力加速度为g ,空气阻力忽略不计.则下列说法正确的是( )

A.线框进入区域Ⅰ时与离开区域Ⅰ时的电流方向相同 B.线框进入区域Ⅱ时与离开区域Ⅱ时所受安培力的方向相同 C.线框有可能匀速通过磁场区域Ⅰ D.线框通过区域Ⅰ和区域Ⅱ产生的总热量为Q=2mg(d+h) 4、如图所示,在水平面上有两条光滑的长直平行金属导轨MN、PQ,电阻忽略不计,导轨间距离为L,磁感应强度为B的匀强磁场垂直于导轨所在平面.质量均为m的两根金属a、b放置在导轨上,a、b接入电路的电阻均为R.轻质弹簧的左端与b杆连接,右端固定.开 始时a杆以初速度v0向静止的b杆运动,当a杆向右的速度为v时,b杆向右的速度达到最大值v m,此过程中a杆产生的焦耳热为Q,两杆始终垂直于导轨并与导轨接触良好,则b 杆达到最大速度时() A.b杆受到弹簧的弹力为 B.a杆受到的安培力为 C.a、b杆与弹簧组成的系统机械能减少量为Q D.弹簧具有的弹性势能为mv02﹣mv2﹣mv m2﹣2Q 5、如图所示,电阻不计的金属导轨PQ、MN水平平行放置,间距为L,导轨的P、M端接到匝数比为n1:n2=1:2的理想变压器的原线圈两端,变压器的副线圈接有阻值为R的电阻.在两导轨间x≥0区域有垂直导轨平面的磁场,磁场的磁感应强度B=B0sin2kπx,一阻值不计的 导体棒ab垂直导轨放置且与导轨接触良好.开始时导体棒处于x=0处,从t=0时刻起,导体棒ab在沿x正方向的力F作用下做速度为v的匀速运动,则()

高考物理连接体模型问题归纳

绳牵连物”连接体模型问题归纳 广西合浦廉州中学秦付平 两个物体通过轻绳或者滑轮这介质为媒介连接在一起,物理学中称为连接体,连结体问题是物体运动过程较复杂问题,连接体问题涉及多个物体,具有较强的综合性,是力学中能考查的重要内容。从连接体的运动特征来看,通过某种相互作用来实现连接的物体,如物体的叠合,连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。从能量的转换角度来说,有动能和势能的相互转化等等,下面本文结合例题归纳有关“绳牵连物”连接体模型的几种类型。 一、判断物体运动情况 例1如图1所示,在不计滑轮摩擦和绳质量的条件下,当小车匀速向右运动时,物体A的受力情况是() A.绳的拉力大于A的重力 B.绳的拉力等于A的重力 C.绳的拉力小于A的重力 D.拉力先大于A的重力,后小于重力

解析:把小车的速度为合速度进行分解,即根据运动效果向沿绳的方向和与绳垂直的方向进行正交分解,分别是v2、v1。如图1所示,题中物体A的运动方向与连结处绳子的方向相同,不必分解。A的速度等 于v2,,小车向右运动时,逐渐变小,可知逐渐变大,故A向上做加速运动,处于超重状态,绳子对A的拉力大于重力,故选项A正确。 点评:此类问题通常是通过定滑轮造成绳子两端的连接体运动方向不一致,导致主动运动物体和被动运动物体的加速、减速的不一致性。解答时必须运用两物体的速度在各自连接处绳子方向投影相同的规律。 二、求解连接体速度 例2质量为M和m的两个小球由一细线连接(),将M置于半径为R的光滑半球形容器上口边缘,从静止释放,如图2所示。求当M滑至容器底部时两球的速度。两球在运动过程中细线始终处于绷紧状态。 解析:设M滑至容器底部时速度为,m的速度为。根据运动效果,将沿绳的方向和垂直于 绳的方向分解,则有:,对M、m系统在M从容器上口边缘滑至碗底的过程,由机械能

高中物理难题

测试题难题15题赏析 1.(盐城一调)如图所示,斜劈A 静止放置在水平地面上。质量为m 的物体B 在外力F 1和F 2的共同作用下沿斜劈表面向下运动。当F 1方向水平向右,F 2方向沿斜劈的表面向下时斜劈受到地面的摩擦力方向向左。则下列说法中正确的是AB A .若同时撤去F 1和F 2,物体 B 的加速度方向一定沿斜面向下 B .若只撤去F 1,在物体B 仍向下运动的过程中,A 所受地面摩擦力方向可能向右 C .若只撤去 F 2,在物体B 仍向下运动的过程中,A 所受地面摩擦力方向可能向右 D .若只撤去F 2,在物体B 仍向下运动的过程中,A 所受地面摩擦力不变 2.(扬州期末)如图所示,L 1和L 2为平行的虚线,L 1上方和L 2下方都是垂直纸面向里的磁感应强度相同的匀强磁场,AB 两点都在L 2上.带电粒子从A 点以初速v 与L 2成300斜向上射出,经过偏转后正好过B 点,经过B 点时速度方向也斜向上,不计重力,下列说法中正确的是AB A .带电粒子经过 B 点时的速度一定跟在A 点的速度相同 B .若将带电粒子在A 点时的初速度变大(方向不变)它仍能经过B 点 C .若将带电粒子在A 点时初速度方向改为与L 2成600角斜向上,它就不一定经过B 点 D. 粒子一定带正电荷 感悟与反思: AB 选项考查基本知识,C 选项考查这种运动的周期性,也能检查学生的错误思维定势。 4.(扬州期末15分)如图所示,一边长L = 0.2m ,质量m 1 = 0.5kg ,电阻R = 0.1Ω的正方形导体线框abcd ,与一质量为m 2 = 2kg 的物块通过轻质细线跨过两定滑轮相连。起初ad 边距磁场下边界为d 1 = 0.8m ,磁感应强度B =2.5T ,磁场宽度d 2 =0.3m ,物块放在倾角θ=53°的斜面上,物块与斜面间的动摩擦因数μ=0.5。现将物块由静止释放,经一段时间后发现当ad 边从磁场上边缘穿出时,线框恰好做匀速运动。(g 取10m/s 2,sin53°=0.8,cos53°= 0.6)求: (1)线框ad 边从磁场上边缘穿出时绳中拉力的功率; (2)线框刚刚全部进入磁场时速度的大小; (3)整个运动过程中线框产生的焦耳热。 解:(1)由于线框匀速出磁场,则 对m 2有:0cos sin 22=--T g m g m θμθ 得T =10N ……2分 对m 1有:01=--BIL g m T 又因为R BLv I = 联立可得:s m R L B g m g m v /2)cos (sin 2 212=--= θμθ……2分 所以绳中拉力的功率P =Tv =20W ……2分 (2)从线框刚刚全部进入磁场到线框ad 边刚要离开磁场,由动能定理得 K E v m m L d g m L d g m g m -+= ----22121222)(2 1 )())(cos sin (θμθ ……3分 且2 021)(2 1v m m E k += 解得v 0=5103=1.9m/s ……2分 F 1 F 2

高考物理大题专项训练汇总-共23页

1、(安徽省铜陵市第一中学2019届高三5月教学质量检测理科综合试题)如图甲所示,光滑的水平地面上放有一质 量为M、长为的木板。从时刻开始,质量为的物块以初速度从左侧滑上木板,同时在木板上施以水平向右的恒力,已知开始运动后内两物体的图线如图乙所示,物块可视为质点, ,下列说法正确的是() A、木板的质量 B、物块与木板间的动摩擦因数为 C、时,木板的加速度为 D、时,木板的速度为 2、在一个倾角为37°斜面底端的正上方h=6.8m处的A点,以一定的初速度向着斜面水平抛出一个小球,恰好垂直击中斜面,不计空气阻力,g=10m/s2,求抛出时的初速度和飞行时间. 3、如图所示为交流发电机的示意图,线圈的匝数为2019,边长分别为10cm和20cm,在磁感应强度B=0.5T的匀强 磁场中绕OO′轴匀速转动,周期为T=s.求: (1)交流电压表的示数. (2)从图示位置开始,转过30°时感应电动势的瞬时值.

4、有一个阻值为R的电阻,若将它接在电压为20V的直流电源上,其消耗的功率为P;若将它接在 如图所示的理想变压器的次级线圈两端时,其消耗的功率为.已知变压器输入电压为u=220sin100 πt(V),不计电阻随温度的变化.求: (1)理想变压器次级线圈两端电压的有效值. (2)此变压器原、副线圈的匝数之比. 5、(2019·盐城高一检测)光滑水平面AB与竖直面内的圆形导轨在B点连接,导轨半径R=0.5 m,一 个质量m=2 kg的小球在A处压缩一轻质弹簧,弹簧与小球不拴接。用手挡住小球不动,此时弹簧弹 性势能E p=49 J,如图所示。放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C, g取10 m/s2。求: (1)小球脱离弹簧时的速度大小; (2)小球从B到C克服阻力做的功; (3)小球离开C点后落回水平面时的动能大小。 6、2019年7月17日,马航MH17(波音777)客机在飞经乌克兰上空时,疑遭导弹击落坠毁,机上乘客和机组人员全部罹难。若波音777客机在起飞时,双发动机推力保持不变,飞机在起飞过程中所受阻力恒为其自重的0.1,根据下表性能参数。 求:(取g=10 m/s2) (1)飞机以最大起飞重量及最大推力的情况下起飞过程中的加速度; (2)在第(1)问前提下飞机安全起飞过程中滑行的距离; (3)飞机以900 km/h的巡航速度,在35 000英尺巡航高度飞行,此时推力为最大推力的90%,则该发动机的功率为多少? 7、(2019·西安市高一检测)如图所示,宇航员站在某质量分布均匀的星球表面沿水平方向以初速度v0抛出一个小球,经时间t落地,落地时速度与水平地面间的夹角为α,已知该星球半径为R,万有引力常量为G,求:

高考物理力学知识点之牛顿运动定律难题汇编及答案

高考物理力学知识点之牛顿运动定律难题汇编及答案 一、选择题 1.如图所示,在水平地面上有一辆小车,小车内底面水平且光滑,侧面竖直且光滑。球A 用轻绳悬挂于右侧面细线与竖直方向的夹角为37°,小车左下角放置球B ,并与左侧面接触。小车在沿水平面向右运动过程中,A 与右侧面的弹力恰好为零。设小车的质量为M ,两球的质量均为m ,则( ) A .球A 和球 B 受到的合力不相等 B .小车的加速度大小为6m/s 2 C .地面对小车的支持力大小为(M +m )g D .小车对球B 的作用力大小为1.25mg 2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的v -t 图象如图所示.取g =10m/s 2,则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为( ) A .0.2,6N B .0.1,6N C .0.2,8N D .0.1,8N 3.如图是塔式吊车在把建筑部件从地面竖直吊起的a t -图,则在上升过程中( ) A .3s t =时,部件属于失重状态 B .4s t =至 4.5s t =时,部件的速度在减小 C .5s t =至11s t =时,部件的机械能守恒

D .13s t =时,部件所受拉力小于重力 4.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v?t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( ) A .甲球质量大于乙球 B .m 1/m 2=v 2/v 1 C .释放瞬间甲球的加速度较大 D .t 0时间内,两球下落的高度相等 5.滑雪运动员由斜坡高速向下滑行过程中其速度—时间图象如图乙所示,则由图象中AB 段曲线可知,运动员在此过程中 A .做匀变速曲线运动 B .做变加速运动 C .所受力的合力不断增大 D .机械能守恒 6.下列对教材中的四幅图分析正确的是 A .图甲:被推出的冰壶能继续前进,是因为一直受到手的推力作用 B .图乙:电梯在加速上升时,电梯里的人处于失重状态 C .图丙:汽车过凹形桥最低点时,速度越大,对桥面的压力越大 D .图丁:汽车在水平路面转弯时,受到重力、支持力、摩擦力、向心力四个力的作用 7.如图所示,倾角为θ的光滑斜面体始终静止在水平地面上,其上有一斜劈A,A 的上表面水平且放有一斜劈B ,B 的上表面上有一物块C ,A 、B 、C 一起沿斜面匀加速下滑。已知A 、B 、C 的质量均为m ,重力加速度为g ,下列说法正确的是

相关主题