搜档网
当前位置:搜档网 › 计算机在材料科学中的应用

计算机在材料科学中的应用

计算机在材料科学中的应用
计算机在材料科学中的应用

材料与化工学院

2012级材料科学与工程一班

课程作业:计算机在材料科学中的应用学生姓名:张硕

学生学号:20120413310040

授课老师:陈大明

摘要

VASP是维也纳大学Hafner小组开发的进行电子结构计算和量子力学-分子动力学模拟软件包。它是目前材料模拟和计算物质科学研究中最流行的商用软件之一。(1)它在材料学中有广泛的运用,具有很高的使用价值。Vasp仍在不停开发中,有更多更有用的功能将会被人们开发,这会使人们对材料的研究更加透彻。

关键词

Vasp 电子结构计算和量子力学-分子动力学材料模拟物质科学

一.简介

VASP是维也纳大学Hafner小组开发的进行电子结构计算和量子力学-分子动力学模拟软件包。它是目前材料模拟和计算物质科学研究中最流行的商用软件之一。Vasp是基于castep(Cambridge Sequential Total Energy Package 的缩写是一个基于密度泛函方法的从头算量子力学程序)1989版开发的。

VASP通过近似求解Schr?dinger方程得到体系的电子态和能量,既可以在密度泛函理论(DFT)框架内求解Kohn-Sham方程(已实现了混合(hybrid)泛函计算),也可以在Hartree-Fock(HF)的近似下求解Roothaan方程。此外,VASP也支持格林函数方法(GW准粒子近似,ACFDT-RPA)和微扰理论(二阶M?ller-Plesset)。

VASP使用平面波基组,电子与离子间的相互作用使用模守恒赝势(NCPP)、超软赝势(USPP)或投影扩充波(PAW)方法描述。

VASP使用高效的矩阵对角化技术求解电子基态。在迭代求解过程中采用了Broyden和Pulay密度混合方案加速自洽循环的收敛。VASP可以自动确定任意构型的对称性。利用对称性可方便地设定Monkhorst-Pack特殊点,可用于高效地计算体材料和对称团簇。Brillouin区的积分使用模糊方法或Bl?chl改进的四面体布点-积分方法,实现更快的k 点收敛。(2)

vasp中的方法基于有限温度下的局域密度近似(用自由能作为变量)以及对每一MD 步骤用有效矩阵对角方案和有效混合求解瞬时电子基态。这些技术可以避免原始的方法存在的一切问题,而后者是基于电子、离子运动方程同时积分的方法。离子和电子的相互作用超缓Vinderbilt赝势(US-PP)或投影扩充波(PAW)方法描述。两种技术都可以相当程度地减少过渡金属或第一行元素的每个原子所必需的平面波数量。力与张量可以用很容易地计算,用于把原子衰减到其瞬时基态中。

二.功能

1. 采用周期性边界条件或超原胞模型处理原子、分子、团簇、纳米线

2. 计算膜管、薄膜、晶体、准晶和无定性材料,以及表面体系和固体

3.计算材料的结构参数键长,键角,晶格常数,原子位置等和构型

4.计算材料的状态方程和力学性质体弹性模量和弹性常数)

5.计算材料的电子结构能级、电荷密度分布、能带、电子态密度和

6.计算材料的光学性质

7.计算材料的磁学性质

8.计算材料的晶格动力学性质声子谱等)

9.表面体系的模拟重构、表面态和模拟)

10.从头分子动力学模拟

11.计算材料的激发态准粒子修正)

三.优点

1.VASP使用PAW方法或超软赝势,因此基组尺寸非常小,描述体材料一般需要每原子不超过100个平面波,大多数情况下甚至每原子50个平面波就能得到可靠结果。

2.在平面波程序中,某些部分代码的执行是三次标度。在VASP中,三次标度部分的前因子足可忽略,导致关于体系尺寸的高效标度。因此可以在实空间求解势的非局域贡献,并使正交化的次数最少。当体系具有大约2000个电子能带时,三次标度部分与其它部分可比,因此VASP可用于直到4000个价电子的体系。

3.VASP使用传统的自洽场循环计算电子基态。这一方案与数值方法组合会实现有效、稳定、快速的Kohn-Sham方程自洽求解方案。程序使用的迭代矩阵对角化方案(RMM-DISS 和分块Davidson可能是目前最快的方案。

4.VASP包含全功能的对称性代码,可以自动确定任意构型的对称性。

5.对称性代码还用于设定Monkhcrst-Pack特殊点,可以有效计算体材料和对称的团簇。Brillouin区的积分使用模糊方法或四面体方法。四面体方法可以用校正去掉线性四面体方法的二次误差,实现更快的点收敛速度。VASP广泛使用于材料模拟研究领域,它的代码使用FORTRAN编写,具有良好的可读性,同时很方便地进行代码的修改以及与其他代码相结合使用。它的主要特点在于基组小适于第一行元素和过渡金属,对于大体系(<4000价电子)计算快,支持断点续算功能,但不能计算体系的动力学过程。

四.应用范围

某应用计算集群系统的优化集群计算技术是计算模拟的重要手段。集群是价格低廉而且方便的高性能计算方法,通过本地网络连接多台计算机来共同完成工作。集群中的计算机处于平等地位,通过相互协作完成计算。集群以较低的成本获得计算能力大幅度的提升,是高性能计算趋于平民化。集群采用并行与分布式计算技术。并行计算(,或称并行处理,平行计算)一般是指许多指令得以同时进行计算的计算模式。分布式计算(是一种把需要进行大量计算的工程数据分成小块,由多台计算机分别计算,上传运行结果后,将结果统一合并得

出数据结论的计算方式。(3)

本文所研究的应用计算集群在基础科学研究、工业工程、公益事业、国防安全等各个领域的广泛应用,解决了一些重大、关键、挑战性的重要科学和工程问题,对支撑科技创新、推动经济发展起到了重要作用。

基础科学研宄是VASP应用计算最主要的应用领域。过去的几十年里研宄人员在化学、材料科学、生命科学、固体物理、生物物理、生物化学、药物研宄等微观领域的研究中,基于量子力学方法发展了大量而可靠的非相对论薛定愕方程和相对论迪拉克方程的近似解法,用来模拟微观世界中原子和分子的相互作用和行为。例如,使用并行程序进行密度泛函理论(计算已经成为材料科学、固体物理、计算化学、计算生物学等领域内必不可少的研究手段之一;并行实现的高精度耦合簇理论(和组态相互作用(方法被许多量子化学计算程序采用,成为计算化学的主要工具;基于牛顿力学并结合了量子力学的分子动力学计算的并行实现,是生命科学、生物物理、生物化学、药物研究等领域的主要模拟手段。随着更强大、更高计算能力的应用计算集群的出现,人们可以模拟越来越大规模的微观系统、越来越长时间的微观过程、越来越精细的微观现象,从而极大的增强了对自然的认知能力。

VASP应用一般采用周期性边界条件来处理原子、分子、团簇、纳米线,薄膜、晶体、准镜和定性材料,以及表面体系和固体,可以计算材料的结构参数和构型、状态方程和力学性质、电子结构、光学、磁学和晶格动力学性质等等。

VASP应用计算集群主要应用于六大业务领域,

1.地质勘探:地质资料处理

2.物理化学:物质的物理化学属性的科研工作;

3.生命科学:基因科学,蛋白质科学的研宄以及新药的研发

4.材料科学:计算机辅助工程,广泛应用于材料科学研宄中;

5.气象环境海洋:气象环境海洋的数值预报

6.石油勘探:油气勘探研宄

作为材料科学与工程专业的一名本科生,我们更应该了解熟悉VASP的应用方法,以方便我们以后的学习工作生活中的研究与应用。

五.VASP的发展

VASP较的原型是Mike Payne在开发的程序包。这个程序包产生了两个分支一个是VASP,一个是CASTEP剑桥连续总能量软件包)。当VASP开始发展的时候,CASTEP 这个名字还没有产生。1989年,Juergen Hafiner把的VASP原型代码从剑桥带回了维也纳,但VASP的真正开发是在1991年开始的。这个时候,CASTEP实际上己经进一步发展了很多,但是VASP是基于1989年版的CASTEP开发的,这个版本CASTEP的只支持局域腐势和Car-Parrineiio型的急速下降算法。1995年,VASP的名字被确定下来,并且成为一个稳定而通用的从头计算工具。

1996年,VASP的语言FORTRAN出现,并且开始进行MPI并行化。但是,开始进行并行化工作的人“抄袭”了CASTEP的通讯内核,从而引起了VASP和CASTEP的纠纷。1997年1月,VASP的并行化在英国完成。1998年,VASP的通讯内核被完全重写,以去除CASTEP的部分,这导致了VASP对T3D/T3E通讯不再特别有效率。1999年,投影增强波(PAW)方法被采用。

目前,维也纳大学的Juergen Hafiner和Georg Kresse研究组以及德国的研宄组共同开发并发展VASP。它是用赝势平面波方法进行分子动力学模拟的软件包。与同类的软件相比,它比较早的实现了超软赝势,计算量相对于一般的模守恒赝势方法大为减少。VASP加入了对PAW方法的支持,这使得VASP的应用更为广泛。

VASP是众多研究领域常用的计算应用软件,国内的大量研究机构都釆用

VASP作为主要计算软件平台,因此也建设了大量的应用计算集群。

由于需要处理海量数据,VASP应用计算对处理器的浮点运算能力、性能、内存容量以及带宽都有较高的要求。当前的应用计算集群体系结构的主流仍然是以Cluster集群)架构来构建大规模的并行高性能计算系统(4)。这主要得益于其高速的运算性能、良好的Linux 操作系统和节点之间的兼容性,具体表现在:

1.强大的运算能力:集群的运算能力能满足大规模资料处理与解释分析的需求;GPU 图形处理单元)技术的出现和发展,带来了VASP应用计算性能进一步的提升。

2.较高的I/O性能:在运行过程中,每个作业需要约数十GB的存储空间存放临时文件,并对这些临时文件进行频繁的读写操作,因而对系统I/O的性能提出要求较高;

3.高性能管理:除了处理超大规模的计算任务外,还要支持多用户、多作业的能力,这就要求系统具有强大的资源管理和作业调度功能,以应对作业的自动调度、优先级管理,用户的资源分配等要求;

4.较强的系统扩展能力:随着研究与业务的发展,原有应用程序的计算规模必定涉及到系统扩展问题,不仅是硬件或计算能力的增加,而且要求新增系统能充分地融合到现有的系统中。

VASP应用计算集群系统需要考虑软硬件一体化发展问题。目前应用计算的硬件发展迅速,但软件方面的缺失仍是应用计算效率提高的瓶颈,如何解决“软硬失衡”问题,也是应用计算方面的研究热点。

无论在国内还是国外,计算集群性能比的都是系统的潜能,即理论运算峰值速度及Linpack基准测试性能,但它们却无法反映计算的实用性能。实际上,对于很多科研院所、高校、企业等集群计算应用机构来说,因为软件、配置、管理等因素导致其集群计算系统应用效率低下的例子比比皆是。一些用户集群计算系统的硬件规模虽然在不断扩展,但其实际计算力却没有明显提升,又或是现在拥有几百个甚至上千个计算核心的计算集群系统虽然大量涌现出来,但是能充分利用其性能的应用软件却是少之又少。(5)

西方国家在硬件制造和软件开发方面相对比较平衡,而我国应用计算产业呈现的却是机器大、软件差,软硬失衡的格局,有人将之形象地比喻为“瘸子走路”。软件开发和应用水平的提高,取决于多方面的因素,一是目前我们还缺乏对规模更大、精度更高的计算模型及算法的研宄,它们在传统应用用户如石油、气象、航天等领域有巨大的需求;二是政府、软件开发商对多核处理器的支持力度不够,投入不足;三是我国专业软件开发的人员少,队伍还不够固定。

国内相关研究机构现有的VASP应用计算集群和数据交换网络仍然存在着诸多的问题,例如计算模型不够优化,VASP应用计算集群系统设计不合理,缺乏数据传输安全保障手段等等。

计算模型不够优化,VASP应用计算集群系统设计不合理都会影响到数据计算的准确性和计算效率,从而导致最终的数据分析结果的偏离正确方向,造成严重的后果。因此,需要建立完善的机制来保证数据计算环境的高性能、高可靠性和足够的安全性,所以在深部岩土力学研究息化工作的整体框架中,建立基础深部岩土力学研宄数据的保障体系成为必不可少的组成部分。

六.VASP与其他几种软件的区别

vasp一般采用周期性边界条件来处理原子、分子、团簇、纳米线,薄膜、晶体、准镜和我定性材料,以及表面体系,也太体系和固体,可以计算材料的结构参数和构型、状态方程和力学性质、电子结构、光学、磁学和晶格动力学性质等等。

Materials studio可以进行构型优化、性质预测和X射线衍射分析,以及复杂的动力学模拟和量子力学等方面的计算。有Materials Visualizer、Discover、COMPASS、Amorphous Cell、Reflex、Reflex Plus、Equilibria、DMol3、CASTEP等模块,分别由各自的擅长领域。

Gauss可以计算分子能量和结构、过渡态能量和结构、键和反应能量、分子轨道、多重矩、原子电荷和电势、振动频率、红外和拉曼光谱、核磁性质、极化率和超级化率、热力

学性质和反应路径等等,计算可以对体系的基态或激发态执行,可以预测周期性体系的能量、结构和分子轨道。

七.VASP实际应用案列

为了了解VASP软件的实际应用,我阅读了一篇文献进行参考

缺陷对RRAM 材料阻变机理的影响(6)

基于密度泛函理论(DFT)的第一性原理和VASP仿真软件,分析了阻变随机存储器(RRAM)阻变效应的物理机制。对比计算了单斜晶相HfO 中Ag掺杂体系、氧空位缺陷体系和Ag及氧空位缺陷共掺杂复合缺陷体系的能带、态密度、分波电荷态密度面和形成能,结果表明在相同浓度下Ag掺杂体系能形成导电通道,而氧空位缺陷体系不能形成导电通道;共掺杂体系中其阻变机制以Ag传导为主,氧空位缺陷为辅,且其形成能变小,体系更加稳定。计算共掺杂体系的布居数和迁移势垒,得出在氧空位缺陷存在的前提下,Ag~O键长明显增加,Ag离子的迁移势垒变小,电化学性能增强。进一步计算了缺陷问的相互作用能,其值为负,表明缺陷间具有相互缔合作用,体系更加稳定。

使用基于密度泛函理论(DFT)的第一性原理及VASP软件包对RRAM 器件进行研究,对离子实和价电子之间的相互作用采用缀加投影波方法(pro—jector augmented wave,PAW),电子之间的交换关联势采用广义梯度近似(generalized gradient approxi—mation,GGA) 。以单斜晶HfO 载体,先对单胞进行优化,在此基础上构造96原子的2×2×2超晶胞结构,平面波截断能设为400eV,每个原子力的收敛标准设置每个原子<0.001eV/A。

为了证实自己的猜想,研究人员使用了VASP软件进行了实验。对离子实和价电子之间的相互作用采用缀加投影波方法。得到实验数据,并对实验结果进行科学的分析与研究证实了紫的猜想

八.对VASP未来的展望

随着材料科学研究信息化的不断发展,特别是各种数据系统的建立,对于VASP应用计算集群系统及相关网络基础设施平台的要求将不断提高,需要对其进行不断的优化和完善,为实现材料研究的全面信息化的发展目标提供坚实的基础。

随着VASP软件包在各行各业广泛应用,各类研究机构也相应地开始越来越多地建设应用计算集群。建设VASP应用计算集群,硬件环境的建设固然重要,但是VASP软件体系的建设和优化更加重要。

随着研宄人员对VASP应用软件包的不断深入研宄,VASP应用计算集群的建设也必将更加规范和科学,实现更好的并行计算性能,更高的计算精度和更高管理效率,为各行各业的数据计算和研宄带来更多助力,将各类研宄课题推向新的高度。

九.理解与感悟

通过对计算机科学在材料中的应用这门课程的学习以及对VASP软件的学习与了解,

我对材料研究的认识提高的了一个新的层次。以前,我认为材料的研究更多的,更主要的研究方法方式是通过实验去分析去研究,而计算机知不是过方便人们研究的一种手段。通过对VASP软件的了解和对这门课的学习,我发现计算机在材料研究中也起着至关重要的作用。运用的VASP和其他软件可以大大提高对材料研究的水平与效率。希望自己以后可以熟练应用这些软件来帮助自己进行材料研究,也希望这些软件可以更好地开发以便于人们利用。

参考文献

(1)百度百科

(2)百度百科

(3)李波,曹福毅,王祥凤高性能技术发展概述沈阳工程学院学拫自然科学版,2012,08,03

(4)曾宇,王洁中国高性能计算机技术及标准现状分析信息技术与标准化,2006,10,09 (5)高性能计算领域软硬件失衡加剧2009 ,12, 21

(6)杨金,代月花,徐太龙,蒋先伟,许会芳,卢金龙,罗京,陈军宁(1.安徽大学电子信息工程学院,安徽合肥230601;2.淮北师范大学物理与电子信息学院,安徽淮北235000)

材料科学在计算机中的应用

沈阳航空航天大学SHENYANG AEROSPACE UNIVERSITY 学院:材料科学与工程 专业:金属材料工程 姓名:张博 班级:84110101 学号:2008041101026

计算机在材料科学中的应用 摘要介绍计算机技术在材料科学研究中应用领域。在材料科学研究领域中的具体应用。借助于计算机可推动材料研究、开发与应用。计算机的具体应用。关键词计算机技术材料科学应用 材料科学是一门实验科学,实验是制备新材料和测定其结构和性能的直接手段。而由于计算机技术、计算理论的迅速发展,许多更加复杂、大型的计算成为可能,使得在材料研究领域.采用计算方法来研究材料的结构和性能,并指导实验研究成为一种新的研究方向。计算机模拟技术已广泛应用于包括材料液态成形、塑性成形、连接成形、高分子材料成形、粉末冶金成形、复合材料成形等各种材料成形工艺领域。计算机模拟技术在材料成形加工中的应用,使材料成形工艺从定性描述走向定量预测,为材料的加工及新工艺的研制提供理论基础和优选方案,从传统的经验试错法,推进到以知识为基础的计算试验辅助阶段,对于实现批量小、质量高、成本低、交货期短、生产柔性、环境友好的未来制造模式具有重要的意义。计算机模拟是未来材料成形制备工艺的必由之路,其发展趋势是多尺度模拟及集成。

一.计算机在材料科学中的应用领域 1 计算机用于新材料的设计 材料设计是指通过理论与计算预报新材料的组分、结构与性能,或者通过理论与设计来“订做”具有特定性能的新材料,按生产要求设计最佳的制备和加工方法。材料设计按照设计对象和所涉及的空问尺寸可分为电子层次、原子/分子层次的微观结构设计和显微结构层次材料的结构设计。材料设计主要是利用人工智能、模式识别、计算机模拟、知识库和数据库等技术,将物理、化学理论和大批杂乱的实验资料沟通起来,用归纳和演绎相结合的方式对新材料的研制作出决策,为材料设计的实施提供行之有效的技术和方法。 2 材料科学研究中的计算机模拟 利用计算机对真实系统模拟实验、提供模拟结果,指导新材料研究,是材料设计的有效方法之一。材料设计中的计算机模拟对象遍及从材料研制到使用的过程,包括合成、结构、性能制备和使用等。计算机模拟是一种根据实际体系在计算机上进行的模拟实验。通过将模拟结果与实际体系的实验数据进行比较,可以检验模型的准确性,也可以检验出模型导出的解析理论所作的简化近似是否成功,还可为现实模型和实验室中无法实现的探索模型做详细的预测并提供方法。 3 材料与工艺过程的优化及自动控制 材料加工技术的发展主要体现在控制技术的飞速发展,微机和可编程控制器(PLC)在材料加工过程中的应用正体现了这种发展和趋势。在材料加工过程中利用计算机技术不仅能减轻劳动强度,更能改善产品的质量和精度,提高产量。用计算机可以对材料加工工艺过程进行优化控制。例如在计算机对工艺过程的数学模型进行模拟的基础上,可以用计算机对渗碳渗氮全过程进行控制。在材料的制备中,可以对过程进行精确的控制,例如材料表面处理(热处理)中的炉温控制等。计算机技术和微电子技术、自动控制技术相结合,使工艺设备、检测手段的准确性和精确度等大大提高。控制技术也由最初的简单顺序控制发展到数学模型在线控制和统计过程控制,由分散的个别控制发展到计算机综合管理与控制,控制水平提高,可靠性得到充分保证。 4 计算机用于数据和图像处理 材料科学研究在实验中可以获得大量的实验数据,借助计算机的存储设备,可以大量保存数据,并对这些数据进行处理(计算、绘图,拟合分析)和快速查询等。材料的性能与其凝聚态结构有密不可分的关系,其研究手段之一就是光学显微镜和

计算机在化学中的应用

计算机在化学中的应用 专业:应用化学 班级: 学号: 姓名: 指导老师:瞿阳 湖北·武汉 二〇一五年五月

1.第一次作业.文献检索 纳米二氧化锡分级结构的合成 【摘要】纳米材料与技术的出现和发展对于21世纪的材料科学、生命科学、军事技术、电子技术、微型器件制造技术以及人们的日常生活具有极其重要和深远的影响。而纳米材料的制备是整个纳米科技的基础,越来越多的制备方法和路线被研究开发出来,以期能使纳米材料能够符合各种实际应用的要求,并发挥其最大效能。纳米二氧化锡是一种n型宽禁带半导体材料,具有优异的气敏特性和光电性能,作为一种新型功能材料应用于气敏和湿敏元件、电极材料、光学玻璃、催化剂、功能陶瓷等方面。只要掌握了对二氧化锡纳米材料的可控合成,就能有目的地调控其各项性质参数,并最终实现其应用价值。下文研究了几种二氧化锡纳米材料的制备方法并扩展了这些制备方法的运用范围。【关键词】纳米材料二氧化锡制备液相直接沉淀法 【正文】目前制备纳米二氧化锡的方法主要有液相法和气相法两大类。常用的方法有溶胶一凝胶法、低温等离子体化学法、微乳液法、金属醇盐烃化法、硝酸氧化法、液相沉淀法、超临界流体干燥法、电弧气化合成法等等。现就制备纳米二氧化锡粉体的方法作一些综述。 1.沉淀法 沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适当的沉淀剂制备纳米颗粒的前驱体沉淀物。再将此沉淀物进行干燥或锻烧,从而制得相应的纳米颗粒.例如:利用金属盐或氢氧化物的溶解度,调节溶液酸度、温度、溶剂,使其沉淀,然后对沉淀物进行洗涤、干燥、加热处理制成纳米颗粒。一般颗粒在1微米左右时就可以发生沉淀,从而产生沉淀物,生成颗粒的粒径通常取决于沉淀物的溶解度。沉淀物的溶解度越小,相应颗粒径也越小。而颗粒的粒径随溶液的过饱和度减小呈增大趋势。沉淀法制备纳米颗粒主要分为直接沉淀法、均相沉淀法、化合物沉淀法、水解沉淀法等[1-3]。2.溶胶凝胶法 溶胶一凝胶法广泛应用于金属氧化物纳米粒子的制备,前驱物用金属醇 盐或非醇盐均可。方法实质是前驱物在一定条件下水解成溶胶,再制成凝胶,经干燥和热处理后制得所需纳米粒子。例如中南工业大学的段学臣等应用醇盐水鳃制备了8nm的二氧化锡粉体,华南理工大学的吴柏源采用冷冻干燥法制备

07371210冶金过程计算机模拟及应用

冶金过程计算机模拟及应用 Computer Simulation on Metallurgy Process and Application 课程编号:07371210 学分:1.5 学时:24 (其中:讲课学时:24 实验学时:0 上机学时:0) 先修课程:钢铁冶金学、计算机应用基础、传输原理 适用专业:冶金工程 教材:《冶金过程数值模拟分析技术的应用》,萧泽强,冶金工业出版社,2006 开课学院:材料科学与工程学院 一、课程的性质与任务: 《冶金过程计算机模拟及应用》是冶金工程专业重要的专业课,它建立在钢铁冶金学、离散数学、计算机技术、传输原理等课程知识的基础上,将计算机应用到实际冶金过程中进行模拟控制,以期实现过程优化和自动化,是冶金学乃至整个材料加工工程的发展方向。 《冶金过程计算机模拟及应用》课程的基本任务是: 1.掌握针对冶金过程建立数学模型的一般方法和材料科学研究中常用的数值分析方法; 2.学习材料科学研究中主要物理场的数值模拟方法,对过程进行计算机模拟。 二、课程的基本内容及要求: 第一章、绪论 1.教学内容 (1)本课程的性质、研究对象与方法、目的、任务; (2)计算机用于冶金过程的模拟、过程的优化与自动控制; (3)计算机网络在冶金过程中的应用 2.学习绪论的基本要求 (1)了解冶金过程计算机应用的现状与发展趋势; (2)计算机在未来的冶金领域乃至整个材料加工领域应用的重要。 第二章、数学模型 1.教学内容 (1)数学模型基础基本概念、模型的分类和作用 (2)建立数学模型的一般步骤和原则 (3)常用的数学建模方法理论分析法、模拟方法、类比分析法、数据分析法2.基本要求

计算机在化学化工中的应用

化学化工中计算机的发展及应用 摘要:化学由于自身具有的特殊性,使它与计算机技术的结合尤为紧密。近几十年在我国发展迅速,尤其是各种化学专用软件不断应用。这些软件的功能包括化学反应式书写、图形绘制、数据处理、计算与测试等。化学软件是化学工作者的得力助手,掌握相关软件的应用,将会极大地提高工作效率。 关键词:化学Chemsketch Origin Office Visio The computer in chemical development and application Wangmaocan (Anhui University of Science and Technology Huainan 232001) Abstract:The particularity of chemical because of itself, making it with the combination of computer technology particularly close. In recent decades, especially in the rapid development of various chemical special software constantly applications. These software features include chemical reactive writing, graphics, data processing, calculation and test, etc. Chemical software is chemical worker's right-hand man, to master relevant software application, will greatly improve the work efficiency. Key words:chemical Chemsketch Origin Office Visio

材料科学与工程学科的发展历程和趋势

材料科学与工程学科发展历程和趋势 摘要:本文结合国内几所高校材料学科的具体实例,综述了材料科学与工程学科的国内外发展的历史进程,讨论了材料科学与工程学科的发展趋势,同时展望了材料科学与工程学科在未来的发展前景。 关键词:材料科学与工程,发展历程,趋势 Abstract In this paper,on the basis of practice of materials science and engineering discipline in several domestic universities, the development process of materials science and engineering at home and abroad were reviewed, and the development trend of this discipline were discussed. Meanwhile, the prospect of this subject in the future were prospected. Keywords:materials science and engineering,development process,trend 1 引言 上个世纪70年代以来,人们把信息、材料和能源作为社会文明的支柱。80年代又把新材料、信息技术和生物技术并列为新技术革命的重要标志。随着科学技术的高速发展,新技术、新产品及新工艺对新材料的要求越来越强烈,也促进了当代材料科学技术的飞速发展。现在,材料学科及教育的重要性已被人们认识,国内外许多工科院校及综合性大学都相继成立了材料科学与工程学院(系)。 2 材料科学与工程学科发展历程 “材料科学”这个名词在20世纪60年代由美国学者首先提出。1957年,苏联人造地球卫星发射成功之后,美国政府及科技界为之震惊,并认识到先进材料对于高技术发展的重要性,于是一些大学相继成立了十余个材料科学研究中心,从此,“材料科学”这一名词开始被人们广泛使用。 材料学科的发展过程遵循了现代科学发展的普遍规律,也是从细分走向综合。各门材料学科通过相互交叉、渗透、移植,由细分最终走向具有共同理论和技术基础的全材料科学[1]。20世纪40年代以前,基础科学和工程之间的联系并不十分紧密。在20世纪20年代固体物理和材料工程两学科是分离的,到40年代两学科才有交叉。从60年代初开始出现了材料科学,到了70年代,材料科学和材料工程的学科内涵大部分重叠,材料科学兼备自然科学和应用科学的属性,故“材料科学与工程”(MSE)作为一个大学科逐步为科技界和教育界所接受[2]。 2.1 国外材料科学与工程学科发展历程 美国西北大学M.E.Fine教授等人首先于20世纪60年代初提出了材料科学与 工程(MSE)这一概念。在上20世纪60年代以前,国内外高校均没有明确完整的MSE教育。此时,材料科学与技术人才的培养分属冶金、化工或机械等专业。从60年代初起,欧美等国家高校中冶金、机械或化工等与材料有关的系或相关的专业及学科开始改设“材料科学与工程系”、“材料科学系”、“材料工学系”。至80年代中后期,欧美等国大部分高校已完成此项工作。这种教育符合材料科学技术发展趋势。近年来,美国与欧洲在材料教育方面的最显著特点就是把材料科学与工程看作是一门学科。在大学不再需要专门的材料主题。这些材料不再是冶金、陶瓷或电子材料学,而统称为材料,材料教育涉及的范围包括金属、陶瓷、高分子、

浅谈计算机在冶金自动化控制中的应用

浅谈计算机在冶金自动化控制中的应用 发表时间:2018-05-31T10:09:58.813Z 来源:《基层建设》2018年第10期作者:崔治国[导读] 摘要:长久以来金属冶炼对于人们来说都是具有相当意义的一个行业,该行业发展如何和人们的生活息息相关。河钢集团邯钢公司自动化部河北邯郸 056000 摘要:长久以来金属冶炼对于人们来说都是具有相当意义的一个行业,该行业发展如何和人们的生活息息相关。其现如今计算机行业发展迅猛,计算机技术如何应用到冶金自动化当中也逐渐被越来越多的人关注,这做为一种新兴的潮流已经逐渐蔓延开来。计算机技术在统计和计算方面有着不可代替的优点,与此同时在控制的精确度等方面也有着极具优势的精准度因而具有十分良好的发展前景。文章从计 算机技术的内容以及具体应用入手进行分析,结合目前计算机技术应用到冶金产业当中的案例,深入探究计算机在冶金自动化控制过程中的应用。 关键字:计算机;冶金自动化;自动化控制前言: 冶金自动化自上世纪中期,简单控制器逐渐开发的时候兴起,很多产业当时采用各种控制器结合传统冶金工艺打造出了一条条的全流程冶金自动化控制系统。但是到了上世纪七十年代微型计算机技术得到深入发展之后,冶金的自动化控制工艺才真正的开始实现全线自动和自动管理。冶金自动化的过程中如果能够良好的利用计算机系统则可以提高管理过程中各方面的配合程度,在提高系统内部各环节之间交流的同时增进效益。文章从冶金自动化控制的应用入手进行探究。 1计算机应用于冶金自动化控制的前景自从人们开始将计算机技术应用到冶金自动化控制的过程中以来,有关技术不断发展完善,同时计算机技术近些年发展十分迅猛,无论是其核心内容还是拓展延伸、应用的范围,都有着很大的发展,内容发生了极大的改变。与此同时世界范围的是算计冶金自动化控制已经开始实现了一些囊括范围极广的控制管理系统。我国当前的冶金工业经过了和计算机技术一定高度上的融合之后已经开发出了一些核心效用的控制软件以打破技术封锁,与此同时结合自身情况研发出大量具有我国特色的核心控制软件,且占据了一定的国际地位。当前情况是我国冶金自动化控制系统对于计算机依然有着十分强的依赖性,因而计算机在冶金自动化控制系统中的应用目前有着比较好的发展情况。计算机作为一种新兴技术,如果能够保证现在的进步速度,在将来一定会有越来越多的应用范围,与此同时未来计算机行业也会逐渐和冶金自动化控制过程有着越来越多的融合层面。计算机在冶金自动化当中的应用的前景,还需要我们更进一步的探讨。 2计算机冶金自动化应用现在计算机在冶金自动化控制当中的应用正在逐渐增多,目前的应用主要用于冶金过程控制、信息系统控制、局域网控制等。 2.1冶金过程控制现在冶金控制的过程当中计算机技术的应用已经可以说是普遍到了每个具体流程当中,而且这一现象还在不断的深化发展。现在冶金自动化系统发展迅速,与此同时更提出了工业以太网等有关概念来构成冶金自动化的控制系统,这就在很大程度上强化了冶金企业控制个人计算机的系统应用。计算机在控制的过程中可以结合冶金生产的各方面参数比如冶金过程中需要的工艺要求和实际参数,技术要求以及模型当中数据等,当这些参数有机结合之后形成有关的数据库进行完善,然后通过该数据库建立起一套完整的区域控制系统来控制冶金的某一过程,将该过程进行科学的分析处理,同时把数据和处理结果对比性的发送到终端当中。在这一过程中计算机使用了工业以太网中提出的概念,最大化利用传感器控制器等进行检测,在提高系统各个环节反馈的能力的同时也增强了系统之间的信息传递能力,这就在很大程度上提高了系统的可靠性。比如具体操作的过程中就会面临工作环境和参数等随具体冶金过程而变化的情况,这些设备的实际运行情况和理论运行情况具体工作数据不断的输入到控制计算机当中,经过分析再把对应的最佳处理方法发送到控制设备当中,这就实现了系统工作过程中的动态控制。冶金过程控制过程中面临不同的流程有着不同的细节处理,但是其基本思路和大体框架均和本案例相似或相同。 2.2企业管理方面企业运营想要获得良好的收益就要有着庞大的数据库作为支撑,冶金企业自然不能免俗。现在的冶金企业通常都有十分复杂的工艺流程和工序配合,这就需要对于企业进行分层次管理来确保企业的正常运行。但是与此同时冶金过程展开也产生了大量繁琐的信息,如果想要深入调查这些数据找出特性加以分析,则人力基本是不可能实现的,因而就需要计算机技术的信息详细处理功能。计算机技术应用于这一方面的时候首先应当建立一个条理清晰逻辑完备且容量足够的信息储存平台,然后把有关信息先录入到平台中去以方便对平台进行管理和改动。在对钢铁进行信息统计的过程中首先应当把该种钢铁具有的固有性质和详细信息进行记录,然后分析总结制造过程中的每个细节以及设备反馈问题,最后整合销售情况和售后应用情况,再输送到信息系统当中。从钢铁在管理系统当中的存储过程我们可以知道,存入的内容从某方面来说可以理解为对于该钢铁的经验,因而不断积累有关经验就能找到面对不同问题时的最佳资源组合,进而制备完善的规划和良好的计划来实现高质量高产量的生产。信息系统的应用增强了冶金企业对于资源产出的效率,与此同时为出现问题时进行决策提出条件。 2.3自动化控制软件的开发过程冶金自动化需要相当专业的硬件作为运行基础的同时也需要足够的功能性软件进行建设支持。冶金自动化硬件伴随不同冶金工艺的改变比较小,现在计算机科技发展迅猛,这些硬件纷纷得到了改进,而很多相关软件却一直没有与时俱进赶上变化,因而很多软件开发商着手了解硬件设备信息兼容性等,制作出了各种能够和硬件相契合的软件,这些软件通常在个人计算机上也能够良好应用,同时造价也较高,这与计算机行业发展的迅猛息息相关。现在的冶金自动化软件和控制系统息息相关,可以说是一个整体,这就在管理信息等方面极大提高了自动化效率。现在计算机在冶金自动化应用中的发展促进了冶金工业增添丰富软件系统的步骤,这给冶金行业的进步提供了基础。这些年国外一些冶金软件的使用提高了共有性,这也在某种程度上给我国的软件制作提供了大量的新思路,进而带来了更多的优质软件。结语:现在冶金行业对于计算机的应用已经初具规模,而且在日后的发展中也会对计算机如何结合冶金行业生产实际提出更多问题和要求,这就在某种程度上促进了计算机开发的深度。当前我国冶金行业引入了大量的计算机自动化系统,但是和国外一些先进技术相比依然存在不小的差距,作为一个冶金自动化的工作人员,应当尽量学习先进经验,争取把握过程自动化的重点内容所在,为冶金自动化控制系统的研究做贡献。参考文献:

《计算机在化学中的应用》试卷及答案

2012级应用化学、化学专业 《计算机在化学中的应用》试题 答题内容要求截图 所做答案均为亲手制作,但是不保证答案正确性 一、数据处理:(每小题15分,共30分) 1、已知水在不同温度下的电导率数据如下: T/℃0 10 20 25 30 40 50 κ×106/(S?m-1) 1.2 2.3 4.2 5.5 7.1 11.3 17.1 利用Excel软件中的功能,求出5,15,28,35,45℃时的电导率κ值 答题要点:①做散点图②添加趋势线方程③选择合适的拟合形式 ④输出拟合方程⑤进行插值计算 2、在20℃,钢线中碳含量对电阻效应研究中,观测得数据如下: 碳含量x% 0.10 0.30 0.40 0.55 0.70 0.80 0.95

电阻y (10-5Ω) 15 18 19 21 22.6 23.8 26 利用Excel 软件中的功能,拟合为2321x a x a a y ++=的多项式。 答题要点:①做散点图 ②数据分析-多项式-二次 ③获得拟合参数或输出拟合方程 二、office 软件的应用技巧(每小题5分,共20分) 1、描述如何使用自动更正功能快速输入分子式 Fe 2(SO 4)3 答题要点:①使用自动更正的操作过程 ②选择带格式文本 Fe 2(SO 4)3 2 函数LINEST 的使用方法? 自己百度 答题要点:描述函数的使用方法及适用范围 3、描述反应加热符号的制作,与输入法的链接及输出过程 答题要点:正确描述制作及链接过程

加热 4、描述获取下面图片中的文本信息的方法 答题要点:①转换图片格式为tiff ②使用OCR识别软件识别③粘贴文本 作者注所用软件office组件中Document Imaging (WPS中没有)因为没有软件必备组件本题没有做完 三、化学软件的应用技巧(共10分) 1、利用Chemsketch软件调用环己烷的椅式构象及立方烷的结构式。(2分) 答题要点:①正确描述调用过程②输出调用结果 模板------ 模板窗口 2、利用Chemsketch软件绘制下列化学结构式,并用软件中的命名功能命名。(8分) 结构式 O N H O O NH 2 COOH

材料科学与工程概述

第1节材料科学与工程概述 1.1.1材料科学的内涵 材料科学就是从事对材料本质的发现、分析认识、设计及控制等方面研究的一门科学。其目的在于揭示材料的行为,给予材料结构的统一描绘或建立模型,以及解释结构与性能之间的内在关系。材料科学的内涵可以认为是由五大要素组成,他们之间的关联可以用一个多面体来描述(图1-1)。其中使用效能是材料性能在工作状态(受力、气氛、温度)下的表现,材料性能可以视为材料的固有性能,而使用效能则随工作环境不同而异,但它与材料的固有性能密切相关。理论及材料与工艺设计位于多面体的中心,它直接和其它5个要素相连,表明它在材料科学中的特殊地位。 材料科学的核心内容是结构与性能。为了深入理解和有效控制性 能和结构,人们常常需要了解各种过程的现象,如屈服过程、断裂 过程、导电过程、磁化过程、相变过程等。材料中各种结构的形成 都涉及能量的变化,因此外界条件的改变也将会引起结构的改变, 从而导致性能的改变。因此可以说,过程是理解性能和结构的重要 环节,结构是深入理解性能的核心,外界条件控制着结构的形成和 过程的进行。 材料的性能是由材料的内部结构决定的,材料的结构反映了材料 的组成基元及其排列和运动的方式。材料的组成基元一般为原子、 离子和分子等,材料的排列方式在很大程度上受组元间结合类型的 影响,如金属键、离子键、共价键、分子键等。组元在结构中不是 静止不动的,是在不断的运动中,如电子的运动、原子的热运动等。 描述材料的结构可以有不同层次,包括原子结构、原子的排列、相 结构、显微结构、结构缺陷等,每个层次的结构特征都以不同的方 式决定着材料的性能。 物质结构是理解和控制性能的中心环节。组成材料的原子结构,电子围绕着原子核的运动情况对材料的物理性能有重要影响,尤其是电子结构会影响原子的键合,使材料表现出金属、无机非金属或高分子的固有属性。金属、无机非金属和某些高分子材料在空间均具有规则的原子排列,或者说具有晶体的格子构造。晶体结构会影响到材料的诸多物理性能,如强度、塑性、韧性等。石墨和金刚石都是由碳原子组成,但二者原子排列方式不同,导致强度、硬度及其它物理性能差别明显。当材料处于非晶态时,与晶体材料相比,性能差别也很大,如玻璃态的聚乙烯是透明的,而晶态的聚乙烯是半透明的。又如某些非晶态金属比晶态金属具有更高的强度和耐蚀性能。此外,在晶体材料中存在的某些排列的不完整性,即存在结构缺陷,也对材料性能产生重要影响。 我们在研究晶体结构与性能的关系时,除考虑其内部原子排列的规则性,还需要考虑其尺寸的效应。从聚集的角度看,三维方向尺寸都很大的材料称为块体材料,在一维、二维或三维方向上尺寸变小的材料叫做低维材料。低维材料可能具有块体材料所不具备的性质,如零维的纳米粒子(尺寸小于100nm)具有很强的表面效应、尺寸效应和量子效应等,使其具有独特的物理、化学性能。纳米金属颗粒是电的绝缘体和吸光的黑体。以纳米微粒组成的陶瓷具有很高的韧性和超塑性。纳米金属铝的硬度为普通铝的8倍。具有高强度特征的一维材料的有机纤维、光导纤维,作为二维材料的金刚石薄膜、超导薄膜等都具有特殊的物理性能。 1.1.2 材料科学的确立与作用 (1)材料科学的提出 “材料科学”的明确提出要追朔到20世纪50年代末。1957年10月4日前苏联发射了第一颗人造卫星,重80千克,11月3日发射了第二颗人造卫星,重500千克。美国于1958年1月31日发射的“探测者1号”人造卫星仅8千克,重量比前苏联的卫星轻得多。对此美国有关部门联合向总统提出报告,认为在科技竞争中美国之所以落后于苏联,关键在先进材料的研究方面。1958年3月18日总统通过科学顾问委员会发布“全国材料规划”,决定12所大学成立材料研究实验室,随后又扩大到17所。从那时起出现了包括多领域的综合性学科--“材料科学与工程学科”。 (2)材料科学的形成 材料科学的形成主要归功于如下五个方面的基础发展: 各类材料大规模的应用发展是材料科学形成的重要基础之一。18世纪蒸汽机的发明和19世纪电动机的发明,使材料在新品种开发和规模生产等方面发生了飞跃,如1856年和1864年先后发明了转炉和平炉炼钢,大大促进了机械制造、铁路交通的发展。随之不同类型的特殊钢种也相继出现,如1887年高锰钢、1903年硅钢及1910年镍铬不锈钢等,与此同时,铜、铅、锌也得到大量应用,随后铝、镁、钛和稀有金属相继问世。20世纪初,人工合成高分子材料问世,如1909年的酚醛树脂(胶木),1925年的聚苯乙烯,1931年的聚氯乙烯以及1941年的尼龙等,发展十分迅速,如今世界年产量在1亿吨以上,论体积产量已超过了钢。无机非金属材料门类较多,一直占有特殊的地位,其中一些传统材料资源丰富,性能价格比在所有材料中最有竞争能力。20世纪中后期,通过合成原料和特殊制备方法,制造出一系列具有不可替代作用的功能材料和先进结构材料。如电子陶瓷、铁氧体、光学玻璃、透明陶瓷、敏感及光电功能薄膜材料等。先进结构

计算机在材料科学中的应用

计算机在材料科学中的应用 材料化学 20080679 张冰摘要介绍计算机技术在材料科学研究中应用领域。探讨计算机在材料科学研究领域中的具体应用。借助于计算机可推动材料研究、开发与应用。计算机的具体应用。 关键词计算机技术材料科学应用 材料科学是一门实验科学,实验是制备新材料和测定其结构和性能的直接手段。而由于计算机技术、计算理论的迅速发展,许多更加复杂、大型的计算成为可能,使得在材料研究领域.采用计算方法来研究材料的结构和性能,并指导实验研究成为一种新的研究方向。计算机模拟技术已广泛应用于包括材料液态成形、塑性成形、连接成形、高分子材料成形、粉末冶金成形、复合材料成形等各种材料成形工艺领域。计算机模拟技术在材料成形加工中的应用,使材料成形工艺从定性描述走向定量预测,为材料的加工及新工艺的研制提供理论基础和优选方案,从传统的经验试错法,推进到以知识为基础的计算试验辅助阶段,对于实现批量小、质量高、成本低、交货期短、生产柔性、环境友好的未来制造模式具有重要的意义。计算机模拟是未来材料成形制备工艺的必由之路,其发展趋势是多尺度模拟及集成。 一.计算机在材料科学中的应用领域 1.计算机用于新材料的设计 材料设计是指通过理论与计算预报新材料的组分、结构与性能,或者通过理论与设计来“订做”具有特定性能的新材料,按生产要求

设计最佳的制备和加工方法。材料设计按照设计对象和所涉及的空问尺寸可分为电子层次、原子/分子层次的微观结构设计和显微结构层次材料的结构设计。材料设计主要是利用人工智能、模式识别、计算机模拟、知识库和数据库等技术,将物理、化学理论和大批杂乱的实验资料沟通起来,用归纳和演绎相结合的方式对新材料的研制作出决策,为材料设计的实施提供行之有效的技术和方法。 2.材料科学研究中的计算机模拟 利用计算机对真实系统模拟实验、提供模拟结果,指导新材料研究,是材料设计的有效方法之一。材料设计中的计算机模拟对象遍及从材料研制到使用的过程,包括合成、结构、性能制备和使用等。计算机模拟是一种根据实际体系在计算机上进行的模拟实验。通过将模拟结果与实际体系的实验数据进行比较,可以检验模型的准确性,也可以检验出模型导出的解析理论所作的简化近似是否成功,还可为现实模型和实验室中无法实现的探索模型做详细的预测并提供方法。 3 材料与工艺过程的优化及自动控制 材料加工技术的发展主要体现在控制技术的飞速发展,微机和可编程控制器(PLC)在材料加工过程中的应用正体现了这种发展和趋势。在材料加工过程中利用计算机技术不仅能减轻劳动强度,更能改善产品的质量和精度,提高产量。用计算机可以对材料加工工艺过程进行优化控制。例如在计算机对工艺过程的数学模型进行模拟的基础上,可以用计算机对渗碳渗氮全过程进行控制。在材料的制备中,可以对过程进行精确的控制,例如材料表面处理(热处理)中的炉温控制

计算机在化学中的应用

课程总结 ——计算机在化学中的应用 随着计算机技术的迅猛发展和日益普及,计算机的应用已渗透到各个领域,并且在学校教育中发挥着越来越大的作用.计算机技术的迅猛发展对各学科的发展给予了深刻的影响。随着各学科之间的交叉渗透和相互影响,计算机技术在其它学科领域中的应用也已经构成各具特点的独立学科。化学学科中复杂计算对强大计算能力的依赖性,海量化学信息对存储和管理能力的高要求,化学反应的复杂性和微观性对虚拟现实的需求,化工过程对自动化的需求等等都要求化学工作者掌握现代计算机技术,特别是计算机在化学中的特殊应用技术。在这种形势下,驾驭计算机的能力已经成为衡量包括化学工作者在内的科技人员能力的重要尺度之一。 这学期,我们主要学习了计算机文献检索、化学编辑排版、实验数据的图形化处理、绘制化学化工图形以及Office系列软件在化学化工及论文编辑中的应用。我从中学到了不少的实用性内容,在此衷心地感谢老师的耐心指导,下面我将对本课程所学的内容作一个简短的总结。 一、计算机文献检索 利用计算机检索化学文献主要有Internet搜索引擎的使用和化学化工文献数据库的检索,其中搜索引擎有谷歌、百度、搜狐、网易和新浪等,而文献数据库主要有中国期刊全文数据库、工程索引和科学引文索引等。 化学是一门专业性很强的学科,经过一个漫长的发展时期,已经积累了大量的化学信息。但是这些信息较为零散且难以查询,无法得到较好的应用,因此对这些零散的化学信息进行一定的整合与处理是十分必要的。最合理的办法就是建立一个化学数据库。 当前的化学信息和数据种类和数量繁多,通过书籍查找需要的文献将消耗大量的时间且难度较大。但随着计算机与信息技术和化学的发展与相互渗透,使得我们检索化学信息更加快捷方便,只要给出关键词、作者、期刊号、出版时间就可以进行检索,还可以利用逻辑关系进行二次检索或多次检索,使得范围大大缩小,效率倍增。最常用的几种检索工具有:化学化工网站、搜索引擎和专业数据库。随着网络化学数据库的使用,化学工作者查找信息将会变得更加方便,效率也会大大提高。 二、化学编辑排版 采用ACD/ChemSketch软件可以实现各种分子结构和化学反应式的绘制、分子三维模型的建立及实验装置图的绘制等,是一个功能十分强大的化学专业应用软件。 ACD/ChemSketch是一个免费软件,安装很简便。主要功能和特点:绘制平面和立体化学结构式、反应式和化学图形;其绘图功能十分强大,具有丰富的化学图形绘制工具,各种化学符号应有尽有;内置包括各种原子、有机物官能团等基本结构的模具工具栏,使得绘制复杂庞大的有机物结构式变得非常便捷,并且可以把绘制好的平面化学结构图直接转换为立体图形:能够预测分子结构的基本参数如分子量、摩尔体积、极性、密度、介电常数等;可对所绘制的分子结构自动命名,可提供有机物的同分异构体等等。 ChemSketch最新版本为12.0版,有两种相对独立的操作模式,即结构模式和绘图模式两种界面,结构模式用于绘制各种化学结构、反应式;而绘图模式则用于增加文本和绘制其他图形。两种模式可以相互切换,除具备化学绘图功能外,还能对分子结构式进行2D 优化和3D 优化,按系统命名法命名,以及计算分子各种性质等.

材料科学与工程专业简介

材料科学与工程专业简介 材料科学与工程专业简称材料专业。 大千世界中的材料无所不包、无处不在。吃、穿、住、行,每个人每天会碰到诸如金属、橡胶、磁性、光电等众多材料,小到一根针、一张纸、一个塑料袋、一件衣服,大到交通工具、医疗器械、工程建筑、信息通讯、航天航空,处处都有材料科学的身影。 材料科学与工程是一个涉及材料学、工程学和化学等方面的较宽口径专业。该专业以材料学、化学、物理学为基础,主要研究的是材料成分、结构、加工工艺与其性能和应用。事实上,人类文明发展史,就是一部如何更好地利用材料和创造材料的历史,材料的不断创新和发展,也极大地推动了社会经济的发展。 材料科学与工程专业依据各地区的发展历史,专业教学的侧重点略有不同。比如,材料专业中材料可以分为金属、无机非金属、高分子材料等。辽宁省各个高校由于历史沿乘的原因,多以金属材料为主。金属材料包括钢铁、有色金属及新型金属材料。 各高校材料专业学生,在大学二年级下学期会接触到本专业课程。主要的专业课程有:材料科学基础、金属学、金属学与热处理、材料力学性能等。 在专业课学习之前,需要学习一些涉及化学、机械的相关课程。 比如:工程制图、机械设计、电工电子技术、普通化学、物理化学等。

材料专业的学生除了需要掌握材料的相关知识和技能,还需掌握机械、电子等知识及技能。 材料专业学生除了要掌握课程内容外,还需掌握建模软件、有限元分析软件、科学分析软件等工具。 就业去向 材料科学与工程专业的毕业生多从事工艺、技术、质检、检验、研发等工作。除此之外,还有从事采购、高精尖大型设备的技术售后等工作。职业发展较好,由于材料专业的特点,使得材料专业的用处存在于产品的研发、性能的保障、产品的质量检验等重要的核心环节中,从业人员可快速展现自己的专业优势。

基于计算机在冶金自动化控制中的应用分析

基于计算机在冶金自动化控制中的应用分析 摘要:近年来,我国的冶金自动化取得了巨大的发展,在世界各国中的影响力明显提升。在信息技术不断进步的背景下,现阶段冶金自动化领域要想实现长期可持续发展,应积极采取有效措施对信息技术进行应用。目前,计算机软件已经开始被广泛应用于我国冶金工业的各相关环节。鉴于此,本文从冶金生产、冶金行业管理信息系统以及冶金人工智能技术的角度出发,对计算机在冶金自动化控制中的应用展开了深入研究,希望对我国相关领域的发展起到促进作用。 关键词:计算机;冶金自动化控制;应用 前言:我国在积极进行现代化建设的过程中,冶金领域从最初的OLC、DCS 等现代控制系统的应用,发展至今已经开始增加对计算机软件的应用。然而计算机软件正在以日新月异的速度飞快发展,冶金自动化控制在发展过程中,也开始向智能化的方向前进。鉴于此,现阶段我国相关领域在积极进行冶金控制系统的深化改革过程中,应高度关注计算机编程以及控制等内容,应用先进的计算机技术,促使冶金生产每一个环节当中都能够增加对信息技术的应用,提升冶金领域的进步速度。 一、计算机在冶金生产中的应用 近年来,我国在积极发展冶金过程控制的过程中,增加了对计算机的应用,并取得了一定成就,现阶段,冶金领域的各个生产流程几乎都成功的对计算机过程监控系统进行了应用。然而,计算机应用技术也在以日新月异的速度飞快发展和完善的,在得到优化的计算机软件基础上,为我国冶金生产的发展起到了重要的推动作用[1]。现阶段,现有的计算机系统已经将DCS和PLC系统进行了取代。冶金生产者在日常经营过程中,越来越重视对工业以太网以及总线的应用,冶金过程控制中,计算机的功能不容忽视,其不仅可以对数理图形、理论知识以及先进的技术进行有效综合,还可以在此基础上对数据系统进行构建,该数据系统具有较强的动态性,在对监控措施进行应用的过程中,以分布式途径为主,从而有效连接不同冶金设备以及工业网络,从而保证不同的冶金生产线在对计算机系统进行应用的背景下,得到实时监控,这一过程中,可以有效保证每一个产品的质量,促使生产水平以及生产效率在冶金行业中得以提升,自动化系统在冶金行业领域中的功能得以充分的发挥。 二、计算机在冶金行业管理信息系统中的应用 现阶段,开采、提炼以及铸轧铁矿等内容是我国多数大中型冶金企业运行过程中的工作重点,这一过程中,为了实现对生产的辅助,还需要对水电系统等进行充分的利用。在促使经济效益在冶金行业中得以提升,必须更加紧密的连接不同工序,从而促使浪费现象减少,严禁重复生产等现象的产生,给企业带来不必要的损失。鉴于此,冶金企业运行过程中,应注重对调度、质量以及通信管理的有效调节,促使企业自身运行过程中,内部的生产流程得以完善和优化,在提升生产效率的基础上,创造更多的经济效益。在这种情况下,相关管理人员应积极对计算机技术进行应用,从而针对企业自身实际发展状况,积极构建管理信息网络系统[2]。该管理信息网络系统运行过程中,具有多领域以及全方位的特点,对于提升企业的生产经营效率具有重要的促进作用。例如,我国某冶金企业在运行过程中,将相关计算机软件有效应用于全部的厂房当中,在对全部联网途径进行应用的基础上,网络系统中可以同时包含财务、采购以及通信等多个部门的数据信息,信息的高度共享,不仅提升了企业的运行效率,各部门之间的合作能力也

计算机在化学中的应用学习心得

计算机在化学中的应用学习心得 这学期通过学习计算机在化学中的应用,在初步接触高分子化学的同时与当前日新月异的计算机领域相结合,从而对高分子化学,数据分析以及公式编辑等其他方面有了更深的认识,同时也掌握了一种新的学学习方法,使得在今后的学习、工作、生活中更方便。 通过对ChemSketch的学习,对很多课本上见到的复杂的结构式有了更进一步的认识,这在一定程度上也提高了学习兴趣,与此同时ChemSketch的强大分析能力如对异构体的全面准确分析使得自学一定程度上变得简单,对我们的学习很有帮助,同时在以后的毕业论文设计以及在更远的将来对论文的编辑工作中对ChemSketch的熟练应用是必不可少的,如绘制结构式,定性绘制一些相应的曲线。而且ChemSketch使得原本抽象的事物变得清晰直观,有助于对知识的理解,这是最重要的。 通过对公式编辑器的学习,现在可以编辑很多美观的公式,突破了之前只能依靠有限的数学符号只能写出不直观的公式,在今后论文的编写中非常重要。 通过对Origin的学习对数据分析有了更近一步的认识,对复杂的实验数据的处理再不是一件耗时又低效的事,用Origin对数据进行线性拟合求斜率和截距等参数都有能把误差降到最低,从而对实验的分析相对更容易一些。 在学习计算机在化学中的应用这门课的同时,不仅从这门课程本身学到了有用的知识,也明白了科技的飞速发展对我们的学习生活提

供了很多的便捷之处,因此要善于利用这些更好的服务于我们的学习生活,不断取得更好的成绩。 最后真心感谢一学期以来老师的谆谆教诲,在教给我们高分子化学知识的同时不辞辛苦的传授给我们其他课程对化学的促进和应用。

人工智能在冶金中的应用

人工智能(Artificial Intelligence)是20世纪中期产生的并正在迅速发展的新兴边缘学科,它与具体领域相结合产生了很多新技术,例如数据挖掘、专家系统、软计算等。这些新技术在冶金行业也得到了极大关注。冶金工业要求必须对各个生产过程进行更加严格的控制,以满足用户对产品质量的高要求,同时也要努力将生产成本最小化。人工智能新技术可以有效地解决冶金工业生产中许多无法用数学模型精确描述的工艺过程,以及利用传统数字计算机难以获得令人满意效果的诸多问题,在冶金行业应用中已表现出了很大的优势。 数据挖掘 数据挖掘(data mining)是一项新兴的、面向商业应用的人工智能技术,泛指所有从源数据中挖掘的模式或联系方法。用数据库中的知识发现(knowledge discovery of database,简称KDD)描述整个数据挖掘过程,用数据挖掘描述使用挖掘算法进行数据挖掘的子过程。数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。从它的定义中可以发现,数据挖掘想达到的效果是从数据中得到想要的东西。具体应用到哪些领域,运用什么模式来解决所面临的问题,都是数据挖掘研究所要解决的主要问题。 冶金企业的现代化生产过程每天就有成千上万的传感器不断记录,生产数据日积累量甚至达到TB级。这些数据中蕴涵着丰富的生产实际过程中各种因素之间相互影响、相互作用的信息,对于加强对生产过程的认识、提高控制和管理水平具有重要意义。数据挖掘技术的诞生和发展使从生产过程实时监测并记录的海量数据中提取信息和知识成为可能。 胡志坤等[1]以有色冶金过程为工程背景,阐明了数据挖掘在工业过程中应用的策略,指出了有色冶金过程数据挖掘的一般步骤和有色冶金过程数据挖掘的重要原则,针对有色冶金过程数据的“多变量”、“非线性”、“高噪声”的特点,分别在操作模式预处理和特征变量选择、操作过程优化决策、冶金设备某阶段运行状况的评价、有色冶金过程故障诊断与预防四方面应用数据挖掘技术,对可能遇到的困难及解决方案进行了探讨。铁军等[2]将数据挖掘技术应用在铝电解生产中,利用Microsoft SQL Server2000 的Analysys Services 提供的挖掘模型和Excel2000中的回归方法,对铝电解生产过程中自动产生的大量日报表进行分析,在大量数据中挖掘获取到降低能耗和成本的方法,并根据效应持续时间对平均电压

计算机在化学中的应用概况

序言 计算机在化学中的应用概况 一.计算机技术对化学科学的影响 近年来化学学科的重要成就之一是计算机在化学中的应用。计算机与化学的结合促进了化学的发展。 化学发展的历史中,每次重大的进展都与新技术、新概念、新思想的引入密切相关。天平的引入把化学反应与量的概念联系在一起产生了分析化学;用物理方法研究化学产生了一系列新的边缘学科,至今还不断影响化学的发展。计算机与化学结合是化学学科发展的必然趋势,已在如下方面产生了影响: 1、产生新的边缘学科:如计算机化学、化学计量学、计算分析化学、量子化学近似计 算方法、有机化合物结构的拓朴表示方法等。 2、促进理论化学的发展:理论化学的发展离不开计算机,大量的量子化学计算必须使 用计算机。此外,复杂体系化学反应动力学,多组分的化学平衡等问题也只有依赖 计算机才可能实现。 3、促进实验数据处理方式与方法的发展:计算机在此方面的运用使化学工作者摆脱凭 经验作图或表格的数据处理的落后的方式,得以采用以数理统计方法为基础的严格 的数据处理,以便从中抽取更多重要信息,引导出新的结论。 4、提高仪器测试精度和实验室的自动化程度:用计算机自动控制测试仪器,采集数据 并处理数据是实验室使用计算机的重要方面,不但减轻了工作人员的劳动,避免了 主观读数误差,还提高了测试的精度、灵敏度和数据采样频率,并加快了测试速度。 5、加速情报交流:计算机文献检索大大提高了文献检索的效率。Internet的发展使全世 界的信息交流进入新的历史阶段;专家系统和智能数据库与测试仪器的联机,可使 测试样品与库存数据进行比较并作出结论。 6、化工过程控制:通过生产参数的自动采集,由计算机进行处理,按最优化的方式控 制生产设备,可以有效减少化工生产过程有毒、有害和危险性物质对操作人员的危 害及提高产品产量与质量。 在其它方面,诸如计算机辅助教学、计算机辅助设计,计算机模拟等,对于科学研究、化学教育、实验室成果的工业化等方面都有广泛应用。 二、计算机技术在化学中应用的发展趋势 计算机科学是当前发展最为迅速的领域,也是最难以预测的领域。如同在20年前人们无法预测计算机网络技术对通讯领域发展的影响一样,今天同样难以预测的也包括计算机应用技术的发展,当然包括计算机技术在化学领域中的应用。未来将有哪些新的计算机技术出现?这些技术又将在哪些领域中获得发展?计算机应用技术将在哪些化学领域中取得突破?确实非常难以进行回答。然而对于计算机技术的发展趋势,特别是把握计算机技术在化学领域的发展趋势,了解其发展动态是必要的。因为它对我们把握现代化学发展方向,调整高等化学教育内容有相当大的影响。鉴于此,我们从当前已有的计算机技术发展动态和当前化学领域对计算机技术最迫切需求的领域两个角度,对计算机技术在化学科学中的发展趋势做以下推测: 1.在更复杂分子结构的精确计算方面将会加速发展

相关主题