搜档网
当前位置:搜档网 › 人教版八年级数学全等三角形的常见模型总结(精选.)

人教版八年级数学全等三角形的常见模型总结(精选.)

人教版八年级数学全等三角形的常见模型总结(精选.)
人教版八年级数学全等三角形的常见模型总结(精选.)

人教版八年级数学全等三角形常见模型总结

要点梳理

全等三角形的判定与性质

类型一:角平分线

模型应用

1.角平分性质模型:(利用角平分线的性质) 辅助线:过点G 作GE ⊥射线AC

例题解析 例:(1)如图1,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6cm ,BD=4cm ,那么点D 到直线AB 的距离是 cm.

(2)如图2,已知,∠1=∠2,∠3=∠4,求证:AP 平分∠

BAC.

图1

图2

【答案】①2 (提示:作DE ⊥AB 交AB 于点E )

②21∠=∠Θ,PN PM =∴,43∠=∠Θ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,.

类型二:角平分线模型应用

2.角平分线,分两边,对称全等(截长补短构造全等)

两个图形的辅助线都是在射线OA上取点B,使OB=OA,从而使△OAC≌△OBC.

例题解析

例1:在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ。

证明:如图(1),

过O作OD∥BC交AB于D,

∴∠ADO=∠ABC=180°-60°-40°=80°,

又∵∠AQO=∠C+∠QBC=80°,

∴∠ADO=∠AQO,

又∵∠DAO=∠QAO,OA=AO,

∴△ADO≌△AQO,

∴OD=OQ,AD=AQ,

又∵OD∥BP,

∴∠PBO=∠DOB,

又∵∠PBO=∠DBO,

∴∠DBO=∠DOB,

∴BD=OD,

又∵∠BPA=∠C+∠PAC=70°,

∠BOP=∠OBA+∠BAO=70°,

∴∠BOP=∠BPO,

∴BP=OB,

∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。

解题后的思考:

(1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。

(2)本题利用“平行法”的解法也较多,举例如下:

①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO从而得以解决。

④如图(5),过P 作PD ∥BQ 交AC 于D ,则△ABP ≌△ADP 从而得以解决。

小结:通过一题的多种辅助线添加方法,体会添加辅助线的目的在于构造全等三角形。而不同的添加方法实际是从不同途径来实现线段的转移的,体会构造的全等三角形在转移线段中的作用。从变换的观点可以看到,不论是作平行线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构造了全等三角形。

例2:如图所示,在ABC ?中,AD 是BAC ∠的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB PC +与AB AC +的大小,并说明理由.

D

P

C B A

E

D

P

C A

PB PC AB AC +>+,理由如下.

如图所示,在AB 的延长线上截取AE AC =,连接PE . 因为AD 是BAC ∠的外角平分线, 故CAP EAP ∠=∠.

在ACP ?和AEP ?中,AC AE =,CAP EAP ∠=∠,AP 公用, 因此ACP AEP ??≌, 从而PC PE =.

在BPE ?中,PB PE BE +>, 而BE BA AE AB AC =+=+, 故PB PC AB AC +>+.

例3:在ABC ?中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.

求证:AB AC PB PC ->-.

C

D B P

A

E

C

D B P

A

在AB 上截取AE AC =,连结EP ,根据SAS 证得AEP ?≌ACP ?,∴PE PC =,AE AC =又BEP ?中,BE PB PE >-,BE AB AC =-,∴AB AC PB PC ->-

类型三:等腰直角三角形模型

1、在斜边上任取一点的旋转全等:

操作过程:(1)将△ABD 逆时针旋转90°,使△ACM ≌△ABD ,从而推出△ADM 为等腰直角三角形.(但是写辅助线时不能这样写)(2)过点C 作MC ⊥BC ,连AM 导出上述结论. 2、定点是斜边中点,动点在两直角边上滚动的旋转全等:

操作过程:连AD.

(1). 使BF=AE (AF=CE ),导出△BDF ≌△ADE. (2). 使∠EDF+∠BAC=180°,导出△BDF ≌△ADE. 例题解析

例1:两个全等的含30°,60°的三角板ADE 和三角板ABC ,如图所示放置,E 、A 、C 三点在一条直线上,连接BD ,取BD 得中点M ,连接ME ,MC ,试判断△EMC 的形状,并证明。

证明:连接AM ,证明△MDE ≌△MAC.特别注意证明∠MDE=∠MAC.

例2:已知:如图所示,Rt △ABC 中,AB=AC ,ο

90=∠BAC ,O 为BC 中点,若M 、N 分别在线段AC 、AB 上移动,且在移动中保持AN=CM. (1)是判断△OMN 的形状,并证明你的结论.

(2)当M 、N 分别在线段AC 、AB 上移动时,四边形AMON 的面积如何变化?

思路:两种方法:

类型四:三垂直模型(弦图模型)

由△ABE ≌△BCD 导出 由△ABE ≌△BCD 导 由△ABE ≌△BCD 导出 ED=AE-CD 出EC=AB-CD BC=BE+ED=AB+CD 例题解析

例1:已知:如图所示,在△ABC 中,AB=AC ,ο

90=∠BAC ,D 为AC 中点,AF ⊥BD 于E ,交BC 于F ,连接DF 。求证:∠ADB=∠CDF.

思路:

方法一: 过点C 作MC ⊥AC 交AF 的延长线于点M.先证△ABD ≌△CAM ,再证 △CDF ≌△CMF 即可.

(一) (二) (三)

方法二:过点A 作AM ⊥BC 分别交BD 、BC 于H 、M .先证△ABH ≌△CAF , 再证 △CDF ≌△ADH 即可. 方法三:过点A 作AM ⊥BC 分别交BD 、BC 于H 、M .先证Rt △AMF ≌Rt △BMH ,得出 HF ∥AC. 由M 、D 分别为线段AC 、BC 的中点,可得MD 为△ABC 的中位线从而推出MD ∥AB ,又由于ο

90=∠BAC ,故而MD ⊥AC ,MD ⊥HF ,所以MD 为线段HF 的中垂线. 所以∠1=∠2.再由∠ADB +∠1=∠CDF +∠2 ,则∠ADB =∠CDF . 类型五:手拉手模型

1.△ABE 和△ACF 均为等边三角形

结论:(1). △ABF ≌△AEC (2).∠BOE=BAE=60°(“八字模型证明”)(3).OA 平分∠EOF

拓展:

条件:△ABC和△CDE均为等边三角形

结论:(1)、AD=BE(2)、∠ACB=∠AOB(3)、△PCQ为等边三角形

(4)、PQ∥AE(5)、AP=BQ(6)、CO平分∠AOE(7)、OA=OB+OC

(8)、OE=OC+OD((7),(8)需构造等边三角形证明)

2.△ABD和△ACE均为等腰直角三角形

结论:(1)、BE=CD (2)BE⊥CD

3.ABEF和ACHD均为正方形

结论:(1)、BD⊥CF(2)、BD=CF

四、半角模型

条件:α=1 β,且β+θ=180?,β两边相等.

2

思路:1、补短(旋转)

辅助线:①延长CD 到 E,使E D=B M,连AE 或延长CB 到 F,使F B=D N,连A F

②将△A D N绕点A 顺时针旋转90°得△A B F,注意:旋转需证F、B、M 三点共线

结论:(1)M N=B M+D N;

(2)C

=2A B ;

CMN

(3)A M、A N分别平分∠B M N、∠M N D.

2、翻折(对称)

辅助线:①作A P⊥M N交MN 于点P

②将△A D N、△A B M分别沿A N、A M翻折,但一定要证明M、P、N三点共线.

例1、在正方形ABCD 中,若M、N分别在边B C、C D上移动,且满足M N=B M+D N,求证:(1)∠M A N=45°;

(2)C

=2A B ;

CMN

(3)A M、A N分别平分∠B M N和∠D N M.

变式:在正方形ABCD 中,已知∠M A N=45°,若M、N分别在边C B、D C的延长线上移动,

A H⊥M N,垂足为H,

(1)试探究线段M N、B M、D N之间的数量关系;

(2)求证:A B=A H

最新文件仅供参考已改成word文本。方便更改

全等三角形知识点总结

全等三角形知识梳理 一、知识网络 ??????????→?????????????? ???对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; > (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等(即对应元素相等)

3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等(SSS)。 (2)两边和它们的夹角对应相等的两个三角形全等(SAS)。 (3)两角和它们的夹边对应相等的两个三角形全等(ASA)。 , (4)两角和其中一角的对边对应相等的两个三角形全等(AAS)。 (5)斜边和一条直角边对应相等的两个直角三角形全等(HL)。 所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。 注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 尺规作图 < (二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等, 因此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找

专题训练(三) 全等三角形的基本模型

专题训练(三)全等三角形的基本模型 ?模型一平移模型 常见的平移模型: 图3-ZT-1 1.如图3-ZT-2,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E. 图3-ZT-2 2.如图3-ZT-3,点A,B,C,D在同一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF. 图3-ZT-3 ?模型二轴对称模型 常见的轴对称模型: 图3-ZT-4 3.如图3-ZT-5,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由. 图3-ZT-5 4.如图3-ZT-6,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 图3-ZT-6 5.如图3-ZT-7,A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF.求证:DE=CF. 图3-ZT-7 6.如图3-ZT-8,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 图3-ZT-8 ?模型三旋转模型 常见的旋转模型: 图3-ZT-9

7.如图3-ZT-10,已知AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE. 图3-ZT-10 ?模型四一线三等角模型 图3-ZT-11 8.如图3-ZT-12,B,C,E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B. (1)求证:BC=DE; (2)若∠A=40°,求∠BCD的度数. 图3-ZT-12 ?模型五综合模型 平移+对称模型:平移+旋转模型: 图3-ZT-13 图3-ZT-14 9.如图3-ZT-15,点B,F,C,E在同一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF. 3-ZT-15 10.如图3-ZT-16,AB=BC,BD=CE,AB⊥BC,CE⊥BC.求证:AD⊥BE. 图3-ZT-16 详解详析

全等三角形知识点及应用题

一.三角形的基础知识 全等三角形 1、全等三角形的对应边相等,对应角相等。全等三角形对应角的平分线相等。全等三角形对应边上的高线、中线对应相等。 2、有两边和它们的夹角对应相等的两个三角形全等(简写成“SAS”)。 3、有两多角和它们的夹边对应相等的两个三角形全等(简写成“ASA”)。 4、有两角和其中一角的对边相等的两个三角形全等(简写成“AAS”)。 5、有三条边对应相等的两个三角形全等(简写成“SSS”)。 6、有斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL”)。 7、在角的平分线上的点到这个角的两边的距离相等。8、到一个角的两边距离相等的点,在这个角的平分线上。 等腰三角形 1、等腰三角形 有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角. 2、等腰三角形的性质 性质1:等腰三角形的两个底角相等(简写成“等边对等角”) 性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合. 特别的:(1)等腰三角形是轴对称图形. (2)等腰三角形两腰上的中线、角平分线、高线对应相等. 3、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 等边三角形 1、等边三角形 三条边都相等的三角形叫做等边三角形,也叫做正三角形. 2、等边三角形的性质 等边三角形的三个内角都相等,并且每一个内角都等于60° 3、等边三角形的判定方法 (1)三条边都相等的三角形是等边三角形; (2)三个角都相等的三角形是等边三角形; (3)有一个角是60°的等腰三角形是等边三角形. 直角三角形的性质 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 三角形中的边角不等关系 (1)在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大.(简称为:大边对大角)

初中全等三角形模型总结—全面完整版2018.5.23

初中全等三角形模型总结——全面完整版 (模型总结+精选例题+优选练习题) 第一部分 模型总结 一、公共边模型 △ABD ≌△ABC , △EFD ≌△ABC △ABD ≌△ABC △ABE ≌△FDC △ABD ≌△ACD 二、公共角模型 △ABE ≌△ABD 三、平行X 型 △ABO ≌△OCD 四、非平行X 型 △ABE ≌△ABD B D C

五、母子等腰三角形 △ABD ≌△AEC ,△ABE ≌△ACD 六、旋转模型 △ ABC ≌△AB`C 第二部分 精选例题 例1.如图,已知AB ∥CD ,AD ∥BC ,F 在DC 的延长线上,AM =CF ,FM 交DA 的延长线上于E .交BC 于N,求证:AE=CN. 思路分析:欲证AE=CN.看它们在哪两个三角形中, 设法证这两个三角形全等即可.结合图形可发现 △AME ≌△FCN 可证. 题设告知AM=CF,AD ∥BC,AB ∥CD.由两平行条件, 可找两对角相等. ∵∠1=∠2(对顶角相等) ∴∠2=∠E(等量代换) ∴AE=CN (全等三角形的对应边相等) 例2.△ABC 中,∠ACB =90°,AC =BC ,过C 的一条直线CE ⊥AE 于E ,BD ⊥CE 的延长线于D ,求证:AE =BD +DE . 思路分析:从本例的结论知是求线段和的问题, 由此入手,很难找到突破口.此时可迅速调整思维角 度,可仔细观察图形,正确的图形是证题的“向导”,由 此可发现△ACE 与△CBD 好像(猜测)全等.那么 AE =CD =CE +DE .又BD =CE .那么,此时已水落石出. B C E D B'A 'B '

全等三角形知识点梳理.pdf

第十二章全等三角形 2018.9 杨1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.对应边相等。 2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.对应角相等。 证明三角形全等基本思路: 三角形全等的判定(1) 三边分别相等的两个三角形全等,简写成边边边或SSS. 1.如图,AB=AD,CB=CD,求证:(1)△ABC≌△ADC;(2)∠B=∠D. 证明:(1)连接AC,在△ABC与△ADC中, ∴△ABC≌△ADC(SSS). (2)∵△ABC≌△ADC,∴∠B=∠D. 2.已知在四边形ABCD中,AB=CD,AD=BC,,求证AD//BC A D 做辅助线,连接AC,利用SSS证明全等,得到∠ DAC=∠ACB ,从而证明平行 B C 三角形全等的判定(2) 两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”). 两边和其中一边的对角对应相等的两个三角形不一定全等. 1.如图,将两个一大、一小的等腰直角三角尺拼接(A,B,D三点共线,AB=CB,EB=DB,∠ ABC=∠EBD=90°),连接AE,CD,试确定AE与CD的关系,并证明你的结论. 解:结论:AE=CD,AE⊥CD. 证明:延长AE交CD于F,在△ABE与△CBD中AB=CB, ∠ABE=∠CBD, BE=BD, , ∴△ABE≌△CBD(SAS),∴AE=CD,∠EAB=∠DCB, ∵∠DCB+∠CDB=90°,∴∠EAB+∠CDB=90°, ∴∠AFD=90°,∴AE⊥CD. F

2.在△ABC和△CDE中,CA=CB,CD=CE,∠ACB=∠DCE=90°,AE与BD交与点 F (1)求证:△ACE≌△BCD (2)求证:AE⊥BD 1,利用SAS证明全等, AC=BC DC=EC ∠BCD=∠ACE 2,全等得到角相等∠CAE=∠DCB ∠CAB+∠EAB+∠ABC=90° ∠DCB∠EAB+∠ABC=90° 三角形全等的判定(3) 两角和它们的夹边分别对应相等的两个三角形全等,简称角边 角或ASA. 两个角和其中一个角的对边分别相等的两个三角形全等,简称 角角边或AAS. 求证:三角形一边的两端点到这边的中线或中线延长线的距离相等. 如图,AD为△ABC的中线,且CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:BE=CF. 证法1: ∵AD为△ABC的中线,∴BD=CD.∵BE⊥AD,CF⊥AD, ∴∠BED=∠CFD=90°.在△BED与△CFD中∠BED=∠CFD,∠BDE=∠CDF,BD=CD, ∴△BED≌△CFD(AAS),∴BE=CF. 证法2:∵S△ABD=1 2 AD·BE,S△ACD= 1 2 AD·CF, 且S△ABD=S△ACD(等底同高的两个三角形面积相等), ∴1 2 AD·BE= 1 2 AD·CF,∴BE=CF. 三角形全等的判定(4) 斜边和一条直角边分别对应相等的两个直角三角形全等,简称“斜边、直角边”或“HL”. 如图,E,F分别为线段AC上的两点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AE=CF,BD交AC于点M. 求证:BM=DM,ME=MF. 证明:∵AE=CF,∴AE+EF=CF+EF∴AF=CE. 在Rt△ABF与Rt△CDE中AB=CD,AF=CE, ∴Rt△ABF≌Rt△CDE(H L), ∴BF=DE.∵DE⊥AC,BF⊥AC,∴∠DEM=∠BFM=90°. 在△BFM与△DEM中∠BFM=∠DEM,∠BMF=∠DME,BF=DE, ∴△BFM≌△DEM(A AS), ∴BM=DM,ME=MF. 角的平分线的性质 角平分线的性质:角的平分线上的点到角的两边的距离相等. 文字命题的证明方法: a.明确命题中的已知和求证; b.根据题意,画出图形,并用数学符号表示已知和求证; c.经过分析,找出由已知推出要证的结论的途径,写出证明过程.

初中数学三角形全等常用几何模型及构造方法大全(初二)

初二数学三角形全等 常用几何模型及构造方法大全 掌握它轻松搞定全等题! 全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~ 全等变换类型: (一)平移全等:平行等线段(平行四边形) (二)对称全等模型:角平分线或垂直或半角 1:角平分线模型; 2:对称半角模型; (三)旋转全等模型:相邻等线段绕公共顶点旋转 1. 旋转半角模型 2. 自旋转模型 3. 共旋转模型 4. 中点旋转

如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE 分析:将△ACE平移使EC与BD重合。B\D,上方交点,左右两个三角形,两边和大于第三边!

1:角平分线模型: 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。 2:对称半角模型 说明:上图依次是45°、30°、45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折)30+60+90直角三角形对称(翻折) 翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1. 半角:有一个角含1/2角及相邻线段 2. 自旋转:有一对相邻等线段,需要构造旋转全等 3. 共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点) 4. 中点旋转:倍长中点相关线段转换成旋转全等问题(专题七) 1、旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 2、自旋转模型 构造方法: 遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称

全等三角形常见的几何模型

全等三角形常见的几何 模型 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

1、绕点型(手拉手模型) (1)自旋转:???????,造中心对称遇中点旋全等 遇等腰旋顶角,造旋转,造等腰直角 旋遇,造等边三角形 旋遇自旋转构造方法0000 018090906060 (2)共旋转(典型的手拉手模型) 例1、在直线ABC 的同一侧作两个等边三角形△ABD 和 △ BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) A E=DC (3) A E 与DC 的夹角为60。 (4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) B H 平分∠AHC (7) G F ∥AC 变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) A E=DC (3) A E 与DC 的夹角为60。 (4) A E 与DC 的交点设为H,BH 平分∠AHC 变式练习2、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)△ABE ≌△DBC (2)AE=DC (3)AE 与DC 的夹角为60。 (4)AE 与DC 的交点设为H,BH 平分∠AHC

3、(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CB N,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由. (2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. 例4、例题讲解: 1. 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使∠DAF=60°,连接CF. (1)?如图1,当点D在边BC上时,求证:①?BD=CF???②AC=CF+CD. (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由; ? (3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD 之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 例1、如图,正方形ABCD的边长为1,AB,AD上各存在一点P、Q,若△APQ的周长为2, 求PCQ 的度数。

最新全等三角形经典模型总结

全等三角形相關模型總結 一、角平分線模型 (一)角平分線の性質模型 輔助線:過點G作GE⊥射線AC A、例題 1、如圖,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那麼點D到直線AB の距離是cm. 2、如圖,已知,∠1=∠2,∠3=∠4,求證:AP平分∠BAC. B、模型鞏固 1、如圖,在四邊形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.

(二)角平分線+垂線,等腰三角形必呈現 A、例題 輔助線:延長ED交射線OB於F 輔助線:過點E作EF∥射線OB 例1、如圖,在△ABC中,∠ABC=3∠C,AD是∠BACの平分線,BE⊥AD於F . 求證: 1 () 2 BE AC AB =-.

例2、如圖,在△ABC中,∠BACの角平分線AD交BC於點D,且AB=AD,作CM⊥AD交 ADの延長線於M. 求證: 1 () 2 AM AB AC =+. (三)角分線,分兩邊,對稱全等要記全 兩個圖形飛輔助線都是在射線ON上取點B,使OB=OA,從而使△OAC≌△OBC . A、例題 1、如圖,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC於P,BQ平分∠ABC 交AC於Q,求證:AB+BP=BQ+AQ .

2、如圖,在△ABC中,AD是∠BACの外角平分線,P是AD上異於點Aの任意一點,試比較PB+PC與AB+ACの大小,並說明理由.

B、模型鞏固 1、在△ABC中,AB>AC,AD是∠BACの平分線,P是線段AD上任意一點(不與A重合). 求證:AB-AC>PB-PC . 2、如圖,△ABC中,AB=AC,∠A=100°,∠Bの平分線交AC於D, 求證:AD+BD=BC . 3、如圖,△ABC中,BC=AC,∠C=90°,∠Aの平分線交BC於D, 求證:AC+CD=AB .

全等三角形的经典模型(一)

作弊? 漫画释义 三角形9级 全等三角形的经典模型(二) 三角形8级 全等三角形的经典模型(一) 三角形7级 倍长中线与截长补短 满分晋级 3 全等三角形的 经典模型(一)

D C B A 45°45° C B A 等腰直角三角形数学模型思路: ⑴利用特殊边特殊角证题(AC=BC 或904545??°,,).如图1; ⑵常见辅助线为作高,利用三线合一的性质解决问题.如图2; ⑶补全为正方形.如图3,4. 图1 图2 图3 图4 思路导航 知识互联网 题型一:等腰直角三角形模型

A B C O M N A B C O M N 【例1】 已知:如图所示,Rt △ABC 中,AB =AC ,90BAC ∠=°,O 为BC 的中点, ⑴写出点O 到△ABC 的三个顶点A 、B 、C 的距离的关系(不要 求证明) ⑵如果点M 、N 分别在线段AC 、AB 上移动,且在移动中保持 AN =CM .试判断△OMN 的形状,并证明你的结论. ⑶如果点M 、N 分别在线段CA 、AB 的延长线上移动,且在移动中保持AN =CM ,试判断⑵中结论是否依然成立,如果是请给出证明. 【解析】 ⑴OA =OB =OC ⑵连接OA , ∵OA =OC 45∠=∠=BAO C ° AN =CM ∴△ANO ≌△CMO ∴ON =OM ∴∠=∠NOA MOC ∴90∠+∠=∠+∠=?NOA BON MOC BON ∴90∠=?NOM ∴△OMN 是等腰直角三角形 ⑶△ONM 依然为等腰直角三角形, 证明:∵∠BAC =90°,AB =AC ,O 为BC 中点 ∴∠BAO =∠OAC =∠ABC =∠ACB =45°, ∴AO =BO =OC , ∵在△ANO 和△CMO 中, AN CM BAO C AO CO =?? ∠=∠??=? ∴△ANO ≌△CMO (SAS ) ∴ON =OM ,∠AON =∠COM , 又∵∠COM -∠AOM =90°, ∴△OMN 为等腰直角三角形. 【例2】 两个全等的含30,60角的三角板ADE 和三角板ABC ,如 图所示放置,,,E A C 三点在一条直线上,连接BD ,取BD 的 中点M ,连接ME ,MC .试判断EMC △的形状,并说明理由. 【解析】EMC △是等腰直角三角形. 典题精练 A B C O M N M E D C B A

全等三角形的知识点梳理

《全等三角形》 一、结构梳理 二、知识梳理 (一)概念梳理 1.全等图形 定义:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同.例如图1中的两个图形形状相同,但大小不同,不能重合在一起,因此不是全等图形,图2中的两个图形面积相同,但形状不同,也不是全等图形. 2.全等三角形 这是学好全等三角形的基础.根据全等形定义:能够完全重合的两个三角形叫全等三角形.完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等.符号“≌”也形象、直观地反映了这一点.“∽”表示图形形状相同,“=”表示图形大小相等. (二)性质与判定梳理 1.全等图形性质:全等多边形的对应边、对应角分别相等. 全等三角形的对应边、对应角分别相等. 2.全等三角形的判定 这是学好全等三角形的关键.只给定一个条件或两个条件画三角形时,都不能保证所画出的三角形全等,只要有三个条件对应相等就可以,于是判定两个三角形全等的方法有: (1)三边对应相等的两个三角形全等,简记为:SSS ; (2)两角和它们的夹边对应相等的两个三角形全等,简记为:ASA; (3)两角和其中一角的对边对应相等的两个三角形全等,简记为:AAS; (4)两边和它们的夹角对应相等的两个三角形全等,简记为:SAS. 若是直角三角形,则还有斜边、直角边公理(HL)。由此可以看出,判断三角形全等,无论用哪一条件,都要有三个元素对应相等,且其中至少要有一对应边相等. (5)注意判定三角形全等的基本思路 从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有 图 2

三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边(角)去迅速准确地确定要补充的边(角),不致盲目地而能有目标地完善三角形全等的条件.从而得到判定两个三角形全等的思路有: ?? ???→→S S S S A S 找另一边找夹角 ??? ?????????→→→→→SAS AAS ASA AAS 找该角的另一边找这条边上的对角找这条边上的另一角边就是角的一条边 找任一角边为角的对边 ???→→AAS ASA 找任一边找两角的夹边 (6)学会辨认全等三角形的对应元素 辨认全等三角形的对应元素最有效的方法是,先找出全等三角形的对应顶点,再确定对应角和对应边,如已知△ABC ≌EFD ,这种记法意味着A 与E 、B 与F 、C 与D 对应,则三角形的边AB 与EF 、BC 与FD 、AC 与ED 对应,对应边所夹的角就是对应角,此外,还有如下规律:(1)全等三角形的公共边是对应边,公共角是对应角,对顶角是对应角;(2)全等三角形的两个对应角所夹的边是对应边,两条对应边所夹的角是对应角. (三)基本图形梳理 注意组成全等三角形的基本图形,全等图形都是由图形的平移、旋转、轴对称等图形变换而得到的,所以全等三角形的基本图形大致有以下几种: 1.平移型 如图3,下面几种图形属于平移型: 它们可看成有对应边在一直线上移动所构成的,故该对应边 的相等关系一般可由同一直线上的线段和或差而得到. 2.对称型 如图4 ,下面几种图形属于对称型: 它们的特征是可沿某一直线对折,直线两旁的部分能完全重合(轴对称图形),重合的顶点就是全等三角形的对应顶点. 3.旋转型 如图5,下面几种图形属于旋转型: 它们可看成是以三角形的某一顶点为中心旋转 所构成的,故一般有一对相等的角隐含在 对顶角、某些角的和 或差中. 三、易混、易错点剖析 1.探索两个三角形全等时,要注意两个特例 (1两个三角形不一定全等;如图6(1已知两边 已知一边一角 已知两角 图3 图4 图6(1)

全等三角形知识点总结

全等三角形 一、知识框架: 二、知识概念: 1.基本定义: ⑴全等形:能够完全重合的两个图形叫做全等形. ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. (注意对应的顶点写在对应的位置上) ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。 两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,一个三角形经过平移、翻折、旋转可以得到它的全等形。 2、全等三角形的性质和表示 性质: (1):全等三角形的对应边相等、对应角相等。 (2):全等三角形的周长相等、面积相等。 (3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。 表示: 全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC 全等于三角形DEF”。 注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3.全等三角形的判定定理:

⑴边边边(SSS):三边对应相等的两个三角形全等. ⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等. (只适用于两个直角三角形) 4、学习全等三角形应注意以下几个问题: (1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义; (2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”5、全等变换 只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。 6.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题). 7.角平分线: ⑴画法:(课本48页,必须要掌握) ⑵性质定理:角平分线上的点到角的两边的距离相等. (在做题时,只要满足条件就可以直接运用定理) ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 7.证明命题基本方法: ⑴明确命题中的已知和求(包括隐含条件,如公共边、公共角、对顶角、角平 分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证. ⑶经过分析,找出由已知推出求证的途径,写出证明过程.

全等三角形常见的几何模型

1绕点型(手拉手模型) 遇600旋60°,造等边三角形 遇90°旋90°,造等腰直角遇等腰旋 顶角,造旋转全等遇中点旋1800,造中 心对称 (2)共旋转(典型的手拉手模型) 例1、在直线ABC的同一侧作两个等边三角形△ (1)△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)△ AGB ◎△ DFB (5)△ EGB ◎△ CFB (6)BH 平分/ AHC (7)GF // AC 变式练习2、如果两个等边三角形△ ABD和厶BCE,连接AE与CD,证明: ("△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH平分/ AHC [D山3 Vi壮-U (I) ? 变式练习1、如果两个等边三角形△ABD和厶BCE,连接AE与CD,证明 (1) △ ABE ◎△ DBC (2) AE=DC (3) AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH 平分/ AHC (1自旋转:自旋转构造方法 ABD和厶BCE,连接AE与CD,证明:

3、(1)如图1,点C是线段AB上一点,分别以AC, BC为边在AB的同侧作等边△ ACM和厶CBN ,连接AN , BM .分别取BM, AN的中点E, F,连接CE, CF, EF.观察并猜想△ CEF的形状,并说明理由. (2)若将(1)中的“以AC , BC为边作等边△ ACM和厶CBN”改为“以AC, BC为腰在AB的同侧作等腰△ ACM和△ CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. B 例4、例题讲解: 1.已知△ ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F 逆时针排列),使/ DAF=60 ° ,连接CF. (1)如图1,当点D在边BC上时,求证:① BD=CF 宓AC=CF+CD. (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、 CD之间存在的数量关系,并说明理由; ⑶如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起, 成对称全等。 D A D A M x N rt B D 例1、如图,正方形ABCD的边长为1, AB,AD上各存在一点P、0,若厶APQ的周长为2, A P

全等三角形知识点归纳总结

第十二章全等三角形 一、结构梳理 二、知识梳理 (一)概念梳理 1.全等图形 定义:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同.例如图1中的两个图形形状相同,但大小不同,不能重合在一起,因此不是全等图形,图2中的两个图形面积相同,但形状不同,也不是全等图形. 2.全等三角形 这是学好全等三角形的基础.根据全等形定义:能够完全重合的两个三角形叫全等三角形.完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等.符号“≌”也形象、直观地反映了这一点.“∽”表示图形形状相同,“=”表示图形大小相等. (二)性质与判定梳理 1.全等图形性质:全等多边形的对应边、对应角分别相等. 全等三角形的对应边、对应角分别相等. 2.全等三角形的判定 这是学好全等三角形的关键.只给定一个条件或两个条件画三角形时,都不能保证所画出的三角形全等,只要有三个条件对应相等就可以,于是判定两个三角形全等的方法有: (1)三边对应相等的两个三角形全等,简记为:SSS ; (2)两角和它们的夹边对应相等的两个三角形全等,简记为:ASA; (3)两角和其中一角的对边对应相等的两个三角形全等,简记为:AAS; (4)两边和它们的夹角对应相等的两个三角形全等,简记为:SAS. 若是直角三角形,则还有斜边、直角边公理(HL)。由此可以看出,判断三角形全等,无论用哪一条件,都要有三个元素对应相等,且其中至少要有一对应边相等. (5)注意判定三角形全等的基本思路 从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边(角)去迅速准确地确定要补充的边(角),不致盲目地而能有目标地完善三角形全等的条件.从而得到判定两个三角形全等的思路有: 图 2 '.

全等三角形之手拉手模型专题(完整资料).doc

【最新整理,下载后即可编辑】 全等三角形之手拉手模型专题 基本图形1、图(1)中,C 点为线段AB 上一点,△ACM,△CBN 是等边三角形,AN 与BM 相等吗?说明理由; 如图(2)C 点为线段AB 上一点,等边三角形ACM 和等边三角形CBN 在 AB 的异侧,此时AN 与BM 相等吗?说明理由; 如图(3)C 点为线段AB 外一点,△ACM,△CBN 是等边三角形,AN 与BM 相等吗? 说明理由. 分析:题中三问均是对等边三角形性质的考查以及全等三角形的证明,由 已知条件,利用等边三角形的性质可找出对应边及夹角相等,证明全等, 即可得到线段相等. 解:(1)相等. 证明如下:∵△ACM,△CBN 是等边三角形, ∴AC=CM,CN=BC, 又∠ACN=∠MCN+60°∠MCB=∠MCN+60°, ∴∠ACN=∠MCB, ∴△ACN≌△MCB,∴AN=BM. (2)相等. 证明如下:∵△ACM,△CBN 是等边三角形, ∴AC=CM,CN=BC 又∠ACN=∠MCB,

∴△ACN≌△MCB, ∴AN=BM. (3)相等. 证明如下:∵△ACM,△CBN 是等边三角形, ∴AC=CM,CN=BC, 又∠ACN=∠MCN+60°∠MCB=∠MCN+60°, ∴∠ACN=∠MCB, ∴△ACN≌△MCB, ∴AN=BM. 点评:本题考查了全等三角形的判定与性质及等边三角形的性质;可围 绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三 角形全等是正确解答本题的关键. 变形2、(1)如图1,点C 是线段AB 上一点,分别以AC,BC 为边在AB 的同侧 作等边△ACM 和△CBN,连接AN,BM.分别取BM,AN 的中点E,F,连接 CE,CF,EF.观察并猜想△CEF 的形状,并说明理由. (2)若将(1)中的“以AC,BC 为边作等边△ACM 和△CBN”改为“以 AC,BC 为腰在AB 的同侧作等腰△ACM 和△CBN,”如图2,其他条件不变, 那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理

专项练习(二) 全等三角形的基本模型

专项练习(二)全等三角形的基本模型?基本模型一平移模型 常见的平移模型: 图2-ZT-1 1.如图2-ZT-2,点B在线段AD上,BC∥DE,AB=ED,BC=D B. 求证:∠A=∠E. 图2-ZT-2 2.如图2-ZT-3,点A,B,C,D在一条直线上,AB=CD,AE∥BF,CE∥DF. 求证:AE=BF. 图2-ZT-3 ?基本模型二轴对称模型 常见的轴对称模型: 图2-ZT-4 3.如图2-ZT-5,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由. 图2-ZT-5 4.如图2-ZT-6,BD⊥AC于点D,CE⊥AB于点E,AD=AE. 求证:BE=CD. 图2-ZT-6 5.如图2-ZT-7,A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF. 求证:DE=CF. 图2-ZT-7 6.如图2-ZT-8,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 图2-ZT-8

?基本模型三旋转模型 常见的旋转模型: 图2-ZT-9 7.如图2-ZT-10,O是线段AB和线段CD的中点.求证:(1)△A OD≌△BOC; (2)AD∥BC. 图2-ZT-10 8.:如图2-ZT-11,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:AD=AE. 图2-ZT-11 ?基本模型四一线三等角模型 图2-ZT-12 9.如图2-ZT-13,B,C,E三点在同一条直线上,AC∥DE,AC =CE,∠ACD=∠B. (1)求证:BC=DE; (2)假设∠A=40°,求∠BCD的度数. 图2-ZT-13 ?基本模型五综合模型 平移+对称模型: 图2-ZT -14 10.如图2-ZT-15,点B,F,C,E在一条直线上,FB=CE,AB ∥ED,AC∥FD.求证:AC=DF. 图2-ZT-15 平移+旋转模型: 图2-ZT-16 11.:如图2-ZT-17,AB=BC,BD=EC,AB⊥BC,EC⊥BC.求证:AD⊥BE. 图2-ZT-17 详解详析

(完整版)全等三角形几种类型总结

全等三角形与角平分线 全等图形:能够完全重合的两个图形就是全等图形. 全等多边形: 能够完全重合的多边形就是全等多边形. 相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等. 如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E . 这里符号“≌”表示全等,读作“全等于”. A' B'C' D' E' E D C B A 全等三角形:能够完全重合的三角形就是全等三角形. 全等三角形的对应边相等,对应角分别相等; 反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等. 全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”. 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. 全等三角形的判定方法: (1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等. (4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 判定三角形全等的基本思路: SAS HL SSS →?? →??→? 找夹角已知两边 找直角 找另一边 ASA AAS SAS AAS ?? ?? ?? ?? ?? ?? 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASA AAS →??→? 找两角的夹边已知两角 找任意一边 全等三角形的图形归纳起来有以下几种典型形式: ⑴ 平移全等型

全等三角形证明中的基本模型

把一个图形经过平移、翻折、旋转后,它们的位置虽然变化了,但是形状、大小都没有改变,即平移、翻折、旋转前后的图形全等. 我们把平移、翻折(轴对称)、旋转称为几何变换. 这一讲我们就来学习基本变换下的全等三角形. 常见平移模型 【引例】如图,A E F B 、、、四点在一条直线上,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =. 求证:CF DE = 模块一 平移型全等 知识导航 知识互联网 夯实基础 全等中的基本模型 F E D C B A

【解析】 ∵AC CE ⊥,BD DF ⊥ ∴90ACE BDF ∠=∠=? 在Rt ACE △和Rt BDF △中 AC BD AE BF =?? =? ∴()Rt Rt HL ACE BDF △≌△ ∴CE DF =,AEC BFD ∠=∠ ∴CEF DFE ∠=∠ 在CEF △和DFE △中 CE DF CEF DFE EF FE =?? ∠=∠??=? ∴CEF DFE △≌△ ∴CF DE = 【例1】 如图1,A 、B 、C 、D 在同一直线上,AB CD =,DE AF ∥,且.DE AF = 求证:AFC DEB △≌△ 如果将BD 沿着AC 边的方向平行移动,图2,B 点与C 点重合时;图3,B 点在C 点右侧时,其余条件不变,结论是否成立,如果成立,请选择一种情况请予证明;如果不成立,请说明理由. 图1 F E D C B A 图2 F E D (C ) B A 图3 F E D C B A 常见轴对称模型 知识导航 模块二 对称型全等 能力提升

【例2】 ⑴如图,△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( ) A.3对 B.4对 C.5对 D.6对 ⑵如图,ABE △和ADC △是ABC △分别沿着AB ,AC 翻折到同一平面内形成的.若1:2:315:2:1∠∠∠=,则4∠=________. 【例3】 如图,AB AC =,D 、E 分别是AB 、AC 的中点,AM CD ⊥于M ,AN BE ⊥于N . 求证:AM AN =. 常见旋转模型: 夯实基础 能力提升 知识导航 模块三 旋转型全等 E D N M C B A 43 2 1 E D C B A D O F E C B A

全等三角形经典模型总结

全等三角形相关模型总结 一、角平分线模型 (一)角平分线的性质模型 辅助线:过点G作GE⊥射线AC A、例题 1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB 的距离是cm. 2、如图,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC. B、模型巩固 1、如图,在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.

(二)角平分线+垂线,等腰三角形必呈现 A、例题 辅助线:延长ED交射线OB于F 辅助线:过点E作EF∥射线OB 例1、如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F . 求证: 1 () 2 BE AC AB =-. 例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD交 AD的延长线于M. 求证: 1 () 2 AM AB AC =+.

(三)角分线,分两边,对称全等要记全 两个图形飞辅助线都是在射线ON上取点B,使OB=OA,从而使△OAC≌△OBC . A、例题 1、如图,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC 交AC于Q,求证:AB+BP=BQ+AQ . 2、如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.

B、模型巩固 1、在△ABC中,AB>AC,AD是∠BAC的平分线,P是线段AD上任意一点(不与A重合). 求证:AB-AC>PB-PC . 2、如图,△ABC中,AB=AC,∠A=100°,∠B的平分线交AC于D, 求证:AD+BD=BC . 3、如图,△ABC中,BC=AC,∠C=90°,∠A的平分线交BC于D, 求证:AC+CD=AB .

相关主题