搜档网
当前位置:搜档网 › 创建一个二叉树并输出三种遍历结果讲解学习

创建一个二叉树并输出三种遍历结果讲解学习

创建一个二叉树并输出三种遍历结果讲解学习
创建一个二叉树并输出三种遍历结果讲解学习

创建一个二叉树并输出三种遍历结果

实验报告

课程名称数据结构

实验项目实验三--创建一个二叉树并输出三种遍历结果

系别___ _计算机学院 _ ______

专业___ ___

班级/学号___________

学生姓名 _________

实验日期_

成绩_______________________

指导教师

实验题目:实验三------创建一个二叉树并输出三种遍历结果

一、实验目的

1)掌握二叉树存储结构;

2)掌握并实现二叉树遍历的递归算法和非递归算法;

3)理解树及森林对二叉树的转换;

4)理解二叉树的应用—哈夫曼编码及WPL计算。

二、实验内容

1)以广义表或遍历序列形式创建一个二叉树,存储结构自选;

2)输出先序、中序、后序遍历序列;

3)二选一应用题:1)树和森林向二叉树转换;2)哈夫曼编码的应用问题。(应用型

题目可替换上述前两项实验内容)

三、设计与编码

1)程序结构基本设计框架

(提示:请根据所选定题目,描述程序的基本框架,可以用流程图、界面描述图、框图等来表示)

2)本实验用到的理论知识

遍历二叉树,递归和非递归的方法

(提示:总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,要求结合自己的题目并阐述自己的理解和想法)

3)具体算法设计

(1)首先,定义二叉树的存储结构为二叉链表存储,每个元素的数据类型Elemtype,定义一棵二叉树,只需定义其根指针。

(2)然后以递归的先序遍历方法创建二叉树,函数为

CreateTree(),在输入字符时要注意,当节点的左孩子或者右孩子为

空的时候,应当输入一个特殊的字符(本算法为“#”),表示左

孩子或者右孩子为空。

(3)下一步,创建利用递归方法先序遍历二叉树的函数,函数为PreOrderTree(),创建非递归方法中序遍历二叉树的函数,函数为

InOrderTree(),中序遍历过程是:从二叉树的根节点开始,沿左子

树向下搜索,在搜索过程将所遇到的节点进栈;左子树遍历完毕

后,从栈顶退出栈中的节点并访问;然后再用上述过程遍历右子

树,依次类推,指导整棵二叉树全部访问完毕。创建递归方法后序

遍历二叉树的函数,函数为LaOrderTree()。

(提示:该部分主要是利用C、C++等完成数据结构定义、设计算法实现各种操作,可以用列表分步形式的自然语言描述,也可以利用流程图等描述)

4)编码

#include

#include

#include

typedef char DataType;

#define MaxSize 100

typedef struct Node

{

DataType data;

struct Node *lchild;

struct Node *rchild;

}

*BiTree,BitNode;

void InitBitTree(BiTree *T); /*树的初始化*/

void CreateBitTree(BiTree *T); /*按照先序输入字符序列递归创建二叉树*/

void PreOrderTraverse(BiTree T); /*二叉树的先序遍历的递归函数声明*/

void InOrderTraverse(BiTree T); /*二叉树的中序遍历的递归函数声明*/

void PostOrderTraverse(BiTree T); /*二叉树的后序遍历的递归函数声明*/

void PreOrderTraverse2(BiTree T); /*二叉树的先序遍历的非递归函数声明*/ void InOrderTraverse2(BiTree T); /*二叉树的中序遍历的非递归函数声明*/ void PostOrderTraverse2(BiTree T); /*二叉树的后序遍历的非递归函数声明*/

void main()

{

BiTree T,root;

InitBitTree(&T);

printf("根据输入二叉树的先序序列创建二叉树('#'表示结束):\n");

CreateBitTree(&T);

printf("二叉树的先序序列:\n");

printf("递归:\t");

PreOrderTraverse(T);

printf("\n");

printf("非递归:");

PreOrderTraverse2(T);

printf("\n");

printf("二叉树的中序序列:\n");

printf("递归:\t");

InOrderTraverse(T);

printf("\n");

printf("非递归:");

InOrderTraverse2(T);

printf("\n");

printf("二叉树的后序序列:\n");

printf("递归:\t");

PostOrderTraverse(T);

printf("\n");

printf("非递归:");

PostOrderTraverse2(T);

printf("\n");

}

void InitBitTree(BiTree *T)

{

*T=NULL;

}

void CreateBitTree(BiTree *T)

/*递归创建二叉树*/

{

DataType ch;

scanf("%c",&ch);

if(ch=='#')

*T=NULL;

else

{

*T=(BiTree)malloc(sizeof(BitNode)); /*生成根结点*/

if(!(*T))

exit(-1);

(*T)->data=ch;

CreateBitTree(&((*T)->lchild)); /*构造左子树*/

CreateBitTree(&((*T)->rchild)); /*构造右子树*/

}

}

void PreOrderTraverse(BiTree T)

/*先序遍历二叉树的递归实现*/

{

if(T) /*如果二叉树不为空*/

{

printf("%2c",T->data); /*访问根结点*/

PreOrderTraverse(T->lchild); /*先序遍历左子树*/

PreOrderTraverse(T->rchild); /*先序遍历右子树*/

}

}

void InOrderTraverse(BiTree T)

/*中序遍历二叉树的递归实现*/

{

if(T) /*如果二叉树不为空*/

{

InOrderTraverse(T->lchild); /*中序遍历左子树*/ printf("%2c",T->data); /*访问根结点*/

InOrderTraverse(T->rchild); /*中序遍历右子树*/

}

}

void PostOrderTraverse(BiTree T)

/*后序遍历二叉树的递归实现*/

{

if(T) /*如果二叉树不为空*/

{

PostOrderTraverse(T->lchild); /*后序遍历左子树*/ PostOrderTraverse(T->rchild); /*后序遍历右子树*/

printf("%2c",T->data); /*访问根结点*/

}

}

void PreOrderTraverse2(BiTree T)

/*先序遍历二叉树的非递归实现*/

{

BiTree stack[MaxSize]; /*定义一个栈,用于存放结点的指针*/

int top; /*定义栈顶指针*/

BitNode *p; /*定义一个结点的指针*/

top=0; /*初始化栈*/

p=T;

while(p!=NULL||top>0)

{

while(p!=NULL) /*如果p不空,访问根结点,遍历左子树*/

{

printf("%2c",p->data); /*访问根结点*/

stack[top++]=p; /*将p入栈*/

p=p->lchild; /*遍历左子树*/

}

if(top>0) /*如果栈不空*/

{

p=stack[--top]; /*栈顶元素出栈*/

p=p->rchild; /*遍历右子树*/

}

}

}

void InOrderTraverse2(BiTree T)

/*中序遍历二叉树的非递归实现*/

{

BiTree stack[MaxSize]; /*定义一个栈,用于存放结点的指针*/

int top; /*定义栈顶指针*/

BitNode *p; /*定义一个结点的指针*/

top=0; /*初始化栈*/

p=T;

while(p!=NULL||top>0)

{

while(p!=NULL) /*如果p不空,访问根结点,遍历左子树*/

{

stack[top++]=p; /*将p入栈*/

p=p->lchild; /*遍历左子树*/

}

if(top>0) /*如果栈不空*/

{

p=stack[--top]; /*栈顶元素出栈*/

printf("%2c",p->data); /*访问根结点*/

p=p->rchild; /*遍历右子树*/

}

}

}

void PostOrderTraverse2(BiTree T)

/*后序遍历二叉树的非递归实现*/

{

BiTree stack[MaxSize]; /*定义一个栈,用于存放结

点的指针*/

int top; /*定义栈顶指针*/

BitNode *p,*q; /*定义结点的指针*/

top=0; /*初始化栈*/

p=T,q=NULL; /*初始化结点的指针*/

while(p!=NULL||top>0)

{

while(p!=NULL) /*如果p不空,访问根结点,遍历左子树*/

{

stack[top++]=p; /*将p入栈*/

p=p->lchild; /*遍历左子树*/

}

if(top>0) /*如果栈不空*/

{

p=stack[top-1]; /*取栈顶元素*/

if(p->rchild==NULL||p->rchild==q) /*如果p没有右孩子结点,或右孩子结点已经访问过*/

{

printf("%2c",p->data); /*访问根结点*/

q=p;

p=NULL;

top--;

}

else

p=p->rchild;

}

}

}

(提示:该部分主要是将算法转化为C、C++程序,设计主函数完成对各成员函数的调用;设计人机界面,每一步需要用户操作的提示以及每一次用户操作产生的预

期结果)

四、运行与测试

1)在调试程序的过程中遇到什么问题,是如何解决的?

在调试程序的过程中,遇到最大的问题就是中序和后序不能正确表示答案,最后发现是因为两个函数的错误导致。

2)设计了哪些测试数据?测试结果是什么?

abd##e##c##

测试结果:前序:abdec中序:dbeac后序:debca

3)程序运行结果如何?

五、总结与心得

理解了二叉树的逻辑特点和二叉树的性质;掌握了二叉树的二叉链表存储结构,以及二叉树的遍历算法的递归与非递归实现。虽完成了实验,但也需日后多多练习。

实验完成后的总结与思考,或者谈收获。(注意此部分要结合自己的题目来阐述说明)

创建一个二叉树并输出三种遍历结果

实验报告 课程名称数据结构 实验项目实验三--创建一个二叉树并输出三种遍历结果 系别■计算机学院 _________________ 专业_______________ 班级/学号_____________ 学生姓名___________ 实验日期— 成绩______________________________ 指导 教师

实验题目:实验三创建一个二叉树并输出三种遍历结果 实验目的 1)掌握二叉树存储结构; 2)掌握并实现二叉树遍历的递归算法和非递归算法; 3)理解树及森林对二叉树的转换; 4)理解二叉树的应用一哈夫曼编码及WPL计算。 实验内容 1)以广义表或遍历序列形式创建一个二叉树,存储结构自选; 2)输出先序、中序、后序遍历序列; 3)二选一应用题:1)树和森林向二叉树转换;2)哈夫曼编码的应用问题。 题目可替换上述前两项实验内容) 设计与编码 1)程序结构基本设计框架 (提示:请根据所选定题目,描述程序的基本框架,可以用流程图、界面描述图、 框图等来表示) 2)本实验用到的理论知识遍历二叉树,递归和非递归的方法 (应用型

(提示:总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,要求结合自己的题目并阐述自己的理解和想法) 3) 具体算法设计 1) 首先,定义二叉树的存储结构为二叉链表存储,每个元素的数 据类型Elemtype,定义一棵二叉树,只需定义其根指针。 2) 然后以递归的先序遍历方法创建二叉树,函数为CreateTree(),在输 入字符时要注意,当节点的左孩子或者右孩子为空的时候,应当输入一 个特殊的字符(本算法为“ #”),表示左孩子或者右孩子为空。 3) 下一步,创建利用递归方法先序遍历二叉树的函数,函数为 PreOrderTreeQ,创建非递归方法中序遍历二叉树的函数,函数为 InOrderTree(),中序遍历过程是:从二叉树的根节点开始,沿左子树 向下搜索,在搜索过程将所遇到的节点进栈;左子树遍历完毕后,从 栈顶退出栈中的节点并访问;然后再用上述过程遍历右子树,依次类 推,指导整棵二叉树全部访问完毕。创建递归方法后序遍历二叉树的 函数,函数为LaOrderTree()。 (提示:该部分主要是利用C、C++ 等完成数据结构定义、设计算法实现各种操作,可以用列表分步形式的自然语言描述,也可以利用流程图等描述) 4) 编码 #include #include #include typedef char DataType; #define MaxSize 100 typedef struct Node { DataType data; struct Node *lchild; struct Node *rchild; } *BiTree,BitNode;

二叉树的各种算法

二叉树的各种算法.txt男人的承诺就像80岁老太太的牙齿,很少有真的。你嗜烟成性的时候,只有三种人会高兴,医生你的仇人和卖香烟的。 /*用函数实现如下二叉排序树算法: (1)插入新结点 (2)前序、中序、后序遍历二叉树 (3)中序遍历的非递归算法 (4)层次遍历二叉树 (5)在二叉树中查找给定关键字(函数返回值为成功1,失败0) (6)交换各结点的左右子树 (7)求二叉树的深度 (8)叶子结点数 Input 第一行:准备建树的结点个数n 第二行:输入n个整数,用空格分隔 第三行:输入待查找的关键字 第四行:输入待查找的关键字 第五行:输入待插入的关键字 Output 第一行:二叉树的先序遍历序列 第二行:二叉树的中序遍历序列 第三行:二叉树的后序遍历序列 第四行:查找结果 第五行:查找结果 第六行~第八行:插入新结点后的二叉树的先、中、序遍历序列 第九行:插入新结点后的二叉树的中序遍历序列(非递归算法) 第十行:插入新结点后的二叉树的层次遍历序列 第十一行~第十三行:第一次交换各结点的左右子树后的先、中、后序遍历序列 第十四行~第十六行:第二次交换各结点的左右子树后的先、中、后序遍历序列 第十七行:二叉树的深度 第十八行:叶子结点数 */ #include "stdio.h" #include "malloc.h" #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0

#define INFEASIBLE -1 #define OVERFLOW -2 typedef int Status; typedef int KeyType; #define STACK_INIT_SIZE 100 // 存储空间初始分配量 #define STACKINCREMENT 10 // 存储空间分配增量 #define MAXQSIZE 100 typedef int ElemType; typedef struct BiTNode{ ElemType data; struct BiTNode *lchild,*rchild;//左右孩子指针 } BiTNode,*BiTree; Status SearchBST(BiTree T,KeyType key,BiTree f,BiTree &p) { if(!T){p=f;return FALSE;} else if(key==T->data){p=T;return TRUE;} else if(keydata)return SearchBST(T->lchild,key,T,p); else return(SearchBST(T->rchild,key,T,p)); } Status InsertBST(BiTree &T,ElemType e) { BiTree s,p; if(!SearchBST(T,e,NULL,p)) { s=(BiTree)malloc(sizeof(BiTNode)); s->data=e;s->lchild=s->rchild=NULL; if(!p)T=s; else if(edata)p->lchild=s; else p->rchild=s; return TRUE; } else return FALSE; } Status PrintElement( ElemType e ) { // 输出元素e的值 printf("%d ", e ); return OK; }// PrintElement

数据结构——二叉树的操作(遍历及树形输出)

/*实验三:二叉树遍历操作验证*/ #include #include #include #include #include #include #include using namespace std; #define OK 1 #define ERROR 0 #define OVERFLOW -2 int LeafNum;//叶子结点个数 //定义结构体 typedef struct BiTNode{ char data; //存放值 struct BiTNode *lchild,*rchild; //左右孩子 }BiTNode,*BiTree; //先序输入二叉树结点的值,空格表示空树 void createBiTree(BiTree &T) { char ch; //输入结点时用 scanf("%c",&ch); if(ch==' ') //若输入空格,该值为空,且没有左右孩子 { T=NULL; }else{ T=(BiTNode *)malloc(sizeof(BiTNode)); //分配结点空间 if(!T) //分配失败 { exit(OVERFLOW); } T->data=ch; //生成根结点 createBiTree(T->lchild); //构造左子树 createBiTree(T->rchild); //构造右子树 } } //递归方法先序遍历二叉树 void preOrderTraverse(BiTree T) {

if(T) //若非空 { if(T->data) { //输出 printf("%c",T->data); } preOrderTraverse(T->lchild); preOrderTraverse(T->rchild); } } //递归方法中序遍历二叉树 void inOrderTraverse(BiTree T) { if(T) //若非空 { preOrderTraverse(T->lchild); if(T->data) { //输出 printf("%c",T->data); } preOrderTraverse(T->rchild); } } //递归方法后序遍历二叉树 void postOrderTraverse(BiTree T) { if(T) //若非空 { preOrderTraverse(T->lchild); preOrderTraverse(T->rchild); if(T->data) { //输出 printf("%c",T->data); } } } //层序遍历二叉树 void LevelTraverse(BiTree T) { queue q;//建队 q.push(T);//根节点入队

数据结构课程设计_线索二叉树的生成及其遍历

数据结构课程设计 题目: 线索二叉树的生成及其遍历 学院: 班级: 学生姓名: 学生学号: 指导教师: 2012 年12月5日

课程设计任务书

摘要 针对以二叉链表作为存储结构时,只能找到结点的左、右孩子的信息,而得不到结点的前驱与后继信息,为了使这种信息只有在遍历的动态过程中才能得到。增设两个指针分别指示其前驱和后继,但会使得结构的存储密度降低;并且利用结点的空链域存放(线索链表),方便。同时为了记下遍历过程中访问结点的先后关系,附设一个指针pre始终指向刚刚访问过的结点,若指针p 指向当前访问的结点,则 pre指向它的前驱。由此得到中序遍历建立中序线索化链表的算法 本文通过建立二叉树,实现二叉树的中序线索化并实现中序线索二叉树的遍历。实现对已生成的二叉树进行中序线索化并利用中序线索实现对二叉树的遍历的效果。 关键词二叉树,中序线索二叉树,中序线索二叉树的遍历

目录 摘要 ............................................ 错误!未定义书签。第一章,需求分析................................. 错误!未定义书签。第二章,概要设计 (1) 第三章,详细设计 (2) 第四章,调试分析 (5) 第五章,用户使用说明 (5) 第六章,测试结果 (5) 第七章,绪论 (6) 第八章,附录参考文献 (7)

线索二叉树的生成及其遍历 第一章需求分析 以二叉链表作为存储结构时,只能找到结点的左、右孩子的信息,而得不到结点的前驱与后继信息,为了使这种信息只有在遍历的动态过程中才能得到。增设两个指针分别指示其前驱和后继,但会使得结构的存储密度降低;并且利用结点的空链域存放(线索链表),方便。同时为了记下遍历过程中访问结点的先后关系,附设一个指针pre始终指向刚刚访问过的结点,若指针p 指向当前访问的结点,则 pre指向它的前驱。由此得到中序遍历建立中序线索化链表的算法 本文通过建立二叉树,实现二叉树的中序线索化并实现中序线索二叉树的遍历。实现对已生成的二叉树进行中序线索化并利用中序线索实现对二叉树的遍历的效果。主要任务: 1.建立二叉树; 2.将二叉树进行中序线索化; 3.编写程序,运行并修改; 4.利用中序线索遍历二叉树 5.书写课程设计论文并将所编写的程序完善。 第二章概要设计 下面是建立中序二叉树的递归算法,其中pre为全局变量。 BiThrNodeType *pre; BiThrTree InOrderThr(BiThrTree T) { /*中序遍历二叉树T,并将其中序线索化,pre为全局变量*/ BiThrTree head; head=(BitThrNodeType *)malloc(sizeof(BiThrType));/*设申请头结点成功*/ head->ltag=0;head->rtag=1;/*建立头结点*/ head->rchild=head;/*右指针回指*/ if(!T)head->lchild=head;/*若二叉树为空,则左指针回指*/ else{head->lchild=T;pre=head; InThreading(T);/*中序遍历进行中序线索化*/ pre->rchild=head; pre->rtag=1;/*最后一个结点线索化*/ head->rchild=pre; }; return head; } void InThreading(BiThrTree p) {/*通过中序遍历进行中序线索化*/ if(p)

数据结构C语言实现二叉树三种遍历

实验课题一:将下图中得二叉树用二叉链表表示: 1用三种遍历算法遍历该二叉树,给出对应得输出结果; 2写一个函数对二叉树搜索,若给出一个结点,根据其就是否属于该树,输出true或者f alse。 3写函数完成习题4、31(C++版)或4、28(C版教科书)。 #include "stdio、h" #include”malloc、h" typedefstruct BiTNode { char data; structBiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree Create(BiTreeT) { char ch; ch=getchar(); if(ch=='#’) T=NULL; else { T=(BiTNode *)malloc(sizeof(BiTNode)); T-〉data=ch; T->lchild=Create(T—〉lchild); T—〉rchild=Create(T-〉rchild); } return T; } int node(BiTree T) { int sum1=0,a,b; ?if(T) { if(T!=NULL) ??sum1++;

?a=node(T->lchild); sum1+=a; b=node(T—>rchild); sum1+=b; ?} return sum1; } int mnode(BiTree T) { ?int sum2=0,e,f; if(T) { ?if((T->lchild!=NULL)&&(T-〉rchild!=NULL))?sum2++; ?e=mnode(T-〉lchild); sum2+=e; f=mnode(T-〉rchild); sum2+=f; ?} return sum2; } void Preorder(BiTree T) { if(T) { printf("%c”,T->data); Preorder(T—>lchild); Preorder(T-〉rchild); } } int Sumleaf(BiTree T) { int sum=0,m,n; if(T) { if((!T-〉lchild)&&(!T-〉rchild)) sum++; m=Sumleaf(T->lchild); sum+=m; n=Sumleaf(T—>rchild); sum+=n; } return sum; }

二叉树的随机生成及其遍历

叉树的随机生成及其遍历 张 zhaohan 10804XXXXX 2010/6/12 问题重述 利用随机函数产生50个(不大于1 00且各不相同的)随机整数,用这些整数来生成一棵二叉树,分别对二叉树 进行先根遍历,中根遍历和后根遍历并输出树中结点元素序列。 程序设计 (一) 需求分析: ?问题的定义与要求: 1 、产生50个不大于100且各不相同的随机整数 (由系统的随机函数生成并 对100取模);2、先根遍历并输出结果;3、中根遍历并输出结果;4、后根遍历并输出结果;按层次浏览二叉树结 5、点; 6、退出程序。 ?俞入:所需功能,选项为1?6。 ?输出:按照用户功能选择输出结果。 ?限制:输入的功能选择在1?6之间,否则无回应。 ?模块功能及要求: RandDif(): 生成50个随机不大于100的整数,每次生成不同随机整数。 CreateBitree(): 给数据结点生成二叉树,使每个结点的左右儿子指针指向左右儿子。 NRPreOrder(): 非递归算法的先根遍历。 inOrderTraverse(): 递归算法的中根遍历。 P ostOrderTraverseO:递归算法的后根遍历。 Welcome(): 欢迎窗口。 Menu():菜单。 Goodbye():再见窗口。 (二) 概要设计:

首先要生成二叉树,由于是对随机生成的50个数生成二叉树,故可以采取顺序存储的方式,对结点的左右儿子进行赋值。生成的二叉树是完全二叉树。 先根遍历的非递归算法: 1、根结点进栈 2、结点出栈,被访问 3、结点的右、左儿子(非空)进栈 4、反复执行2、3 ,至栈空为止。 先根遍历的算法流程图:根结点进栈( a[0]=T->boot,p=a[0] ) 访问结点printf(*p) 右儿子存在则进栈a[i]=(*p).rchild; i++; 左儿子存在则进栈a[i]=(*p).rchild; i++; 栈顶降低top--:i--;p=a[i]; 栈非空while(i>-1) 返回 中根遍历的递归算法流程图: T为空 Return; inOrderTraverse(T->lchild) Printf(T->data) inOrderTraverse(T->rchild) 返回

二叉树遍历C语言(递归,非递归)六种算法

数据结构(双语) ——项目文档报告用两种方式实现表达式自动计算 专业: 班级: 指导教师: 姓名: 学号:

目录 一、设计思想 (01) 二、算法流程图 (02) 三、源代码 (04) 四、运行结果 (11) 五、遇到的问题及解决 (11) 六、心得体会 (12)

一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status 为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。

数据结构二叉树的创建及遍历

课程名称:数据结构实验 实验项目:二叉树的创建及遍历 姓名: 专业:计算机科学与技术 班级: 学号: 计算机科学与技术学院 20 17年11 月22 日

哈尔滨理工大学计算机科学与技术学院实验报告 实验项目名称:二叉树的建立及遍历 一、实验目的 1.熟悉掌握课本二叉树相关理论知识 2.实践与理论相结合,掌握二叉树的应用程序 3.学会二叉树的创建,遍历等其他基本操作的代码实现 二、实验内容 1.二叉树的创建代码实现 2.二叉树先序、中序、后序遍历代码实现 三、实验操作步骤 1.二叉树的建立 (1)树节点的定义 由于每个节点都由数据域和指左子树和右子树的指针,故结构体封装如下: typedef struct node { int data; struct node *left; struct node *right; }Tree,*bitree; (2)建立 采用递归的思想,先建立根再建立左子树,再建立右子树。递归截止条件子树为空,用-1代表树空 *T=(struct node *)malloc(sizeof(struct node));

(*T)->data=a; printf("%d的左节点",a); create(&(*T)->left); printf("%d的右节点",a); create(&(*T)->right); 2.三种遍历的实现 (1)先序遍历 依旧采用递归的思想,先遍历根后遍历左子树再遍历右子树。 printf("%d ",T->data); Pro(T->left); Pro(T->right); (2)中序遍历 先遍历左子树再遍历根最后遍历右子树 Mid(T->left); printf("%d ",T->data); Mid(T->right); (3)后序遍历 先遍历左子树再遍历右子树最后遍历根 Later(T->left); Later(T->right); printf("%d ",T->data); (4)按层遍历 按层遍历采用队列的思想,先将第一个节点入队然后在将其出队将其左右孩子入队。依

二叉树的建立及几种简单的遍历方法

#include "stdio.h" #include "stdlib.h" #define STACK_INIT_SIZE 100 //栈存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 //------二叉树的存储结构表示------// typedef struct BiTNode{ int data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //-----顺序栈的存储结构表示------// typedef struct{ BiTree *top; BiTree *base; int stacksize; }SqStack; //*************************************************** //构造一个空栈s SqStack *InitStack(); //创建一颗二叉树 BiTree CreatBiTree(); //判断栈空 int StackEmpty(SqStack *S); //插入元素e为新的栈顶元素 void Push(SqStack *S,BiTree p); //若栈不为空,则删除s栈顶的元素e,将e插入到链表L中void Pop(SqStack *S,BiTree *q); //非递归先序遍历二叉树 void PreOrderTraverse(BiTree L); //非递归中序遍历二叉树 void InOrderTraverse(BiTree L); //非递归后序遍历二叉树 void PostOrderTraverse(BiTree L); //递归后序遍历二叉树 void PostOrder(BiTree bt); //递归中序遍历二叉树 void InOrder(BiTree bt); //递归先序遍历二叉树 void PreOrder(BiTree bt); //***************************************************

二叉树的建立及遍历

数据结构实验五 课程数据结构实验名称二叉树的建立及遍历第页 专业班级学号 姓名 实验日期:年月日评分 一、实验目的 1.学会实现二叉树结点结构和对二叉树的基本操作。 2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。 二、实验要求 1.认真阅读和掌握和本实验相关的教材内容。 2.编写完整程序完成下面的实验内容并上机运行。 3.整理并上交实验报告。 三、实验内容 1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。 2 .编写程序生成下面所示的二叉树,并采用先序遍历的非递归算法对此二叉 树进行遍历。 四、实验步骤 (描述实验步骤及中间的结果或现象。在实验中做了什么事情,怎么做的,发生的现象和中间结果) 第一题 #include "stdafx.h" #include"iostream.h" #include"stdlib.h"

#include"stdio.h" #includelchild); int n=depth(T->rchild); ?return (m>n?m:n)+1; } } //先序,中序建树 structnode*create(char *pre,char *ord,int n) { ?struct node*T; intm; T=NULL; ?if(n<=0) ?{ ?returnNULL; } ?else ?{ ?m=0; ??T=new(struct node); T->data=*pre; ?T->lchild=T->rchild=NULL; ?while(ord[m]!=*pre) ?m++; T->lchild=create(pre+1,ord,m); ?T->rchild=create(pre+m+1,ord+m+1,n-m-1);

数据结构实验报告-二叉树的实现与遍历

《数据结构》第六次实验报告 学生姓名 学生班级 学生学号 指导老师

一、实验内容 1) 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序 以及按层次遍历的操作,求所有叶子及结点总数的操作。 2) 输出树的深度,最大元,最小元。 二、需求分析 遍历二叉树首先有三种方法,即先序遍历,中序遍历和后序遍历。 递归方法比较简单,首先获得结点指针如果指针不为空,且有左子,从左子递归到下一层,如果没有左子,从右子递归到下一层,如果指针为空,则结束一层递归调用。直到递归全部结束。 下面重点来讲述非递归方法: 首先介绍先序遍历: 先序遍历的顺序是根左右,也就是说先访问根结点然后访问其左子再然后访问其右子。具体算法实现如下:如果结点的指针不为空,结点指针入栈,输出相应结点的数据,同时指针指向其左子,如果结点的指针为空,表示左子树访问结束,栈顶结点指针出栈,指针指向其右子,对其右子树进行访问,如此循环,直至结点指针和栈均为空时,遍历结束。 再次介绍中序遍历: 中序遍历的顺序是左根右,中序遍历和先序遍历思想差不多,只是打印顺序稍有变化。具体实现算法如下:如果结点指针不为空,结点入栈,指针指向其左子,如果指针为空,表示左子树访问完成,则栈顶结点指针出栈,并输出相应结点的数据,同时指针指向其右子,对其右子树进行访问。如此循环直至结点指针和栈均为空,遍历结束。 最后介绍后序遍历: 后序遍历的顺序是左右根,后序遍历是比较难的一种,首先需要建立两个栈,一个用来存放结点的指针,另一个存放标志位,也是首先访问根结点,如果结点的指针不为空,根结点入栈,与之对应的标志位也随之入标志位栈,并赋值0,表示该结点的右子还没有访问,指针指向该结点的左子,如果结点指针为空,表示左子访问完成,父结点出栈,与之对应的标志位也随之出栈,如果相应的标志位值为0,表示右子树还没有访问,指针指向其右子,父结点再次入栈,与之对应的标志位也入栈,但要给标志位赋值为1,表示右子访问过。如果相应的标志位值为1,表示右子树已经访问完成,此时要输出相应结点的数据,同时将结点指针赋值为空,如此循环直至结点指针和栈均为空,遍历结束。 三、详细设计 源代码:

二叉树三种遍历算法代码_

二叉树三种遍历算法的源码 二叉树三种遍历算法的源码背诵版 本文给出二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法,直接用于考研答题。 1.先序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize]; int top; }SqStack; void PreOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { visite(p->data); push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历 { p=pop(s); p=p->rchild; }//endif }//endwhile }//PreOrderUnrec 2.中序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize];

int top; }SqStack; void InOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) { p=pop(s); visite(p->data); //访问根结点 p=p->rchild; //通过下一次循环实现右子树遍历}//endif }//endwhile }//InOrderUnrec 3.后序遍历非递归算法 #define maxsize 100 typedef enum{L,R} tagtype; typedef struct { Bitree ptr; tagtype tag; }stacknode; typedef struct { stacknode Elem[maxsize]; int top; }SqStack; void PostOrderUnrec(Bitree t)

C++二叉树的创建与遍历实验报告

二叉树的创建与遍历 一、实验目的 1.学会实现二叉树结点结构和对二叉树的基本操作。 2.掌握对二叉树每种操作的具体实现,学会利用递归和非递归方法编写对二叉树这种递归数据结构进行处理的算法。 二、实验要求 1.认真阅读和掌握和本实验相关的教材内容。 2.编写完整程序完成下面的实验内容并上机运行。 3.整理并上交实验报告。 三、实验内容 1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归和非递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历。 四、实验步骤 源程序代码1 #include #include using namespace std; template struct BinTreeNode //二叉树结点类定义 { T data; //数据域 BinTreeNode *leftChild,*rightChild; //左子女、右子女域 BinTreeNode(T x=T(),BinTreeNode* l =NULL,BinTreeNode* r = NULL ) :data(x),leftChild(l),rightChild(r){} //可选择参数的默认构造函数 }; //------------------------------------------------------------------------- template void PreOrder_2(BinTreeNode *p) //非递归前序遍历 { stack * > S;

二叉树遍历课程设计心得【模版】

目录 一.选题背景 (1) 二.问题描述 (1) 三.概要设计 (2) 3.1.创建二叉树 (2) 3.2.二叉树的非递归前序遍历示意图 (2) 3.3.二叉树的非递归中序遍历示意图 (2) 3.4.二叉树的后序非递归遍历示意图 (3) 四.详细设计 (3) 4.1创建二叉树 (3) 4.2二叉树的非递归前序遍历算法 (3) 4.3二叉树的非递归中序遍历算法 (4) 4.4二叉树的非递归后序遍历算法 (5) 五.测试数据与分析 (6) 六.源代码 (6) 总结 (10) 参考文献: (11)

一.选题背景 二叉树的链式存储结构是用指针建立二叉树中结点之间的关系。二叉链存储结构的每个结点包含三个域,分别是数据域,左孩子指针域,右孩子指针域。因此每个结点为 由二叉树的定义知可把其遍历设计成递归算法。共有前序遍历、中序遍历、后序遍历。可先用这三种遍历输出二叉树的结点。 然而所有递归算法都可以借助堆栈转换成为非递归算法。以前序遍历为例,它要求首先要访问根节点,然后前序遍历左子树和前序遍历右子树。特点在于所有未被访问的节点中,最后访问结点的左子树的根结点将最先被访问,这与堆栈的特点相吻合。因此可借助堆栈实现二叉树的非递归遍历。将输出结果与递归结果比较来检验正确性。。 二.问题描述 对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。画出搜索顺序示意图。

三.概要设计 3.1.创建二叉树 3.2.二叉树的非递归前序遍历示意图 图3.2二叉树前序遍历示意图3.3.二叉树的非递归中序遍历示意图 图3.3二叉树中序遍历示意图

二叉树的层次遍历算法

二叉树层次遍历算法实现 问题描述 对任意输入的表示某二叉树的字符序列,完成二叉树的层次遍历算法,并输出其遍历结果。 注:所需Queue ADT的实现见附录。 输入描述 从键盘上输入一串字符串,该字符串为二叉树的先序遍历结果,其中如果遍历到空树时用字符”#”代替。 输出描述 从显示器上输出二叉树的按层次遍历结果。 输入与输出示例 输入: +A##/*B##C##D## 输出: +A/*DBC 输入: ABD##GJ###CFH##I### 输出: ABCDGFJHI 附录(仅供参考): #include #include #define TRUE 1 #define FALSE 0 #define MAX_QUEUE_SIZE 100

//注:需要定义ElementType类型,如果是二叉树, // 则应定义为指向二叉树中结点的指针类型 //格式如: // typedef Tree ElementType; // 队列存储结构采用循环队列 struct QueueRecord; typedef struct QueueRecord *Queue; int IsEmpty(Queue Q); int IsFull(Queue Q); Queue CreateQueue(int MaxElements); void DisposeQueue(Queue Q); void MakeEmpty(Queue Q); int Enqueue(ElementType X, Queue Q); ElementType Front(Queue Q); int Dequeue(Queue Q, ElementType &X); #define MinQueueSize ( 5 ) struct QueueRecord { int Capacity; int Front; int Rear; ElementType *Array; }; int IsEmpty(Queue Q) { return ((Q->Rear + 1)% Q->Capacity == Q->Front); } int IsFull(Queue Q) { return ((Q->Rear + 2) % Q->Capacity == Q->Front); } Queue CreateQueue(int MaxElements) { Queue Q; if (MaxElements < MinQueueSize) return NULL; Q = (Queue)malloc(sizeof(struct QueueRecord));

用递归和非递归算法实现二叉树的三种遍历

○A ○C ○D ○B ○E○F G 《数据结构与算法》实验报告三 ——二叉树的操作与应用 一.实验目的 熟悉二叉链表存储结构的特征,掌握二叉树遍历操作及其应用 二. 实验要求(题目) 说明:以下题目中(一)为全体必做,(二)(三)任选其一完成 (一)从键盘输入二叉树的扩展先序遍历序列,建立二叉树的二叉链表存储结构;(二)分别用递归和非递归算法实现二叉树的三种遍历; (三)模拟WindowsXP资源管理器中的目录管理方式,模拟实际创建目录结构,并以二叉链表形式存储,按照凹入表形式打印目录结构(以扩展先序遍历序列输入建立二叉链表结构),如下图所示: (基本要求:限定目录名为单字符;扩展:允许目录名是多字符组合) 三. 分工说明 一起编写、探讨流程图,根据流程图分工编写算法,共同讨论修改,最后上机调试修改。 四. 概要设计 实现算法,需要链表的抽象数据类型: ADT Binarytree { 数据对象:D是具有相同特性的数据元素的集合 数据关系R: 若D为空集,则R为空集,称binarytree为空二叉树;

若D不为空集,则R为{H},H是如下二元关系; (1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱; (2)若D-{root}不为空,则存在D-{root}={D1,Dr},且D1∩Dr为空集; (3)若D1不为空,则D1中存在唯一的元素x1,∈H,且存在D1上的关系H1是H的子集;若Dr不为空集,则Dr中存在唯一的元素 Xr,∈H,且存在Dr上的关系Hr为H的子集;H={,,H1,Hr}; (4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr}) 是一颗符合本定义的二叉树,称为根的右子树。 基本操作: Creatbitree(&S,definition) 初始条件:definition给出二叉树S的定义 操作结果:按definition构造二叉树S counter(T) 初始条件:二叉树T已经存在 操作结果:返回二叉树的总的结点数 onecount(T) 初始条件:二叉树T已经存在 操作结果:返回二叉树单分支的节点数 Clearbintree(S) 初始条件:二叉树S已经存在 操作结果:将二叉树S清为空树 Bitreeempty(S) 初始条件:二叉树S已经存在 操作结果:若S为空二叉树,则返回TRUE,否则返回FALSE Bitreedepth(S,&e) 初始条件:二叉树S已经存在 操作结果:返回S的深度 Parent(S) 初始条件:二叉树S已经存在,e是S中的某个结点 操作结果:若e是T的非根结点,则返回它的双亲,否则返回空Preordertraverse(S) 初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。 操作结果:先序遍历S,对每个结点调用函数visit一次且仅一次。 一旦visit失败,则操作失败。 Inordertraverse (S,&e) 初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。

二叉树的随机生成及其遍历

二叉树的随机生成及其遍历 张zhaohan 10804XXXXX 2010/6/12 问题重述 利用随机函数产生50个(不大于100且各不相同的)随机整数,用这些整数来生成一棵二叉树,分别对二叉树进行先根遍历,中根遍历和后根遍历并输出树中结点元素序列。 程序设计 (一)需求分析: ●问题的定义与要求:1、产生50个不大于100且各不相同的随机整数(由系统的随机函数生成并对100取模);2、先根遍历并输出结果;3、中根遍历并输出结果;4、后根遍历并输出结果;5、按层次浏览二叉树结点;6、退出程序。 ●输入:所需功能,选项为1~6。 ●输出:按照用户功能选择输出结果。 ●限制:输入的功能选择在1~6之间,否则无回应。 ●模块功能及要求: RandDif():生成50个随机不大于100的整数,每次生成不同随机整数。 CreateBitree():给数据结点生成二叉树,使每个结点的左右儿子指针指向左右儿子。NRPreOrder():非递归算法的先根遍历。 inOrderTraverse():递归算法的中根遍历。 PostOrderTraverse():递归算法的后根遍历。 Welcome():欢迎窗口。 Menu():菜单。 Goodbye():再见窗口。 (二)概要设计:

首先要生成二叉树,由于是对随机生成的50个数生成二叉树,故可以采取顺序存储的方式,对结点的左右儿子进行赋值。生成的二叉树是完全二叉树。 先根遍历的非递归算法: 1、根结点进栈 2、结点出栈,被访问 3、结点的右、左儿子(非空)进栈 4、反复执行2、3 ,至栈空为止。 先根遍历的算法流程图: 根结点进栈(a[0]=T->boot,p=a[0]) 访问结点printf(*p) 右儿子存在则进栈a[i]=(*p).rchild; i++; 左儿子存在则进栈a[i]=(*p).rchild; i++; 栈顶降低top--:i--;p=a[i]; 栈非空while(i>-1) 返回 中根遍历的递归算法流程图: T为空 Y N Return; inOrderTraverse(T->lchild) Printf(T->data) inOrderTraverse(T->rchild)

相关主题