搜档网
当前位置:搜档网 › 介孔材料简介及其制备方法

介孔材料简介及其制备方法

有序介孔材料的发展和面临的挑战

有序介孔材料的发展和面临的挑战 霍启升 吉林大学无机合成与制备化学国家重点实验室,中国吉林长春,邮编:130012 E-mail: huoqisheng@https://www.sodocs.net/doc/5b19248264.html, 摘要 简要介绍有序介孔材料的发现和发展历史,讨论合成、结构、应用等方面所面临的挑战。 有序介孔材料 有序介孔材料是指孔道规则且有序排列的介孔材料,早在1971年介孔材料的合成工作就已开始,日本的科学家们在1990年之前也已通过层状硅酸盐在表面活性剂存在下转化开始介孔材料合成,1992年Mobil的报导才引起人们的广泛注意,并被认为是介孔材料合成的真正开始。Mobil 使用表面活性剂作为模板剂,合成了M41S 系列介孔材料,包括MCM-41(六方相)、MCM-48(立方相)和MCM-50(层状结构)。 经过近二十年的全球性科学家的团结努力和辛苦工作,介孔材料的研究工作发展极快,并且成效显著,涉及到合成、结构、性质、应用等各个方面,参与研究的科学家专业分布极其广泛,介孔材料研究是近年来少有的受人瞩目且快速发展的研究领域。 有序介孔材料的优势 有序介孔材料的优势在于材料的独特的介孔结构(均一孔道尺寸及形状、高比表面、大孔体积)和合成过程简单,合成可重复,原料价格低廉,容易直接合成各类等级的可控结构,如薄膜、粉末、块体、微球、纤维、纳米级材料、各种微观形貌。介孔材料的组成容易多样化,易掺杂。尤其是二氧化硅基材料,表面羟基反应活性高,容易用各种有机基团修饰。 合成化学与结构及性质的研究 起初介孔材料的合成化学的研究以介孔二氧化硅材料为主,后来被开展到其它组成。合成机理的研究也是以二氧化硅体系为主要对象,根据不同的合成条件及体系,主要生成机理包括:从层状结构的转化、无机-有机静电作用、表面活性剂分子堆积参数的主导作用的协同自组装、真正液晶模板。 在上述机理的指导下,介孔材料合成工作迅速展开。材料组成从硅酸盐系列扩展到非硅酸盐无机系列,后来又到有机-无机杂化材料、有机材料、碳材料。典型的硅酸盐系列材料的骨架为无定形的,具有沸石结构单元的预合成的微粒或晶体可以被用来组成介孔材料的骨架,而有些易结晶的氧化物的介孔材料在合成过程或后处理过程中直接晶化导致介孔材料的骨架含有纳米级晶体。模板剂也从最初简单的阳离子表面活性剂扩展到复杂的阳离子表面活性剂、非离子表面活性剂、高分子聚合物、阴离子表面活性剂,甚至各类非表面活性剂。新模板方法的开发,新合成原料(前驱物)和表面活性剂的选择和组合等仍有许多研究工作需要完成。 合成方法也多样化,如evaporation induced self-assembly (EISA)(常被作为合成薄膜材料的首选方法),多种合成策略的运用(如硬模板的应用)。今后介孔材料合成在很大程度上应该从有机合成、高分子聚合、大分子及生物分子的自组装,以及固体材料合成借鉴更多的方法与策略。 典型材料从M41S材料发展出包括SBA系列、FDU系列、KIT系列等等。介孔材料的结构也从最初的二维六方相(MCM-41)和立方相(Ia3d,MCM-48)扩展到几乎所有可能的介观结构:p6mm,

介孔材料常用的表征方法[1]

介孔吸附材料常用的表征方法 摘要:介孔材料具有优越的性能和广泛的应用价值,成为各个领域研究的热点。本文简单介绍了介孔材料在吸附方面的应用以及常用的表征方法,如XRD、电镜分析、热重分析、BET法等。 关键词:介孔材料、吸附、XRD、BET、电镜分析 介孔材料是一种具有多种优良性质,应用广泛的新型材料。新型介孔吸附材料具有吸附容量大,选择性高,热稳定性好等[1]优点,成为研究的热点。对于气体的分离,如CO2的吸附(缓解温室效应)具有重要意义。 1.介孔吸附材料的简介 1.1介孔材料 介孔材料是一种多孔材料,IUPAC分类标准规定孔径2.0~50nm的为中孔,也就是介孔[2]。随着不断深入的研究,从最初的硅基介孔材料到现在各种各样的非硅基介孔材料被制备出来,并广泛应用于催化剂制备,新型吸附材料等行业。最初的介孔材料源于沸石,沸石是指多孔的天然铝硅酸盐矿物。这类矿物的骨架中含有结晶水,骨架结构稳定,在结晶水脱附或吸附时都不会被破坏掉[2]。后来人们根据沸石的性质结合实际需要相继合成了人造沸石(分子筛)。目前以SiO2为基础合成的介孔材料成为国际众多领域研究的热点。主要的研究方法是通过浸渍的方法在分子筛上负载相应的有机物分子,优化分子筛的表面特性,如较高的吸附容量,好的选择性及较多的活性位等,在生物材料,吸附分离,催化,新型复合材料等领域具有重要的应用价值和前景。 介孔材料具有独特的有点[3,4]:①孔道高度有序,均一性好,孔道分布单一,孔径可调范围宽。②具有较高的热稳定性和水热稳定性。③比表面积大,孔隙率高。④通过优化可形成具有不同结构、骨架、性质的孔道,孔道形貌具有多样性。 ⑤可负载有机分子,制备功能材料。 1.2新型吸附材料 上世纪90年代,Mobil Oil公司以二氧化硅作为主要氧化物,用长链烷基伯胺作模板剂,水热法制备出含有均匀孔道,孔径可调,呈蜂窝状的MCM-41介孔材料。它具有孔道呈六方有序排列、大小均匀、孔径可在2~10nm内连续调节,比表面积大等特点[2],对于开发新型的吸附剂具有重要意义。目前,研究的热点是由负载改性的介孔材料制备出选择性高、吸附容量大、热稳定性好、再生容易的复合吸附材料。研究较多的是用有机胺改性的MCM-41和SBA-15介孔材料制备高效的CO2吸附剂[5]。研究发现二异丙醇胺通过浸渍的方法负载到MCM-41和SBA-15上可显著提高其吸附容量,XRD图像说明负载前后的吸附剂孔径结构并未发生改变,负载不同的胺可得到不同的吸附效果[6]。 2.常用的表征方法

介孔材料的研究及应用

材料化学1112班张高洁 1120213236 介孔材料的研究及应用 摘要:介孔材料是当前具有广泛应用前景的一类新材料, 具有大的比表面积和孔体积、高的机械稳定性和化学稳定性、良好的导电性等特点,在分离提纯、生物材料、化学合成及转化的催化剂、半导体、计算机、传感器件、超轻结构材料等许多领域有着潜在的用途,成为了当今国际上的一个研究热点.本文阐述了介孔材料目前的研究进展,概述了介孔材料的分类、特点,合成方法及机理,表征手段,应用等,从而展望了介孔材料的应用前景。 关键词:介孔材料;分类;特点;合成方法及机理;表征方法;应用 1 介孔材料的分类 介孔材料按材料的组成大致分为两类:“硅基”介孔材料和“非硅”介孔材料。“硅基”介孔材料即构成骨架的主要成分是二氧化硅,“硅基”的介孔材料又包括纯硅的和掺杂有其它元素的两类介孔材料。“非硅”介孔材料即骨架组成为非硅的其他氧化物或金属等介孔材料。 2 介孔材料的特点 介孔材料具有独特的优点:1.孔道高度有序,均一性好,孔道分布单一,孔径可调范围宽。2.具有较高的热稳定性和水热稳定性。3.比表面积大,孔隙率高。 4.通过优化可形成不同结构,骨架,性质的孔道,孔道形貌具有多样性。 5.可负载有机分子,制备功能材料。 3 介孔材料的合成方法及机理 目前合成介孔材料的方法很多,如:溶胶凝胶法,水热合成法,微波辐射合成法,相转变法及沉淀法等,其中以前两种方式应用最多。介孔材料的合成机理,为各种合成路线提供了理论基础。在所提出的各种机理中,有一个共同的特点是溶液中表面活性剂引导溶剂化的无机前驱体形成介孔结构。这些表面活性分子中存在两种基团:亲水基和疏水基。为减少不亲和基之间的接触,溶液中的表面活性剂分子通过自组装的方式聚集起来形成胶束,以降解体系的能量。 3. 1 液晶模板机理

有序介孔材料

有序介孔材料 姓名: 班级: 学号: 专业:

摘要: 有序介孔材料是上世纪90年代迅速兴起的新型纳米结构材料,它一诞生就得到国际物理学、化学与材料学界的高度重视,并迅速发展成为跨学科的研究热点之一。由于其具有大的表面积和相对大的孔径以及规整的孔道结构,介孔材料在催化、储能和分离吸附领域有独特的应用地位。以下我将主要从有序介孔材料的背景特点、有序介孔材料的应用以及未来展望来介绍一下有序介孔材料。 关键词:有序介孔材料、催化领域、储能、分离吸附 一、有序介孔材料的背景及特点的简介 定义:有序介孔材料是以表面活性分子聚集体为模板,通过有机物与无机物之间的界面作用组装生成的孔道结构规则、孔径介于2-50nm的多孔材料。 1、发展历史 1992年Mobil公司的科学家首次报道合成了MCM(Mobil Com- position of Matter)-41介孔分子筛,揭开了分子筛科学的新纪元。1994年,Huo等在酸性条件下合成出APMs 介孔材料,结束MCM系列只能在碱性条件下进行的历史,拓展了人们对模板法合成介孔材料的认识。介孔材料合成的突破性进展是酸性合成体系中使用嵌段共聚物(非离子表面活性剂)为模板,得到孔径大、有序程度高的介孔分子筛SBA-15 。1996年Bagshaw等采用聚氧乙烯表面活性剂,N0I0非离子型合成路线,首次合成出介孔分子筛Al2O3。其表面积可达600 m2/g,去除模板剂后的热稳定性可达700℃。1998年Wei等首次以非表面活性剂有机化合物(如D-葡萄糖等)为模板剂制备出具有较大比表面积和孔体积的介孔二氧化硅。 2、有序介孔材料的合成 目前介孔材料的合成方法主要有硬模板法和软模板法。如下图1是软模板法,图2是硬模板法。

无机合成方法知识点

第一部分无机合成的基础知识 知识点:溶剂的作用与分类 例如:根据溶剂分子中所含的化学基团,溶剂可以分为水系溶剂和氨系溶剂根据溶剂亲质子性能的不同,可将溶剂分为碱性溶剂、酸性溶剂、两性溶剂和质子惰性溶剂。 例如:丙酮属于()溶剂:A 氨系溶剂 B 水系溶剂 C 酸性溶剂 D 无机溶剂 进行无机合成,选择溶剂应遵循的原则: (1)使反应物在溶剂中充分溶解,形成均相溶液。 (2)反应产物不能同溶剂作用 (3)使副反应最少 (4)溶剂与产物易于分离 (5)溶剂的纯度要高、粘度要小、挥发要低、易于回收、价廉、安全等 试剂的等级及危险品的管理方法 例如酒精属于() A 一级易燃液体试剂B二级易燃液体试剂C三级易燃液体试剂D四级易燃液体试剂 真空的基本概念和获得真空的方法 低温的获得及测量 高温的获得及测量 第二部分溶胶-凝胶合成 溶胶-凝胶法:用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解/醇解、缩聚化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。 金属醇盐是介于无机化合物和有机化合物之间的金属有机化合物的一部分,可用通式M(OR)n来表示。M是价态为n的金属,R代表烷基。 *金属醇盐可看作是醇ROH中羟基的H被金属M置换而形成的一种诱导体 *金属氢氧化物M(OH)n中羟基的H被烷基R置换而成的一种诱导体。 *金属醇盐具有很强的反应活性,能与众多试剂发生化学反应,尤其是含有羟基

的试剂。 例如:关于溶胶-凝胶合成法中常用的金属醇盐,以下说法错误的是(D ) A金属醇盐可看作是醇ROH中羟基的H被金属M置换而形成的一种诱导体 B金属醇盐可看作是金属氢氧化物M(OH)n中羟基的H被烷基R置换而成的一种诱导体。 C金属醇盐具有很强的反应活性,能与众多试剂发生化学反应,尤其是含有羟基的试剂。 D 异丙醇铝不属于金属醇盐 溶胶-凝胶合成法的应用 溶胶一凝胶法作为低温或温和条件下合成无机化合物或无机材料的重要方法,在软化学合成中占有重要地位。在制备玻璃、陶瓷、薄膜、纤维、复合材料等方面获得重要应用,更广泛用于制备纳米粒子。 溶胶与凝胶结构的主要区别: 溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是固体或者大分子,粒子自由运动,分散的粒子大小在1~1000nm之间,,具有流动性、无固定形状。凝胶(Gel)是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体,无流动性,有固定形状。 溶胶-凝胶合成法的特点: (1)能与许多无机试剂及有机试剂兼容,通过各种反应物溶液的混合,很容易获得需要的均相多组分体系。反应过程及凝胶的微观结构都较易控制,大大减少了副反应,从而提高了转化率,即提高了生产效率。 (2)对材料制备所需温度可大幅降低,形成的凝胶均匀、稳定、分散性好,从而能在较温和条件下合成出陶瓷、玻璃、纳米复合材料等功能材料。 (3)由于溶胶的前驱体可以提纯而且溶胶-凝胶过程能在低温下可控制地进行,因此可制备高纯或超纯物质。 (4)溶胶或凝胶的流变性质有利于通过某些技术如喷射、旋涂、浸拉等加工成各种形状,容易制备出粉末、薄膜、纤维、块体等各种形状的材料。 (5)制品的均匀性好,尤其是多组分制品,其均匀度可达到分子或原子尺度,产品纯度高。

氨基功能化介孔氧化硅材料的制备 2

氨基功能化介孔氧化硅材料的制备 摘要 介孔氧化硅材料由于其较大的孔容和比表面积,较好的生物相容性和无毒性等优点,受到越来越多研究者的关注。有机-无机介孔材料也称为PMOs(Periodic Mesoporous Organosilicas)是采用共缩聚的方法以桥联的有机硅酯作为硅源前体,将有机基团键合在材料的骨架中,可以使有机基团更均匀地分布在材料的骨架中并且不会堵塞孔道。PMOs 材料规则的孔道分布、可调的孔道微环境、丰富的有机基团等性质赋予了其潜在的应用前景,尤其在药物负载中显示了独特性能。双模型介孔材料(BMMs)是一种新型介孔材料,它具有双孔道结构:3 nm 左右的蠕虫状一级孔与10-30 nm左右的球形颗粒堆积孔。由于BMMs有别于单一孔道介孔材料,具有结构可控和粒度可控等许多独特性质,通过进一步表面改性,能够针对特定的药物分子,尤其是不溶性药物分子进行装载与可控释放,具有很好的专一性。 关键词:双模型介孔材料;氨基功能化;载药

Abstract Mesoporous silica materials due to its larger surface area, pore volume, advantages of good biocompatibility and non-toxic got more and more attention from researchers. Organic-inorganic mesoporous materials is also known as PMOs (Periodic Mesoporous Organosilicas) is using the copolycondensation method to bridging the silicone ester as a silicon source precursor, The organic group bonded in the skeleton material can make the organic groups more evenly distributed in the frame of material and will not block channel. PMOs material rules of channel distribution, adjustable pore micro environment, abundant organic groups leading to its potential application, especially shows the unique performancei n drug load. Bimodal mesoporous material (BMMs) is a new mesoporous material consisting of worm-like mesopores of 3nm as well as large inter-particles pores around 10-30 nm. Different from mesoporous materials with only one pore distribution, BMMs could realize the loading and controlled release of specific drug molecules, especially for the insoluble drugs, through surface modification, due to the unique characteristics such as the controllable structure and particles size. Keywords: Bimodal mesoporous material; Amino functionalization; drug

材料合成与制备方法

第一章 1、1 溶胶凝胶 1、什么是溶胶——凝胶? 答:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。 2、基本原理(了解) 3、设备:磁力搅拌器、电力搅拌器 4、优点:该方法制备块体材料具有纯度高、材料成分易控制、成分多元化、均匀性好、材料形状多样化、且可在较低的温度下进性合成并致密化等 5、工艺过程:自己看 6、工艺参数:自己看 2、1水热与溶剂热合成 1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境。 2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。 3、优点:a、在有机溶剂中进行的反应能够有效地抑制产物的氧

化过程或水中氧的污染; b、非水溶剂的采用使得溶剂热法可选择原料范围大大扩大; c、由于有机溶剂的低沸点,在同样的条件下,它们可以达到比水热合成更高的气压,从而有利于产物的结晶; d、由于较低的反应温度,反应物中结构单元可以保留到产物中,且不受破坏。同时,有机溶剂官能团和反应物或产物作用,生成某些新型在催化和储能方面有潜在应用的材料 4、生产设备: 高压釜是进行高温高压水热与溶剂热合成的基本设备;(分类自己看),高压容器一般用特种不锈钢制成, 5、合成工艺:选择反应物核反应介质——确定物料配方——优化配料顺序——装釜、封釜——确定反应温度、压力、时间等试验条件——冷却、开釜——液、固分离——物相分析 6、水热与溶剂热合成存在的问题:1、无法观察晶体生长和材料合成的过程,不直观。2、设备要求高耐高温高压的钢材,耐腐蚀的内衬、技术难度大温压控制严格、成本高。3、安全性差,加热时密闭反应釜中流体体积膨胀,能够产生极大的压强,存在极大的安全隐患。 7、水热生长体系中的晶粒形成可分为三种类型: a、“均匀溶液饱和析出”机制 b、“溶解-结晶”机制 c、“原位结晶”机制

13103202-材料制备及合成方法

《材料制备及合成方法》课程教学大纲 一、课程基本信息 课程编号:13103202 课程类别:专业选修课程 适应专业:材料物理 总学时:36 总学分:2 课程简介: 材料制备及合成方法是一门面向材料物理专业开设的选修课程,通过本课程学习,旨在使学生初步了解无机化学的研究领域,要求学生掌握无机材料合成的主要技术、方法、应用及前沿领域,培养学生综合运用所学各种物理、化学知识进行材料制备及合成的基础能力。 授课教材:《无机合成与制备化学》,徐如人主编,高等教育出版社,2009年。 参考书目: [1] 《The Synthesis and Characterization of Inorganic Compounds》, Prentice-Hall, W. L. Jolly,Inc. Englewood Cliffs, New Jersey, 1985年。 [2] 《材料合成与制备方法》,曹茂盛,哈尔滨工业大学出版社,2008年。 [3] 《无机材料合成与制备》,朱继平,合肥工业大学出版社,2009年。 二、课程教育目标 通过本课程教学,要求掌握: (1) 通过溶剂对化学反应的影响,了解溶剂效应以及在合成反应中的作用。 (2) 重点介绍无机合成方法,了解经典合成方法、特殊合成方法等的基本原理。 (3) 通过学习典型无机材料和无机化合物的合成方法,了解合成领域的规律和无机化合物性质。 (4) 非水溶剂在无机合成中的作用。 (5) 传统合成方法的发展过程,其基本原理在现代合成中的应用。 (6) 晶体生长原理以及无机合成化学的理论研究。 (7) 新型无机材料的合成方法。 三、教学内容与要求 第一章绪论 教学重点:无机合成的几个基本问题 教学难点:21世纪化学四大难题 教学时数:2学时 教学内容:无机合成的发展简史及其重要作用;无机合成的几个基本问题;无机合成化学中若干前言课题;21世纪化学四大难题及合成化学展望

武汉理工大学功能材料第五次作业

功能材料制备技术前沿作业 1、简述组织工程支架材料的制备方法有哪些? 答:除了可注射性材料以外,大多数组织工程支架必须预先制成三维、多孔支架。而三维支架制备的主要技术有纤维黏结、粒子沥滤、冷冻干燥、气体发泡法、三维打印及超临界流体技术。 其中可以细分为有机多孔材料的制备方法与无机多孔材料的制备方法。其中有机①多孔支架的制备方法可分为: ⑴将无纺织物中互不相连的PGA纤维黏接起来,可使相邻纤维间形成物理连结,从而使纤 维支架稳定、耐压,即纤维黏结法。 ⑵利用无机盐溶于水而不溶于有机溶剂、聚合物溶于有机溶剂而不溶于水的特性,用溶剂 浇铸法将聚合物溶液/在玻璃培养皿中成膜,然后浸出粒子即得到多孔膜。将多孔膜用溶剂溶解在一起形成三维立体结构后,结合挤出技术,可知被出PLLA,PLGA多孔聚合物导管,即粒子沥滤法。 ⑶将聚合物溶液、乳液或水凝胶在低温下冷冻,冷冻过程中发生相分离,形成富溶剂相和 富聚合物相,然后经冷冻干燥除去溶剂而形成多孔结构的方法称为相分离法,又称为冷冻干燥法。 ⑷采用超临界气体技术制备多孔支架的物理发泡法及用碳酸盐类化合物制备多孔支架的化 学发泡法统称为气体发泡法。 ⑸将可降解聚合物微球加入模具中,加热至玻璃化温度以上,保持一定时间后冷却、脱模 制得烧结微球支架的方法称之为烧结微球法。 ⑹三维打印技术是先由软件设计出所需的三位多孔支架的计算机电子模型,再根据工艺要 求,将其按一定厚度进行分层,把原来的三维电子模型变成二维平面模型,再将分层后的数据进行一定处理输入计算机,数控系统便以平面加工方式有顺序地连续加工出每个薄层模型并使它们自动粘结成型。 ⑺通过调节超临界流体的压力改变其溶胀作用,并在减压排气后得到空洞结构。 ②无机多孔支架的制备方法可分为: ⑴煅烧天然骨法,一般采用健康成年牛的松质骨,经脱脂、脱蛋白、煅烧等工艺制成锻烧 骨载体,并用羟基磷灰石作为支架的主要成分来煅烧等一系列工艺制备。 ⑵颗粒烧结法,由生物陶瓷颗粒堆积后烧结形成多孔结构制得无机多孔支架。 ⑶有机泡沫浸渍法,将经过预处理的有机泡沫浸入HAP、水与粘结剂混合得到的浆料,烘 干并高温烧结得到多孔状的HAP支架。 ⑷气体发泡法,在制备好的料浆中加入发泡剂,通过化学反应等能够产生大量细小的气泡, 以及烧结时通过在熔融体内发生放出气体的反应制得多孔结构。 ③天然生物衍生材料支架的制备方法:

介孔材料合成方法

三维介孔材料SBA-16的制备 分别称取12 g F108和31.44 g硫酸钾放入500 mL烧杯中,加入360 g浓度为2 M的盐酸。在室温下(25 °C)搅拌4 h,使表面活性剂全部溶解并且分散均匀后,将温度升至38 °C。待恒温后,在剧烈搅拌下,逐滴加入25.2 g正硅酸乙酯(TEOS),连续搅拌20 min后停止。静置保持反应物24 h,整个过程维持38 °C 不变。所得白色粉末,通过离心进行收集(转速5000 rpm),用去离子水洗涤6次,并在烘箱中40 °C干燥。表面活性剂在500 °C空气中焙烧5 h去除,升温速度控制在2 °C /min。 二维介孔二氧化硅材料SBA-15的制备 室温下,将1 g P123和2.24 g KCl溶于30 g 2 M的盐酸中,当搅拌至均一溶液后,逐滴加入2.08 g正硅酸乙酯(TEOS),并强烈搅拌30 min。静置24 h 后,把所得混合物转移至带聚四氟乙烯衬套的不锈钢反应釜中,100 °C晶化24 h。自然冷却后,经抽滤,反复洗涤,在烘箱中过夜烘干。 三维介孔二氧化硅材料SBA-16的制备 在45 °C下,将4.0 g F127和8.0 g浓盐酸(37 wt%)溶于192 g蒸馏水中。在搅拌均一后,加入12.0 g 正丁醇,并强烈搅拌1 h。逐滴加入18 g正硅酸乙酯(TEOS)后,在相同温度下搅拌24 h。将所得混合物转移至带聚四氟乙烯衬套的不锈钢反应釜中,100°C晶化24 h。自然冷却,经抽滤,反复洗涤,所得粉末样品在烘箱中过夜烘干。 MCM-41的合成 将4.38 g CTAB加入到含1.10 g NaOH的200 g蒸馏水中。室温搅拌使其完全溶解,逐滴加入5.21 g TEOS,并继续搅拌24 h。将混合物转移至带有聚四氟乙烯内衬的反应釜中,在110 °C条件下晶化24 h。所得产物抽滤后,用蒸馏水反复冲洗直至滤液呈中性,将产物干燥。 介孔二氧化硅分子筛KIT-6的制备

简述介孔材料及其应用-王丽萍

简述介孔材料及其应用 王丽萍 专业:化学 学号:2012110639 摘 要:本文综述简要介绍了介孔材料的发展历程、特点、合成原理以及方法。并 阐述了介孔材料在选择性催化、生物医药、新能源材料等领域的应用。又进而详细介绍了几种重要的介孔材料,并且对其特点、合成机理等进行了描述。 关键词 介孔材料 应用 SBA-15 PMOs 前言 介孔材料的比表面积大,结构长程有序,孔径分布狭窄并且连续可调,孔隙率高等特点,使得介孔材料可以轻易完成吸附、分离的工作,这是许多微孔沸石分子筛难以实现的。此外,介孔材料表面丰富的硅醇键使之非常适合成为主体材料进行金属、金属氧化物和金属有机化合物等客体材料在孔道内的组装,从而形成主客体介孔材料。其独有的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应使之在诸多领域如催化、吸附、环保、光电、化学固定及酶分离等研究上取得了很大的进展。 一、介孔材料简介 按国际纯粹和应用化学协会(IUPAC)的定义,孔径小于2纳米的多孔材料称为微孔材料,孔径大于50纳米的多孔材料为宏孔材料,而孔径介于微孔与宏孔之间的多孔材料则称为介孔材料。 关于介孔材料的分类有两种方式,按照化学组成分类,可分为硅基和非硅基组成介孔材料两大类。按照介孔是否有序分类,可分为无序介孔材料和有序介孔材料。 二、介孔材料的发展 1992 年Mobil 公司的科学家们第一次报道了使用烷基季铵盐阳离子表面活性剂为模板,在水热条件下于碱性介质中通过-+I S 作用组装得到,最后溶剂萃取回收模板剂且成功合成M41S 系列介孔材料,此类材料具有较大的比表面积、孔道规则并且在纳米尺度内有序排列、具有无定形的孔壁原子尺度的孔壁中原子呈无序排列,从此标志着介孔材料的出现。1995年Pinnavaia 等人以长链烷基伯胺为模板剂在室温中性条件下合成出了介孔全硅分子筛HMS 系列,其具有六方结构但长程有序度不是很好,由于是在中性条件下合成的,有机模板剂和无机前驱体都不带电荷,相互之间的排斥力减小,能形成更厚的孔壁,水热稳定性较高。[1] 为了提高介孔材料的有序性,Pinnavaia 等人又利用非离子型表面活性剂与中性低聚硅

有序介孔磷酸锆的研究进展

综述专论 化工科技,2006,14(6):64~68 SCIENCE &TECHNOLO GY IN CHEMICAL INDUSTR Y 收稿日期:2006203203 作者简介:冯英俊(1982-),女,山东淄博人,山东轻工业学院硕士研究生,主要从事功能材料的研究。 3基金项目:山东省自然科学基金资助项目(Y 2002F20)。 有序介孔磷酸锆的研究进展 3 冯英俊,何 文,刘建安 (山东轻工业学院材料科学与工程学院,山东济南250100) 摘 要:简要阐述了磷酸锆材料的特点和应用发展现状,重点探索了有序介孔磷酸锆的制备方法及表征技术,对于磷酸锆材料研究及制备中存在的问题进行了归纳。 关键词:有序介孔材料;磷酸锆;介孔磷酸锆 中图分类号:TQ 134.1+2 文献标识码:A 文章编号:100820511(2006)0620064205 近几年,新型纳米材料的研究不断进入新的领域,纳米材料的研究涉及到凝聚态物理、化学、 材料学、生物学等诸多学科,多学科相互渗透、形成新的学科生长点,从而合成了许多全新的纳米材料[1,2]。磷酸锆类材料是近年逐步发展起来的一类多功能材料,既有离子交换树脂一样的离子交换性能,又有沸石一样的择形吸附和催化性能。同时又有较高的热稳定性和较好的耐酸碱性。这类材料以其独特的插入和担载性能而呈现广阔的发展前景,使得这类介孔材料的研究成为国内外的研究热点。有序介孔材料的合成早在20世纪70年代就已经开始,直到1992年Mobil 公司的MCM 241的介孔材料的报道才引起人们的广泛注 意,这也是有序介孔材料合成的真正开始,不久就开始合成磷酸铝材料的尝试,有关介孔磷酸锆的研究正处于方兴未艾的时期。磷酸锆介孔材料分为介孔磷酸锆与有序介孔磷酸锆,这种有序的结构具有规则的通道和大的比表面积呈现出诱人的应用前景。 1 有序介孔磷酸锆的制备技术 在制备方法上,目前众多专家学者采用多种方法制备这一新兴的有序介孔材料,总体来看,主要有以下几种:回流法、直接沉淀法、水热(或溶剂热)合成法、模板合成法等。 1.1 回流法 利用可溶性锆盐和磷酸或金属磷酸盐反应可制得磷酸锆胶状沉淀,并在磷酸中进行长时间回流,可制得层状晶体化合物α2ZrP ?H 2O 。回流法操作简单,对仪器要求不高,制备得到的磷酸锆晶体容易实现胶体化,有利于层柱磷酸盐的制备。WeiLiu 利用无机锆盐经过两步反应,制得形状规 则、热稳定性好的六角形磷酸锆[3]。D Car 2riere [4]、南昌大学化工系的罗美、郑典模和邱祖民 也采用此种方法[5]制备了热性能好且结晶度良好的磷酸锆介孔材料。图1是用回流法制备的有序介孔磷酸锆的SEM 2电镜照片,从图1可以清楚地看到磷酸锆的层状结构及介孔的有序排列。 图1 有序介孔磷酸锆的SE M 电镜照片 1.2 水热晶化及溶剂热合成法 中国科技大学的张蕤、胡源、宋磊等人采用水热法成功制备了磷酸锆的层状材料[6]。此材料 结晶度好,晶体为规则的六边形薄片状,具有较高的热稳定性。此外,采用无水乙醇代替水做溶剂,

有序介孔材料的合成

?封面故事? 有序介孔材料的合成 赵东元教授 介孔材料具有高度有序的纳米孔道、超高的 表面积和丰富迷人的介观结构,在多相催化、吸 附分离、传感器、光电磁微器件、纳米器件等高新 技术领域具有广阔的应用前景,受到了人们的广 泛重视。介孔材料科学已经成为国际上跨化学、 物理、材料等多学科的热点前沿领域之一。 复旦大学赵东元教授课题组在有序介孔材 料的合成和结构研究领域取得了丰硕的成果。他们合成了一系列以复旦大学命名(F DU 系列)的新型介孔分子筛材料,被很多国际同行使用和研究。他们提出了普适的“酸碱对”路线,按无机物的酸碱性(p K a )大小进行反应配对,控制金属离子的水解,成功地合成了一系列高质量、热稳定的、大孔径的、高度有序的、各种组成的、多种结构的非硅介孔氧化物、混合氧化物、金属磷酸盐(硼酸盐)、混合金属磷(硼)酸盐等介孔分子筛。最近,他们又选用一种低分子量可溶性的酚醛树脂为高分子前驱体,商品化的三嵌段聚合物PEO 2PPO 2PEO 为模板,通过溶剂挥发诱导有机—有机自组装,制备了一类高有序度的高分子和碳介孔材料,分别命名为FDU 214(Ia 3d )、FDU 215(p 6m )和FDU 216(I m 3m )。采用PPO 2PEO 2PP O 型和PEO 2b 2PS 型嵌段共聚物为模板分别得到了介孔碳F DU 217(Fd 3m )和FDU 218(Fm 3m )。同时,利用水相下嵌段共聚物与酚醛树脂的有机—有机自组装,也成功地合成出了介孔碳材料(F DU 214,15和16),使得介孔碳的大批量制备成为可能。另外,通过控制条件还制备了介孔碳F DU 216单晶。在上述研究的基础上,他们还将有机—有机自组装方法,扩展到三元共组装体系,成功地合成出了有序介孔高分子—氧化硅和碳—氧化硅纳米复合材料,得到了具有开放孔道的有序介孔高分子和碳材料(见封面),打破了传统的硬模板合成的限制,推动了有序的碳介孔材料在吸附、分离、催化剂载体、电极材料和储氢等领 域的应用。该系列成果发表在《自然?材料》(N a tu re M a teria ls )、《德国应用化学》 (A nge w.Che m.In t .Ed )、《美国化学会志》(J.Am.Che m.S oc .)、《化学材料》 (Che m.M a ter .)等国际 权威刊物上,得到了国际相关领域的关注。 (复旦大学先进材料实验室) 1 51? 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. https://www.sodocs.net/doc/5b19248264.html,

材料合成与制备

第一章绪论 1.材料按化学组成可分为金属材料、无机非金属材料、高分子材料、复合材料四类。2.材料合成与制备是通过一定的途径,从气态、液态或固态的各种不同原材料中得到化学上及性能上不同于原材料的新材料。 研究内容:一是研究新型材料的合成方法;二是研究已知材料的新合成方法、新合成技术,从而指定节能、经济、环保的合成路线及开发新型结构和功能的材料。 3.材料科学与工程的四个基本要素:合成与加工、组成与结构、性质、使用性能。 第二章无机材料合成实验技术 1.表征真空泵的工作特性的四个参量:起始压强、临界反压强、极限压强、抽气速率。2.平衡分离过程:借助分离媒介(如热能、溶剂或吸附剂)使均相混合物系统变成两相系统,再以混合物中各组分在处于相平衡的两相中不等同的分配为依据而实现分离。3.速率分离过程:在某种推动力(浓度差、压力差、温度差、电位差等)的作用下,有时在选择性透过膜的配合下,利用各组分扩散速率的差异实现组分的分离。 4.吸附分离过程:利用混合物中各组分与吸附剂表面结合力强弱的不同,即各组分在固体相(吸附剂)和流体相间的吸附分配能力的差异,使混合物中难吸附组分与易吸附组分得以分离。 特点:①多数吸附剂具有良好的选择性,同时,被吸附组分又可在不同的条件下脱附,方便被吸附组分的分别收集和吸附剂的再生利用; ②吸附剂化学稳定性好,分离所得产物纯度高; ③吸附与解吸速度快,为快速分离和获得小体积淋洗液创造了条件; ④吸附剂价廉易得,实验操作简单; ⑤为了增加表面作用位置,吸附剂通常制成多孔结构和大比表面积。 吸附机理: ⑴吸附作用机理复杂,包括静电吸附、氢键作用、离子交换、络合作用等多种物 理和化学过程; ⑵从分子间作用力的观点来看,吸附作用是吸附剂表面的立场与吸附质分子之间 相互作用的结果,主要是物理吸附; ⑶硅胶、Al2O3表面含有大量羟基及O原子,能与许多物质形成氢键。氢键和电 荷转移相互作用均产生较强的吸附能; ⑷极性吸附剂与极性分子之间的吸附力较强,选择性也较高。 5.膜分离法:用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离,分级,提纯和富集的方法。 透析—超滤分离技术: 原理:透析是采用半透膜作为滤膜,使试样中的小分子经扩散作用不断透出膜外,而大分子不能透过被保留,直到膜两边达到平衡。 特点:半透膜两边均为液体,一边为试样溶液,另一边为纯净溶剂,可不断更换外层溶剂使扩散不断进行,直至符合要求。 第三章扩散、固相反应与烧结 1.扩散:由于物质中存在浓度梯度、化学位梯度、温度梯度和其他梯度所引起的物质运输过程。气体、液体:很大的速率和完全的各向同性;固体:各向异性和扩散速率低。2.影响扩散的因素:温度、杂质、气氛、粘度、扩散介质。

相关主题