搜档网
当前位置:搜档网 › 车用轮边减速器设计

车用轮边减速器设计

摘要

本论文是结合当今汽车行业发展的形势,对微型电动汽车的车用轮边减速器进行设计,设计一种微型电动车用的轮边减速器,是为微型电动汽车的轮边驱动系统使用,工作力矩较小,但因没有主减速器而需要更大的减速比。以大型车辆的轮边减速器的结构型式可以为电动汽车的轮边减速器提供参考,缩小结构尺寸,而增大减速比,满足轮边驱动系统的使用要求。

近年来随着汽车工业的高速发展,全球汽车总保有量不断增加,汽车所带来的环境污染、能源短缺,资源枯竭等方面的问题越来越突出。日益严重的石油危机与人们环保意识的加强,对汽车工业的发展提出了极为严峻的挑战。采用电能为驱动设备的电动汽车由于能真正实现“零排放”,而成为各国汽车研发的焦点。为了保护人类的居住环境和保障能源供给,各国政府不惜投入大量人力、物力寻求解决这些问题的途径。而电动汽车(包括纯电动汽车、混合动力电动汽车以及燃料电池汽车),即全部或部分用电能驱动电动机作为动力系统的汽车,具有高效、节能、低噪声、零排放等显著优点,在环保和节能方面具有不可比拟的优势,因此它是解决上述问题的最有效途径。

本论文所设计的微型电动汽车用的轮边减速器在电动汽车上的应用提供了一种可以借鉴的减速装置形式,有助于电动汽车的设计和研发。

关键词:电动;轮边;减速器;设计;驱动

ABSTRACT

This thesis is to combine current situation of the development of automobile industry of miniature electric cars, car wheel edges reducer design, design a kind of mini-bev wheel edge speed reducer, miniature electric cars for driving wheel edges system USES, work torque smaller, but because there is no main reducer and need more than the slowdown. The wheel edges with large vehicles for the structural type gear reducer electric car wheel edges provide reference, narrow gear reducer while increasing structure size than, satisfy wheel edges slowing the use requirement driving system.

In recent years, with the rapid development of auto industry, global car total quantities increases unceasingly, car brings the environment pollution, energy shortage, resource exhaustion issues such as more and more outstanding. The increasingly serious oil crisis and the people environmental protection consciousness, the strengthening of the development of automobile industry forward very serious challenges. Using electricity for driving equipment electric car true "is a result of zero emission and become the focus of the world automobile research. In order to protect the human living environment and safeguard energy supply, governments invest a lot of manpower and material resources at the way to seek solutions to these problems. But electric cars (including pure electric cars, hybrid electric cars and fuel cell cars), namely all or part of the electricity can drive motor cars, as power system with high efficiency, energy saving, low noise, zero emissions and other significant advantages in environmental protection and energy saving, has incomparable advantage, therefore it solve the above problem is the most effective way.

This thesis miniature electric vehicle designed by the wheel edges with the electric car on the speed reducer can be used provided a reference of the deceleration device form, help electric vehicle design and development.

Key words: Power-driven;Welting rolling;Reducer;Devise;Drive

目录

摘要 (Ⅰ)

Abstract (Ⅱ)

第1章绪论 (1)

1.1 选题的依据和意义 (1)

1.2国内外研究概况及发展趋势 (3)

第2章行星齿轮的初步计算与选取 (5)

2.1已知条件 (5)

2.2 设计计算 (5)

2.2.1 选取行星轮传动的传动类型和传动简图 (5)

2.2.2 行星轮传动的配齿计算 (6)

2.2.3初步计算齿轮的主要参数 (7)

2.3本章小结 (8)

第3章装配条件及传动效率的计算 (9)

3.1装配条件的验算 (9)

3.2传动效率的计算 (9)

3.3减速器的润滑和密封 (14)

3.4本章小结 (14)

第4章齿轮强度验算 (15)

4.1 齿轮强度验算 (15)

4.2校核其齿面接触强度 (15)

4.3校核其齿跟弯曲强度 (17)

4.4本章小结 (20)

第5章减速器结构设计计算 (22)

5.1行星架的结构设计与计算 (22)

5.1.1行星架的结构设计 (22)

5.1.2行星架结构计算 (22)

5.2齿轮联轴器的结构设计与计算 (22)

5.3轴的结构设计与计算 (22)

5.3.1输入轴的结构设计与计算 (23)

5.3.2输出轴的设计计算 (24)

5.4铸造箱体的结构设计计算 (25)

5.5本章小结 (26)

结论 (28)

参考文献 (30)

致谢 (31)

附录 (32)

第1章绪论

1.1 选题的依据及意义

汽车是人类生活中不可缺少的重要工具,随着近年来汽车工业的发展,中国政府已将汽车工业确定为国民经济的支柱产业。随着《汽车工业产业政策》的颁布实施,中国汽车工业步入了新的历史发展阶段,2010年中国汽车产销分别为1826.47万辆和1806.19万辆,居全球第一。但是汽车工业要成为真正的支柱产业,则必须具备自我发展能力。尽快建立中国汽车工业的技术开发体系,形成自主开发产品的能力,这将关系到汽车工业发展的全局和长远规划。

近年来随着汽车工业的高速发展,全球汽车总保有量不断增加,汽车所带来的环境污染、能源短缺,资源枯竭等方面的问题越来越突出。日益严重的石油危机与人们环保意识的加强,对汽车工业的发展提出了极为严峻的挑战。为了汽车工业的可持续发展,以开发和推广电动车,多种代用燃料汽车为主要内容的绿色汽车工程已在世界范围内展开。世界各大汽车公司争相研制各种1新型的无污染环保车,力图使自己生产的汽车达到或接近零污染标准。采用电能为驱动设备的电动汽车由于能真正实现零排放,而成为各国汽车研发的焦点。为了保护人类的居住环境和保障能源供给,各国政府不惜投入大量人力、物力寻求解决这些问题的途径。而电动汽车(包括纯电动汽车、混合动力电动汽车以及燃料电池汽车),即全部或部分用电能驱动电动机作为动力系统的汽车,具有高效、节能、低噪声、零排放等显著优点,在环保和节能方面具有不可比拟的优势,因此它是解决上述问题的最有效途径。

在20世纪50年代,荚国科学家罗伯特发明了电动汽车轮毂。其设计是将电动机、减速器、传动系统和制动系统融为一体。1968年,通用电气公司将这种电动轮毂装置运用到大型矿用自卸车上,并取名为“电动轮”,这是第一次在汽车上采用电动轮结构,近年来,随着电动汽车的兴起.轮毂电机驱动又得到重视。轮彀电机驱动系统的布置非常灵活.直接将电动机安装在车轮轮毅中,省略了传统的离合器、变速箱、主减速器及差速器等部件t因而简化整车结构、提高了传动效率、同时能借助现代计算机控制技术直接控制各电动轮实现电子差速.无论从体积、质量,还是从功率、载重能力看,电动轮相较于传统汽车动力传动系统.其结构更加简单、囊凑,占用空间更小,更容易实现全轮驱动。这些突出优点,使电动轮驱动成为电动汽车发展的一个独特方

向。

电动汽车驱动系统布置比传统燃油汽车有着更大的灵活性,由驱动电动机所在位置以及动力传递方式的不同,通常可以分为集中单电机驱动、多电机驱动以及电动轮驱动等型式。其中独立电动轮驱动的电动汽车由于其控制方便、结构紧凑等优点,成为电动汽车驱动型式研究的新方向。

电动机本身具有调速的功能,如果在电动汽车上继续保留内燃机汽车必须使用的变速箱就显得累赘了。而轮边减速器,作为轮边驱动的一个选择装置,在传统动力汽车上已获得了较多的应用。一些矿山、水利等大型工程所用的重型车、大型公交车等,常要求具有高的动力性,而车速则可相对较低,因此其低档传动比就会很大,为了避免变速器、分动器、传动轴等总成因需承受过大的转矩而使尺寸及质量过大,则应将传动系的传动比尽可能多地分配给驱动桥,这就导致了这些重型车辆驱动桥的主减速比很大,当其值大于12时,则需要采用单级(或双级)主减速器附加轮边减速器的结构型式,不仅使驱动桥中间部分主减速器的轮廓尺寸减小,加大了离地问隙,并可得到大的驱动桥减速比,而且半轴、差速器及主减速器从动齿轮等零件的尺寸也可减小。对于新兴的电动汽车,由于电动轮的应用,轮边减速器也得到越来越多的应用。

采用轮边减速器是为了提高汽车的驱动力,以满足或修正整个传动系统驱动力的匹配。目前采用的轮边减速器,就是为满足整个传动系统匹配的需要,而增加的一套降速增扭的齿轮传动装置。安装在车辆动力输出终端,减轻变速箱负载。发动机点火经离合器、变速器和分动器把动力传递到前、后桥的主减速器,再从主减速器的输出端传递到轮边减速器及车轮,以驱动汽车行驶。在这一过程中,轮边减速器的工作原理就是把主减速器传递的转速和扭矩经过其降速增扭后,再传递到车轮,以便使车轮在地面附着力的反作用下,产生较大驱动力。

微型电动汽车的轮边减速器将动力从原动机(此研究中即为轮毂驱动电机)直接传递给车轮,其主要功能是降低转速、增加转矩,从而使原动机的输出动力能够满足电动车的行车动力需求。在对电动汽车轮边减速器的设计与研究中,将紧密结合整车性能的要求,并考虑与轮边减速器相匹配的制动系统、悬架、轮毂电机等装置的布局与设计问题,借鉴不同型式的轮边减速器结构上的优点及参数选择的合理性,利用先进的计算机虚拟技术,对微型电动汽车的轮边减速器进行设计与研究。

行星齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点;这些已被我国越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特

的优点。行星齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器、和航空航天等工业部门均获得了广泛的应用。

1.2 国内外研究概况及发展趋势

世界上一些工业发达国家,如日本、德国、英国、美国和俄罗斯等,对行星齿轮传动的应用、生产和研究都十分重视,在结构优化、传动性能、传递功率、转矩和速度等方面均处于领先地位;并出现了一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代机械传动设备中获得了成功的应用。

行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自二十世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。

近20年来,尤其是我国改革开放以来,随着我国科学技术的进步和发展,我国已从世界上许多工业发达的国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极地吸收和消化,与时俱进、开拓创新地努力奋进,使得我国的行星传动技术有了迅速发展。目前,我国已有许多的机械设计人员开始研究分析和应用上述的新型行星齿轮传动技术,并期待着能有更大的突破。

据有关资料介绍,人们认为目前行星齿轮传动技术的发展方向如下:

(1)标准化、多品种目前世界上已有50多个渐开线行星齿轮传动系列设计,而且还演化出多种形式的行星减速器、差速器和行星变速器等多种产品。

(2)硬齿面、高精度行星传动机构中的齿轮广泛采用渗碳和淡化化学热处理。齿轮制造精度一般均在6级以上。

(3)高转速、大功率行星齿轮传动机构在高速传动中,如在高速汽轮传动中已获得广泛的应用,其传动功率也越来越大。

(4)大规格、大转矩,在中低速、重载传动中,传动大转矩的大规格的行星齿轮传动已有了较大的发展。

减速器的代号包括:型号、级别、联接型式、规格代号、规格、传动比、装配型式、标准号。

其标记符号如下:

N-NGW(N-内啮合、G-公用齿轮、W-外啮合)型;

A-单级行星齿轮减速器,B-两级行星齿轮减速器,C-三级行星齿轮减速器;

Z-定轴圆柱齿轮,S-螺旋锥齿轮,D-底座联接,F-法兰联接,L-立式行星减速器。

第2章行星齿轮的初步计算与选取

2.1 已知条件

毕业设计(论文)使用的原始资料(数据)及设计技术要求:

3.4本章小结

这一章主要对减速器的装配条件和传动效率进行了计算,确定了减速器的润滑和密封。

第4章齿轮强度验算

4.1 齿轮强度验算

4.2校核其齿面接触强度

(1)确定使用系数K

A

查表6-7(见参考文献[2])得

K A =1.1(工作机中等冲击,原动机轻微冲击的情况下)

(2)确定动载荷系数K V

取功率P=45KW,n a =377.1r/min

min /1.8259

.311.3771r p n n a x =+=+= min /295r n n x a =-

已知d 1=85mm,有公式(6-57)(见参考文献[2])得

()s m s m n n d v x x /31.1/19100

11=-≈ 计算动载荷系数k v 由公式(6-58)(见参考文献[2])得

B

X v V A A k -????????+=200 取传动精度系数为7即c=6,

B=025(7-5)0.667=0.817

A=50+56(1-B)=60.248

所以k v =1.17.

(3)齿向载荷分布系数ββF H K K ,

因为该2K-H 行星齿轮传动的内齿轮宽度与行星轮分度圆直径的比值小于1,所以1==ββf h k k 。

(4)齿间载荷分配系数ααF H K K ,

查表6-9(见参考文献[2])得

1.1==ααF H K K

(5)行星轮间载荷分配不均匀系数FP HP K K ,

查图7-19(见参考文献[2])取

2.1=HP K

由公式7-12得(见参考文献[2])取

3.1)12.1(5.11=-?+=FP k

(6)节点区域系数H Z

查图6-9(见参考文献[2])得

05.2=H Z

(7)弹性系数E Z

查表6-10(见参考文献[2])得

2/8.189mm N Z E =

(8)重合度系数εZ

已知a-c 副56.1=αε ,b-c 副78.1=αε 所以9.03

4)(=-=-αεεZ c a 86.034)(=-=

-αεεZ b c (9)螺旋角系数βZ

1cos ==ββZ

(10)试验齿轮的接触疲劳极限lim H σ

查图6-14(a )(见参考文献[2])得

2lim 1300Nmm H =σ

(11)最小安全系数min min,,F H S S

查表6-11(见参考文献[2])得

6.1,25.1min min ==H H S S

(12)接触强度计算的寿命系数NT Z

a-c :用表6-13(见参考文献[2])得

81105488.2)(60?=-=pt x a L n n n N

查表6-12(见参考文献[2])得

97.0)102(0191.01

6

1=?=L NTI N Z 81210099.1/?==p L L un N N

93.01020191.0262=???? ???=L NT N Z

c-b :77.2==c

b z z u 7210093.7)(60?=-=pt x b L n n n N

7211055.6?==p

L L n u N N 由表6-12(见参考文献[2])得

89.01020191.0161=???? ?

??=L NT N Z 89.01020191.026

2=???? ???=L NT N Z

(13)润滑油膜影响系数R V L Z Z Z ,,

查图6-17(见参考文献[2])取;1=L Z

查图6-18(见参考文献[2])取;94.0=V Z

查图6-19(见参考文献[2])取95.0=R Z ;

(14)齿面硬化系数W Z

已知条件中给定硬度为45-56HRC,取W Z =1.0;

(15)尺寸系数X Z

查表6-15(见参考文献[2])得X Z =0.9997

a-c 副:许用接触应力HP σ

5.978lim lim

==X W R V L NT H H HP Z Z Z Z Z Z S σσ

齿面接触应力H σ 6.663110=+?=u

u b d Ft Z Z Z Z E H H βεσ 68.8621101==HP H H U A H H K K K K K αβσσ

HP H σσ<,a-c 副满足齿面接触强度的要求。

c-b 副:许用接触应力HP σ 3.925lim lim

==X W R V L NT H H HP Z Z Z Z Z Z S σσ

齿面接触应力H σ 62.334110=+?=u

u b d Ft Z Z Z Z E H H βεσ 4351101==HP H H U A H H K K K K K αβσσ

HP H σσ<,c-b 副满足齿面接触强度的要求。

4.3校核其齿跟弯曲强度

(1)弯曲强度计算中的切向力Ft ,使用系数K A 和动载荷系数K V 与接触强度计算相同,

即17.1,1.1==V A K K ;

(2)齿向载荷分布系数βF K

βF K =1;

(3)齿间载荷分配系数αF K

查表6-9(见参考文献[2])得

1.1=αF K

(4)齿形系数Fa Y

查图6-22(见参考文献[2])得

053.2=Fa Y

(5)应力修正系数Sa Y

查图6-23(见参考文献[2])得

65.2=Sa Y

(6)重合度系数εY

按公式(6-75)(见参考文献[2])计算,即

()73.075.025.0=+=-ac

Y c a εε ()67.078

.175.025.0=+=-εY b c (7)螺旋角系数βY

查图6-25(见参考文献[2])得

1=βY

(8)齿轮的弯曲疲劳极限lim F σ

查图6-29(见参考文献[2])得

2lim 310mm N F ?=σ

(9)弯曲强度计算的寿命系数NT Y

由公式(6-13) (见参考文献[2])得

828110099.1;105488.2)(?=?=-L L N N c a

727110093.7,1055.6)(?=?=-L L N N b c

由公式(6-16) (见参考文献[2])得

955.0)103()(02.01

61=?=-L NT N Y c a 9.0)103(02.02

62=?=L NT N Y

835.0)103()(02.01

61=?=-L NT N Y c b 848.0)103(02.026

2

=?=L NT N Y (10)弯曲强度计算的尺寸系数X Y

由表6-17(见参考文献[2])得

101.005.1=-=m Y X

(11)相对齿根圆敏感系数relT Y δ

由图6-33(见参考文献[2])查得

1=relT Y δ

(12)相对齿根表面状况系数RrelT Y

由表6-18(见参考文献[2])得

9863.0)1(529.0674.11.0=+-=Z RrelT R Y ()m R Z μ12=

(13)最小安全系数

由表6-11(见参考文献[2])查得

6.1min =F S

)(c a -副 许用齿根应力FP σ 44.2922min lim ==X RrelT relT F NT

Sa F FP Y Y Y S Y Y δσσ

齿根应力F σ 58.1360==βεσY Y Y Y b F Sa Fa mn

t F 36.2510==FP F F V A F F K K K K K αβσσ

)(,c a FP F -<σσ副满足齿根弯曲强度的要求。

)(c b -副 许用齿根应力FP σ

43.429min lim ==X RrelT relT F NT

Sa F FP Y Y Y S Y Y δσσ

齿根应力F σ 35.1250==βεσY Y Y Y b F Sa Fa mn

t F 7.2300==FP F F V A F F K K K K K αβσσ

)(,c b FP F -<σσ副满足齿根弯曲强度的要求。

4.4 本章小结

这一章主要对行星齿轮的传动配齿、齿轮的强度进行验算,包括齿轮强度的验算、校核齿面的接触强度、校核齿根的弯曲强度。

第5章 减速器结构设计计算

5.1行星架的结构设计与计算

行星架是行星传动中结构比较复杂而重要的构件。当行星架作为基本构件时,它是机构中承受外力矩最大的零件。因此行星架的结构设计和制造质量对行星轮间的载荷分配以及传动装置的承载能力、噪声和振动等有重大影响。

5.1.1行星架的结构设计

行星架的常见结构形式有双臂整体式、双臂装配式和单臂式三种。在制造工艺上又有铸造、锻造和焊接等不同形式。

双臂整体式行星架结构刚性较好,采用铸造和焊接方法可得到与成品尺寸相近的毛坯,加工余量小。铸造行星架常用于批量生产地中、小型行星减速器中,如用锻造,则加工余量大,浪费材料和工时,不经济。焊接行星架通常用于单件生产的大型行星传动结构中。

该设计选用双臂式整体行星架(轴与行星架法兰连接),如图3-1所示

图5.1行星架

5.1.2行星架结构计算(见参考文献[1])

当两侧板不装轴承时:

255.97)3.025.0(')3.025.0(1≈?-=-=a c 取mm c 201=

205.97)25.02.0(')25.02.0(2≈?-=-≈a c 取mm c 202=

连接板的内圆半径

5.085.0/-≤R Rn

1205.70)5.085.0(-=-=R Rn 取103=Rn

行星架厚度

b b

c ,5.0≈为内齿轮宽度(b=52mm )

mm c 26525.0=?≈∴

行星架外径

)110,5.97'(8.0'2mm d mm a d a D c c ==+≈

mm D 2831108.025.97=?+?≈∴ 取mm D 284=

5.2齿轮联轴器的结构设计与计算

齿轮联轴器是用来联接同轴线的两轴,一同旋转传递转矩的刚性可移式机构,基本形式见图3-2.

图5.2齿轮联轴器

1—外齿轴套 2—端盖 3—内齿圈

齿轮联轴器是渐开线齿轮应用的一个重要方面,一般由参数相同的内外齿轮副相互配合来传递转矩,并能补偿两轴线间的径向、轴线倾斜的角位移,允许正反转。

沿分度圆(如图3-3所示)位置剖切外齿,剖切面得齿廓为直线时,称之为直齿联轴器;齿廓为腰鼓形曲线时,称之为鼓形齿联轴器。齿轮联轴器的内齿圈都用直齿。

鼓形齿联轴器的主要特点:

(1)外齿轮齿厚中间厚两端薄,允许两轴线有较大的角位移,一般设计为?±5.1,

特殊的设计在?3以上也能可靠地工作。

(2)能承受较大的转矩和冲击载荷,在相同的角位移时,比直齿联轴器的承载能力高15%-20%,外形尺寸小。

(3)易于安装调整。

图5.3

加工鼓形齿常用滚齿法和插齿法,用磨齿和剃齿法也可获得一定得鼓形量。 齿轮联轴器的外齿半联轴套和太阳轮做成一体,直径较小而承受转矩较大情况下常取3.02.0'/1-=dg b ,并设计成鼓形齿。

已知6,106==m mm dg

内齿圈宽度1)25.115.1(2b b -=(见参考文献[1])

6.312.21')3.02.0(1-=-=dg b 取mm b 201=

25231)25.115.1(2-=-=b b 取mm b 252=

联轴器外壳的壁厚为:

6.103.5')1.005.0(-=-=dg hg 取mm hg 5.10=

5.3轴的结构设计与计算

轴的结构设计包括定出轴的合理外形和全部结构尺寸。轴的结构主要取决于以下因素:轴在机器中的安装位置及形式;轴上安装零件的类型、尺寸、数量以及和轴的连接方法;载荷的性质、大小、方向及分布情况;轴的加工工艺等等。

5.3.1输入轴的结构设计与计算

A A

A A

(1)拟定轴上零件的装配方案

拟定轴上的装配方案是进行轴的结构设计的前提,它决定轴的基本形式。所谓装配方案就是预定出轴上主要零件的装配方向、顺序和相互关系。如图2-4中的装配方案是轴承、套筒、轴承、轴承端盖依次从轴右端向左装。

(2)轴上零件的定位

为了防止轴上零件受力时发生沿轴向和周向的相对运动,轴上零件出了游动或空转的要求外,都必须进行轴向和周向定位,以保证其准确的工作位置。

1>轴上零件的轴向定位是以套筒、轴承端盖和轴承盖来保证的;

2>轴上零件的周向定位的目的是限制轴上零件与轴发生相对转动。常用的周向定位的零件有键、花键、销、紧定螺钉以及过盈配合等。

(3)各轴段直径和长度的确定

1>按扭矩计算轴径

轴的材料选用40Gr,则查表15-3(见参考文献[5])得

[]110,450==A MPa T τ

计算轴的直径:

有公式(15-2)(见参考文献[5])得 [][]mm

n P n p d T T 98.491.37745997.1012.095500002.095500003333=?=?=≥ττ

取mm d 70min =

2>初步确定各轴段直径和长度如图3-4所示

汽车轮边减速器的运动仿真与分析

编号 毕业设计(论文)题目汽车轮边减速器运动仿真与分析 二级学院重庆汽车学院 专业车辆工程 班级 09454 学生姓名学号 指导教师职称副教授 时间 2013/5/31

目录 摘要 ............................................................................................................................................ I Abstract ...................................................................................................................................... I 第一章绪论 . (1) 1.1课题研究的目的及其意义 (1) 1.2课题研究的内容 (2) 第二章. 行星齿轮轮边减速器工作原理 (4) 2.1 行星齿轮轮边减速器结构结构 (4) 第三章汽车行星齿轮轮边减速器模型建立 (5) 第四章汽车行星齿轮轮边减速器模型ADAMS运动仿真及动力学分析 (8) 4.1运动仿真: (8) 4.2动力学特性: (12) 4.3动力学特性分析: (13) 第五章结构模态分析 (15) 5.1 ANSYS模态分析理论 (15) 5.2 有限元模型建立 (16) 5.3模型模态求解和分析 (18) 全文总结 (22) 致谢 (24) 参考文献 (25)

摘要 汽车轮边减速器是重型汽车的重要运动件,减速器的好坏很大程度上作用着重型汽车的动力学和稳定性。本文以行星齿轮减速器为研究对象。首先,分析了该减速器的结构形式,进行了正确的选择。 其次,通过CATIA三维图形软件绘制出行星齿轮轮边减速器机构的CAD图形,并完成零件装配。然后通过通用接口导入到ADAMS虚拟样机,在ADAMS里面对各个零件添加正确的约束及运动副并进行仿真得到运动特性和动力学特性。 通过CATIA与ANSYS的通用接口将模型导入到ANSYS软件里面,对该模型进行处理划分网格。利用ANSYS里面的模态分析处理程序,对该连杆进行模态分析,从而得到构件的模态变形图和沿不通方向的位移场分布图。 关键词:行星齿轮减速器;运动仿真;动力学特性;模态分析; Abstract Automotivewheel reducerisan importantheavy vehiclesmoving parts, reducergood or badlargelyfocused onthe role ofcarsdynamicsand stability.In this paper,the planetarygear reducerfor the study.First, theanalysis of thereducerstructure,werethe right choice. Secondly, through theCATIA3D graphics softwaredrawplanetary gearwheel reducerinstitutionsCAD drawings, and completeparts assembly. Then througha common interfaceintoADAMSvirtual prototype,inwhichthe variouspartsADAMSadd the correctconstraintsanddeputy campaignand conductsimulatedmotion characteristicsanddynamics. CATIAand ANSYSthrougha common interfacetoimport the model intoANSYSsoftware inside, the model isprocessedmesh. Using ANSYSmodal analysisinsidethe handler, modal analysisof theconnecting rod, resulting in componentmodaldeformation mapsanddirectionsalong thebarrierdisplacement fielddistribution. Key word: Planetary gear reducer;Motion simulation;Dynamics; Modal analysis;

TYQ4190型汽车轮边减速器的设计

任务书 毕业设计(论文)题目: 汽车轮边减速器设计 毕业设计(论文)要求及原始数据(资料): 要求: 1.根据原始数据和有关资料,进行文献检索、调查研究工作; 2.综合应用所学基础理论和专业知识,制定最佳设计方案; 3.所设计的轮边减速器总成应满足1250型载重车的各项性能要求; 4.设计图纸要求布局合理,正确清晰,符合国家制图标准及有关规定; 5.毕业设计说明书要求内容完整、层次清晰、文理通顺,具体按照太原理工大学毕业论文规范 撰写; 6.通过毕业设计,掌握轮边减速器的结构型式、设计方法; 7.独立按时完成毕业设计所承担的各项任务。 原始数据(资料): 1、质量参数:(kg) 载质量整备质量总质量挂车质量半挂鞍座质量 12000 7000 19000 35000 11000 尺寸参数: (mm) 外形尺寸5980×2500×3030 轴距3400 接近角/离去角(度) 18/32 车箱内部尺寸轮距2027/1820 最小离地间隙240 2、其它参数: 1)、最高车速:98km/h 2)、最大爬坡度(%):30 3)、车轮及轮胎:12.00R20 4)、轴数:2 毕业设计(论文)主要内容: 1.结合4190型牵引车的相关参数及结构特点,进行轮边减速器总成的设计; 2.确定轮边减速器的结构类型; 3.确定轮边减速器总成的主要性能参数; 4.轮边减速器总成的设计、计算、分析、制图; 5.其他相关零部件的设计; 6.结合本课题查阅并翻译1万印刷符合的英文资料; 7.模拟申请专利一份 8.编写设计说明书。

学生应交出的设计文件(论文): 1. 轮边减速器总成图纸一套; 2.毕业设计说明书。(按太原理工大学学生毕业论文撰写规范写) 主要参考文献(资料): 1吉林大学汽车工程系编著.汽车构造(下册) 第五版. 北京:人民交通出版社2王望予.汽车设计(第4版).北京:机械工业出版社 3 机械设计手册(上.中册).北京:化学工业出版社 4(日)武田信之著.方泳龙译.载货汽车设计.北京:人民交通出版社 5高维山.驱动桥.北京:人民交通出版社 6 QC/T 265-2004《汽车零部件编号规则》 专业班级学生 要求设计(论文)工作起止日期2011-3-21---2011-6-17 指导教师签字日期2011-3-21 教研室主任审查签字日期 系主任批准签字日期

电动汽车轮边减速器设计与分析

摘要 电动汽车是一种以电能作为动力来源的非轨道承载车辆,因其“节能高效、低碳环保”的突出优势,在我国汽车市场消费中占据相当一部分比例,也正是如此,围绕电动汽车进行的研究变得炙手可热。对于电动汽车而言,轮边驱动技术是传动系统的核心要素,基本特点是电动机输出的动力经过中间传动机构传到轮边减速器,轮边减速器对驱动力进行调节,以实现减速增扭的目的,因此这一技术在重型机械、矿山车辆、载货汽车等车辆上广泛应用。 本文以电动汽车轮边减速器作为研究对象,介绍了轮边减速器的发展现状、总体构造、工作原理等内容,并且根据轮边减速器的工作条件与要求,以缩小结构尺寸,增大减速比为切入点,对整个传动方案和关键零部件进行了设计校核,并且借助有限元对总体结构强度进行了仿真分析。 关键词:电动汽车;轮边减速器;结构设计;仿真分析

Abstract Electric vehicle (EV) is a kind of non rail carrying vehicle with electric energy as its power source. Because of its outstanding advantages of "energy saving, high efficiency, low carbon and environmental protection", it accounts for a considerable proportion in the consumption of the automobile market in China. So, the research on EV has become hot. For electric vehicles, the wheel drive technology is the core element of the transmission system. The basic feature is that the power output by the motor is transmitted to the wheel reducer through the intermediate transmission mechanism. The wheel reducer adjusts the driving force to achieve the purpose of reducing speed and increasing torque. Therefore, this technology is widely used in heavy machinery, mining vehicles, trucks and other vehicles. This paper takes the wheel reducer of electric vehicle as the research object, introduces the development status, overall structure, working principle and other contents of the wheel reducer, and according to the working conditions and requirements of the wheel reducer, taking reducing the structure size and increasing the reduction ratio as the breakthrough point, designs and checks the whole transmission scheme and key parts, and uses the finite element to strengthen the overall structure The simulation analysis is carried out. Key words: electric vehicle; wheel reducer; structural design; simulation analysis

装载机的轮边减速器结构设计

本科毕业设计 (论文) 装载机的终传动结构设计 Design of Final Drive Structure of Loader 学院:机械工程学院 专业班级:机械设计制造及其自动化机械092 学生姓名:李磊学号: 510910239 指导教师:杨平 2013 年 5 月

目录 1 绪论 (1) 1.1装载机发展史 (2) 1.2装载机的分类 (3) 2轮边减速器 (4) 2.1轮边减速器的主要型式及其特性 (4) 2.2轮边减速器的选用 (5) 2.3 轮边减速器的润滑 (5) 3 轮边减速器齿轮的设计 (7) 3.1选定齿轮类型、精度等级、材料以及齿数 (7) 3.2 按齿面接触强度来进行设计 (7) 3.3按齿轮的齿根弯曲强度来设计 (9) 3.4 几何尺寸的计算 (10) 4输入轴的设计 (11) 4.1尺寸设计 (11) 4.2按弯扭合成应力校核轴的强度 (14) 4.3精确校核轴的疲劳强度 (15) 4.4按照静强度条件进行校核 (21) 5输出轴的设计 (23) 5.1尺寸设计 (23) 5.2 精确校核轴的疲劳强度 (24) 结论 (28) 致谢 (29) 参考文献 (30)

1 绪论 装载机在港口、铁路、水电、公路、矿山、建筑等建设工程中是一种常用的施工机械,用途十分广泛,其主要作用就是用来铲装泥土、砂子、煤炭、石灰等散状物体,显然它当然也可以对地下的矿材和坚硬土壤等等物体进行铲挖作业。如果将它的的工作装置进行改变还可以起到起重、推土以及装卸的作用。此外,在建设公路中,特别是在高级公路建设中,装载机作用于路基工程的运输、填埋、挖取以及混凝土料场的收集与装取等作业。另外装载机还可进行推运土壤、碾平地面和牵引其他工程机械等作用。因为装载机在这些方面具有作业运输速度快、操作方便、办事效率高、机械的机动性好等很多优点,所以它成为了工程施工建设中的主要核心机械。 国内 ZL50型号的装载机生产厂家除了极个别厂家采用了自行研制生产的传动系外,大多数的厂家采用的几乎都是同一套传动系而且十分结构相似,液压变速器和驱动桥都是我国六七十年代测绘的外国公司产品所模仿设计的,这几十年来还未作设计改变。 国产轮式装载机正在从低水平、低质量、低价位、满足功能型向高水平、高质量、中等价位、经济的实用过渡。再从仿制走向自己研发过渡,各大主要制造厂不断的进行技术创新以及改变,另外加上采用不同的技术方案,技术人员在主要部件及系统上进行技术创新,解决了产品雷同的窘境,在这些年的研发里国内的装载机发生了天大的变化,从低质量以及低价位的竞争之中闪亮走出,从而成为了装载机这一行业的领先者。 (1)大型和小型轮式装载机,在近几年的发展过程中,受到客观条件及市场需求量的干扰。在这些轮式装载机的竞争中,中型的装载机更新最为之快相信它的发展速度会越来越快。 (2)根据各生产厂家的实际情况,重新进行总体设计,优化各项性能指标,强化结构件的刚度以及强度,这使现在的整机的稳定性以及可靠性得到了大幅度的提高。 (3)从细微的方面改变装载的系统以及结构。比如装载机的动力系统的减振,还有散热系统等结构的优化、装载机的工作装置性能指标的优化及各方面的防尘、建设中的造型设计等等。 (4)提高装载机的稳定性和安全性能。让驾驶室具备更多的功能,将驾驶室的环境变得和汽车差不多,这样驾驶员才能更有效率的操作,其中包括装载机的座椅、方向盘、各操纵档都能方便调节,使驾驶员能够随时随地的处于最佳工作状态。 (5)利用电子技术及负荷传感技术来实现变速箱的自动换挡及液压变量系统的应用,从而来提高工作效率,节约资源,以及装载机工作中的成本。

汽车主减速器设计

主减速器设计 3.2 主减速器设计 3.2.1 主减速器的结构型式 主减速器的结构型式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而异。 (1)主减速器齿轮的类型 在现代汽车驱动桥上,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。在双级主减速器中,通常还要加一对圆柱齿轮(多采用斜齿圆柱齿轮),或一组行星齿轮。在轮边减速器中则常采用普通平行轴式布置的斜齿圆柱齿轮传动或行星齿轮传动。在某些公共汽车、无轨电车和超重型汽车的主减速器上,有时也采用蜗轮传动。 (2)主减速器主动锥齿轮的支承型式及安置方法 在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这是齿轮能否正确啮合并具有较高使用寿命的重要因素之一。 现在汽车主减速器主动锥齿轮的支承型式有以下两种: 悬臂式 齿轮以其轮齿大端一侧的轴颈悬臂式地支承于一对轴承上。为了增强支承刚度,应使两轴承支承中心间的距离齿轮齿面宽中点的悬臂长度大两倍以上,同时比齿轮节圆直径的70%还大,并使齿轮轴径大于等于悬臂长。当采用一对圆锥滚子轴承支承时,为了减小悬臂长度和增大支承间的距离,应使两轴承圆锥滚子的小端相向朝内,而大端朝外,以缩短跨距,从而增强支承刚度。 (3)主减速器从动锥齿轮的支承型式及安置方法 主减速器从动锥齿轮的支承刚度依轴承的型式、支承间的距离和载荷在支承之间的分布而定。为了增加支承刚度,支承间的距离应尽可能缩小。两端支承多采用圆锥滚子轴承,安装时应使他们的圆锥滚子的大端相向朝内,小端相背朝外。为了防止从动齿轮在轴向载荷作用下的偏移,圆锥滚子轴承也应预紧。 轿车和轻型载货汽车主减速从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配合固定在差建界壳的突缘上。这种方法对增强刚性效果较好,中型和重型汽车主减速从动锥齿轮多采用有幅式结构并有螺栓或铆钉与差速器壳突缘连结。 (4)主减速器的轴承预紧及齿轮啮合调整 支承主减速器齿轮的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。预紧力的大小与安装形式、载荷大小、轴承刚度特性及使用转速有关。 主动锥齿轮轴承预紧度的调整,可通过精选两轴承内圈间的套筒长度、调整垫圈厚度、轴承与轴肩之间的调整垫片等方法进行。近年来采用波形套筒调整轴承预紧度极为方便,波形套筒安装在两轴承内圈间或轴承与轴肩间。 (5)主减速器的减速型式 主减速器的减速型式分为单级减速、双级减速、双速减速、单级贯通、双级贯通、主减速及轮边减速等。 单级主减速器 由于单级主减速器具有结构简单、质量小、尺寸紧凑及制造成本低廉的优点,广

轮边减速器开题报告

燕山大学 本科毕业设计开题报告 课题名称:45t矿用自卸车轮边减速器设计 课题性质:理工类:工程设计 课题来源:自选题目 学院(系):燕山大学里仁学院 专业:机械设计制造及其自动化 2012 年03 月14 日 一、综述本课题国内外研究动态,说明选题的依据和意义 轮边减速器一般为双极减速驱动桥中安装在轮毂中间或附近的第二级减速器。在一些矿山水利及其他大型工程等所用的重型汽车,工程和军事上用的重型牵引汽车及大型公共汽车等,要求有较高的动力性,而汽车车速相对较低,因而其传动系的低档总传动比很大,为了使变速器分动器传动轴等总成不致因承受过大尺寸及质量过大,应将传动系的传动比以尽可能大的比率分配给驱动桥。这就导致一些重型汽车大型汽车的主减速比必须很大,还有一些越野

汽车要求在坏路上和无路地区具有良好的通过性,即要求汽车在满载情况下能以平均车速通过各种坏路及无路地带时有足够离地间隙(如松软的土壤、沙漠、山地、雪地沼泽等),因此在设计上述重型汽车、大型公共汽车、越野汽车时,需要在车轮旁附加轮边减速器。 我国研制汽车轮边减速器始于20世纪70年代中期,由于各种原因,至今发展不快,只有几个厂家从事生产,技术水平只相当国外20世纪80年代末的水平,数量和质量也远远满足不了国内运输业发展的需要。进入21世纪以来,我国经济形势发生了很大的变化。公路运输得到了很快的发展,为了降低运输成本,缓解铁路压力,促使了汽车的运输能力和载货量逐渐加大。因此,重型汽车轮边减速器在我国的应用前景十分广阔。自从我国加入WTO之后,减速器行业面临极大的压力与挑战,为了应对这一严峻形势,一方面要引进更多更好的国外产品与相关技术,另一方面必须迅速发展民族工业。国外的汽车减速器应用得比较好,技术也比较先进,但价格比较高。一般情况是:国外的整机的价格是国内价格的2~3倍,而易损件、备件的价格却是5~8倍,因此,发展我国的轮边减速器产品是非常必要的。轮边减速器属于汽车减速零部件的关键总成,是为了提高汽车的驱动力,以满足或修正整个传动系统力的匹配。本论文就是对轮边减速器进行研究,找出合适的方法,为自主研发出具有结构简单,高精度和高可靠性的减速器提供理论支持。 (1)重型汽车轮边减速器多以行星齿轮为主,世界上的一些发达国家,如日本、瑞典、俄罗斯和美国等,对行星齿轮传动的研究、生产和应用都十分重视,在传动性能、传递功率、结构优化、转矩等方面均处于领先地位。发展比较快且取得一定科研成果的是在行星齿轮传动动力学方面。近几年来,随着我国对制造业的扶持和资金的投入以及科学技术不断进步,机械科技人员经过不懈的努力以及技术引进和消化吸收,在行星齿轮理论研究和优化设计等方面取得了~定的研究成果,在行星齿轮传动非线性动力学模型和方程方面的研究是国内两个关于行星齿轮传动动力学的代表,他们的研究成果取得了一定的成就并把许多技术应用于实际当中。与此同时,现代优化设计理论也应用到行星齿轮传动技术中,根据不同的优化目标,通过建立轮边减速器行星齿轮数学模型,产生了多种优化设计方法。在已经取得的成果中,有针对行星轮均载机构和功率分流方面的优化设计,有针对行星齿轮传动啮合效率、结构性能、体积的多目标优化设计研究,有专门针对如重型汽车轮边减速器行星传动机构齿轮模态优化设计,有针对行星机构噪声、振动、固有频率特性研究,这些成果的研究有利于提高了工程技术人员对行星传动技术的认识。在新理论和新数学计算方法出现的同时,行星齿轮减速器的优化设计方法也随着更新,比较新的研究成果:有可靠性工程理论在优化设计中的应用,有遗传算法在行星齿轮优化设计中的应用,有模糊数学在行星齿轮优化设计中的应用,有可靠性工程理论在优化设计中的应用,基于可靠性工程的理论通过引入强度可靠性系数方程来进行优化设计。这些新的设计理论和新的设计方法将许多设计理论概念和研究成果应用到优化设计中,对行星齿轮传动优化设计理论研究的发展有很大的贡献。 (2)对于行星齿轮减速器结构设计方面,目前国外已经广泛采用了CAD/CAE/CAM一体化的设计方法,这是一种面向零件的参数化的3D实体模型

装载机的轮边减速器结构设计

本科毕业设计(论文) 装载机的终传动结构设计Design of Final Drive Structure of Loader 学院:机械工程学院 专业班级:机械设计制造及其自动化机械092 学生姓名:李磊学号:510910239 指导教师:杨平 2013 年 5 月

目录 1 绪论 (1) 1.1 装载机发展史 (2) 1.2 装载机的分类 (3) 2 轮边减速器 (4) 2.1 轮边减速器的主要型式及其特性 (4) 2.2 轮边减速器的选用 (5) 2.3 轮边减速器的润滑 (5) 3 轮边减速器齿轮的设计 (7) 3.1 选定齿轮类型、精度等级、材料以及齿数 (7) 3.2 按齿面接触强度来进行设计 (7) 3.3 按齿轮的齿根弯曲强度来设计 (9) 3.4 几何尺寸的计算 (10) 4 输入轴的设计 (11) 4.1 尺寸设计 (11) 4.2 按弯扭合成应力校核轴的强度 (14) 4.3 精确校核轴的疲劳强度 (15) 4.4 按照静强度条件进行校核 (21) 5 输出轴的设计 (23) 5.1 尺寸设计 (23) 5.2 精确校核轴的疲劳强度 (24) 结论 (28) 致谢 (29) 参考文献 (30)

1 绪论 装载机在港口、铁路、水电、公路、矿山、建筑等建设工程中是一种常用的施工机械,用途十分广泛,其主要作用就是用来铲装泥土、砂子、煤炭、石灰等散状物体,显然它当然也可以对地下的矿材和坚硬土壤等等物体进行铲挖作业。如果将它的的工作装置进行改变还可以起到起重、推土以及装卸的作用。此外,在建设公路中,特别是在高级公路建设中,装载机作用于路基工程的运输、填埋、挖取以及混凝土料场的收集与装取等作业。另外装载机还可进行推运土壤、碾平地面和牵引其他工程机械等作用。因为装载机在这些方面具有作业运输速度快、操作方便、办事效率高、机械的机动性好等很多优点,所以它成为了工程施工建设中的主要核心机械。 国内ZL50型号的装载机生产厂家除了极个别厂家采用了自行研制生产的传动系外,大多数的厂家采用的几乎都是同一套传动系而且十分结构相似,液压变速器和驱动桥都是我国六七十年代测绘的外国公司产品所模仿设计的,这几十年来还未作设计改变。 国产轮式装载机正在从低水平、低质量、低价位、满足功能型向高水平、高质量、中等价位、经济的实用过渡。再从仿制走向自己研发过渡,各大主要制造厂不断的进行技术创新以及改变,另外加上采用不同的技术方案,技术人员在主要部件及系统上进行技术创新,解决了产品雷同的窘境,在这些年的研发里国内的装载机发生了天大的变化,从低质量以及低价位的竞争之中闪亮走出,从而成为了装载机这一行业的领先者。 (1)大型和小型轮式装载机,在近几年的发展过程中,受到客观条件及市场需求量的干扰。在这些轮式装载机的竞争中,中型的装载机更新最为之快相信它的发展速度会越来越快。 (2)根据各生产厂家的实际情况,重新进行总体设计,优化各项性能指标,强化结构件的刚度以及强度,这使现在的整机的稳定性以及可靠性得到了大幅度的提高。 (3)从细微的方面改变装载的系统以及结构。比如装载机的动力系统的减振,还有散热系统等结构的优化、装载机的工作装置性能指标的优化及各方面的防尘、建设中的造型设计等等。 (4)提高装载机的稳定性和安全性能。让驾驶室具备更多的功能,将驾驶室的环境变得和汽车差不多,这样驾驶员才能更有效率的操作,其中包括装载机的座椅、方向盘、各操纵档都能方便调节,使驾驶员能够随时随地的处于最佳工作状态。 (5)利用电子技术及负荷传感技术来实现变速箱的自动换挡及液压变量系统的应用,从而来提高工作效率,节约资源,以及装载机工作中的成本。

主减速器设计

课程论文 主减速器的设计 指导教师 学院名称专业名称

摘要 汽车主减速器作为汽车驱动桥中重要的传力部件,是汽车最关键的部件之一。它承担着在汽车传动系中减小转速、增大扭矩的作用,同时在动力向左右驱动轮分流的差速器之前设置一个主减速器,可以使主减速器前面的传动部件,如变速箱、分动器、万向传动装置等传递的扭矩减小,同时也减小了变速箱的尺寸和质量,而且操控灵敏省力。汽车主减速器结构多种多样,主要是根据其齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而异。按照主减速器齿轮的类型分为:螺旋锥齿轮和双曲面齿轮;按照主减速器主动锥齿轮的支承型式及安置方法分为:悬臂式和跨置式;按照主减速器减速形式分为:单级减速、双级减速、双速减速、贯通式主减速器和轮边减速等。主减速器设计的好坏关系到汽车的动力性、经济性以及噪声、寿命等诸多方面。如何协调好各方关系、合理匹配设计参数,以达到满足使用要求的最优目标,是主减速器设计中最重要的问题。 关键词:中型客车主减速器圆锥齿轮

主减速器的设计 1、汽车的主要参数 车型 中型货车 驱动形式 FR4×2 发动机位置 前置、纵置 最高车速 U max =90km/h 最大爬坡度 i max ≥28% 汽车总质量 m a =9290kg 满载时前轴负荷率 25.4% 外形尺寸 总长L a ×总宽B a ×总高H a =6910×2470×2455mm 3 轴距 L=3950mm 前轮距 B 1=1810mm 后轮距 B 2=1800mm 迎风面积 A ≈B 1×H a 空气阻力系数 C D =0.9 轮胎规格 9.00—20或9.0R20 离合器 单片干式摩擦离合器 变速器 中间轴式、五挡 下面参数为参考资料所得: 发动机最大功率及转速 114Kw-2600r/min; 发动机最大转矩及转速 539Nm-1600r/min ; 主减速比 0i =4.44; 变速器传动比抵挡/高档 6.3/1 轮胎半径:型号为9.0R20,轮胎胎体直径为9.0英尺,轮辋直径为20英尺,所以半径为 ()m 48.02 4.522020.9≈?+?= r r 汽车满载时质量 14t 2、主减速器结构形式的确定 主减速器可以根据其齿轮类型、减速形式以及主、从动齿轮的支承形式的不

车用轮边减速器设计

摘要 本论文是结合当今汽车行业发展的形势,对微型电动汽车的车用轮边减速器进行设计,设计一种微型电动车用的轮边减速器,是为微型电动汽车的轮边驱动系统使用,工作力矩较小,但因没有主减速器而需要更大的减速比。以大型车辆的轮边减速器的结构型式可以为电动汽车的轮边减速器提供参考,缩小结构尺寸,而增大减速比,满足轮边驱动系统的使用要求。 近年来随着汽车工业的高速发展,全球汽车总保有量不断增加,汽车所带来的环境污染、能源短缺,资源枯竭等方面的问题越来越突出。日益严重的石油危机与人们环保意识的加强,对汽车工业的发展提出了极为严峻的挑战。采用电能为驱动设备的电动汽车由于能真正实现“零排放”,而成为各国汽车研发的焦点。为了保护人类的居住环境和保障能源供给,各国政府不惜投入大量人力、物力寻求解决这些问题的途径。而电动汽车(包括纯电动汽车、混合动力电动汽车以及燃料电池汽车),即全部或部分用电能驱动电动机作为动力系统的汽车,具有高效、节能、低噪声、零排放等显著优点,在环保和节能方面具有不可比拟的优势,因此它是解决上述问题的最有效途径。 本论文所设计的微型电动汽车用的轮边减速器在电动汽车上的应用提供了一种可以借鉴的减速装置形式,有助于电动汽车的设计和研发。 关键词:电动;轮边;减速器;设计;驱动

ABSTRACT This thesis is to combine current situation of the development of automobile industry of miniature electric cars, car wheel edges reducer design, design a kind of mini-bev wheel edge speed reducer, miniature electric cars for driving wheel edges system USES, work torque smaller, but because there is no main reducer and need more than the slowdown. The wheel edges with large vehicles for the structural type gear reducer electric car wheel edges provide reference, narrow gear reducer while increasing structure size than, satisfy wheel edges slowing the use requirement driving system. In recent years, with the rapid development of auto industry, global car total quantities increases unceasingly, car brings the environment pollution, energy shortage, resource exhaustion issues such as more and more outstanding. The increasingly serious oil crisis and the people environmental protection consciousness, the strengthening of the development of automobile industry forward very serious challenges. Using electricity for driving equipment electric car true "is a result of zero emission and become the focus of the world automobile research. In order to protect the human living environment and safeguard energy supply, governments invest a lot of manpower and material resources at the way to seek solutions to these problems. But electric cars (including pure electric cars, hybrid electric cars and fuel cell cars), namely all or part of the electricity can drive motor cars, as power system with high efficiency, energy saving, low noise, zero emissions and other significant advantages in environmental protection and energy saving, has incomparable advantage, therefore it solve the above problem is the most effective way. This thesis miniature electric vehicle designed by the wheel edges with the electric car on the speed reducer can be used provided a reference of the deceleration device form, help electric vehicle design and development. Key words: Power-driven;Welting rolling;Reducer;Devise;Drive

汽车主减速器设计教学内容

汽车主减速器设计

主减速器设计 3.2 主减速器设计 3.2.1 主减速器的结构型式 主减速器的结构型式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而异。 (1)主减速器齿轮的类型 在现代汽车驱动桥上,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。在双级主减速器中,通常还要加一对圆柱齿轮(多采用斜齿圆柱齿轮),或一组行星齿轮。在轮边减速器中则常采用普通平行轴式布置的斜齿圆柱齿轮传动或行星齿轮传动。在某些公共汽车、无轨电车和超重型汽车的主减速器上,有时也采用蜗轮传动。 (2)主减速器主动锥齿轮的支承型式及安置方法 在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这是齿轮能否正确啮合并具有较高使用寿命的重要因素之一。 现在汽车主减速器主动锥齿轮的支承型式有以下两种: 悬臂式 齿轮以其轮齿大端一侧的轴颈悬臂式地支承于一对轴承上。为了增强支承刚度,应使两轴承支承中心间的距离齿轮齿面宽中点的悬臂长度大两倍以上,同时比齿轮节圆直径的70%还大,并使齿轮轴径大于等于悬臂长。当采用一对圆锥滚子轴承支承时,为了减小悬臂长度和增大支承间的距离,应使两轴承圆锥滚子的小端相向朝内,而大端朝外,以缩短跨距,从而增强支承刚度。

(3)主减速器从动锥齿轮的支承型式及安置方法 主减速器从动锥齿轮的支承刚度依轴承的型式、支承间的距离和载荷在支承之间的分布而定。为了增加支承刚度,支承间的距离应尽可能缩小。两端支承多采用圆锥滚子轴承,安装时应使他们的圆锥滚子的大端相向朝内,小端相背朝外。为了防止从动齿轮在轴向载荷作用下的偏移,圆锥滚子轴承也应预紧。 轿车和轻型载货汽车主减速从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配合固定在差建界壳的突缘上。这种方法对增强刚性效果较好,中型和重型汽车主减速从动锥齿轮多采用有幅式结构并有螺栓或铆钉与差速器壳突缘连结。 (4)主减速器的轴承预紧及齿轮啮合调整 支承主减速器齿轮的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。预紧力的大小与安装形式、载荷大小、轴承刚度特性及使用转速有关。 主动锥齿轮轴承预紧度的调整,可通过精选两轴承内圈间的套筒长度、调整垫圈厚度、轴承与轴肩之间的调整垫片等方法进行。近年来采用波形套筒调整轴承预紧度极为方便,波形套筒安装在两轴承内圈间或轴承与轴肩间。 (5)主减速器的减速型式 主减速器的减速型式分为单级减速、双级减速、双速减速、单级贯通、双级贯通、主减速及轮边减速等。 单级主减速器

装载机轮边减速器结构设计

本科毕业设计(论文) 装载机的终传动结构设计 Design of Final Drive Structure of Loader 学院:机械工程学院 专业班级:机械设计制造及其自动化机械092 学生姓名: 学号: 510910239 李磊 指导教师:杨平 2013 年 5 月

目录 1 绪论 (1) 1.1装载机发展史 (2) 1.2装载机的分类 (3) 2轮边减速器 (4) 2。1轮边减速器的主要型式及其特性 (4) 2。2轮边减速器的选用 (5) 2。3 轮边减速器的润滑 (5) 3 轮边减速器齿轮的设计 (7) 3。1选定齿轮类型、精度等级、材料以及齿数 (7) 3。2 按齿面接触强度来进行设计 (7) 3。3按齿轮的齿根弯曲强度来设计 (9) 3.4 几何尺寸的计算 (10) 4输入轴的设计 (11) 4。1尺寸设计 (11) 4。2按弯扭合成应力校核轴的强度 (14) 4.3精确校核轴的疲劳强度 (15) 4。4按照静强度条件进行校核 (21) 5输出轴的设计 (23) 5.1尺寸设计 (23) 5.2 精确校核轴的疲劳强度 (24) 结论 (28) 致谢 (29) 参考文献 (30)

1 绪论 装载机在港口、铁路、水电、公路、矿山、建筑等建设工程中是一种常用的施工机械,用途十分广泛,其主要作用就是用来铲装泥土、砂子、煤炭、石灰等散状物体,显然它当然也可以对地下的矿材和坚硬土壤等等物体进行铲挖作业.如果将它的的工作装置进行改变还可以起到起重、推土以及装卸的作用。此外,在建设公路中,特别是在高级公路建设中,装载机作用于路基工程的运输、填埋、挖取以及混凝土料场的收集及装取等作业。另外装载机还可进行推运土壤、碾平地面和牵引其他工程机械等作用。因为装载机在这些方面具有作业运输速度快、操作方便、办事效率高、机械的机动性好等很多优点,所以它成为了工程施工建设中的主要核心机械。 国内 ZL50型号的装载机生产厂家除了极个别厂家采用了自行研制生产的传动系外,大多数的厂家采用的几乎都是同一套传动系而且十分结构相似,液压变速器和驱动桥都是我国六七十年代测绘的外国公司产品所模仿设计的,这几十年来还未作设计改变。 国产轮式装载机正在从低水平、低质量、低价位、满足功能型向高水平、高质量、中等价位、经济的实用过渡。再从仿制走向自己研发过渡,各大主要制造厂不断的进行技术创新以及改变,另外加上采用不同的技术方案,技术人员在主要部件及系统上进行技术创新,解决了产品雷同的窘境,在这些年的研发里国内的装载机发生了天大的变化,从低质量以及低价位的竞争之中闪亮走出,从而成为了装载机这一行业的领先者. (1)大型和小型轮式装载机,在近几年的发展过程中,受到客观条件及市场需求量的干扰.在这些轮式装载机的竞争中,中型的装载机更新最为之快相信它的发展速度会越来越快。 (2)根据各生产厂家的实际情况,重新进行总体设计,优化各项性能指标,强化结构件的刚度以及强度,这使现在的整机的稳定性以及可靠性得到了大幅度的提高. (3)从细微的方面改变装载的系统以及结构。比如装载机的动力系统的减振,还有散热系统等结构的优化、装载机的工作装置性能指标的优化及各方面的防尘、建设中的造型设计等等。 (4)提高装载机的稳定性和安全性能。让驾驶室具备更多的功能,将驾驶室的环境变得和汽车差不多,这样驾驶员才能更有效率的操作,其中包括装载机的座椅、方向盘、各操纵档都能方便调节,使驾驶员能够随时随地的处于最佳工作状态。 (5)利用电子技术及负荷传感技术来实现变速箱的自动换挡及液压变量系统的应用,从而来提高工作效率,节约资源,以及装载机工作中的成本.

轮边驱动系统-轮边减速器设计

目录 摘要 (3) Abstract. (4) 0文献综述 (5) 0.1轮边驱动系统发展背景 (5) 0.2轮边驱动系统国内外发展现状 (5) 1引言 (6) 2研究基本内容 (7) 3轮边驱动系统方案设计 (7) 3.1驱动系统方案选定 (7) 3.2减速装置方案选定 (8) 4轮边驱动系统齿轮传动设计 (10) 4.1轮边减速器的传动啮合计算 (10) 4.1.1确定齿轮满足条件,进行配齿计算 (10) 4.1.2齿轮材料及热处理工艺的确定 (11) 4.1.3齿轮配合模数m计算 (12) 4.1.4几何尺寸计算 (13) 4.1.5齿轮传动啮合要素计算 (13) 4.1.6齿轮强度校核 (13) 5轮边减速器行星齿轮传动的均载机构选取 (21) 6各传动轴的结构设计与强度校核 (22) 6.1电机轴设计 (22) 6.2行星轴设计 (23) 6.3输出轴设计 (23) 7减速器润滑与密封 (24) 8轮边驱动系统三维建模与仿真 (24) 8.1驱动系统齿轮零件建模 (25) 8.2行星架建模 (27)

8.3壳体与端盖建模 (28) 8.4总装配爆炸模型 (29) 8.5轮边驱动系统运动仿真 (30) 8.5.1运动仿真建模 (30) 9总结 (32) 参考文献 (33) 致谢 (34)

基于Pro/E的小型电动车轮边驱动系统设计与运动仿真 摘要:电动汽车一般使用可再生能源,其能源多元化与高效化,在城市交通中,可以实现极低排放,甚至零排放。目前电动车能源主要来自电力,在众多的驱动系统形式中,采用轮边减速驱动系统结构形式是目前的主要发展方向。目前轮边驱动系统主要采用的是轮毂电机,这种电机成本较高,制造过程复杂,并且主要应用于大型电动轿车上,在小型电动车上采用结构简单的轮边驱动系统还较少,本文提出了由一级2K-H (NGW)型行星传动组成的小型电动汽车用轮边驱动系统,并按照齿根弯曲强度和齿面接触强度计算公式对各级齿轮进行了设计;对各级齿轮、轴、轴承等进行了强度和寿命校核;对行星架的结构、齿轮箱的结构进行设计,并根据设计结果画出小型电动汽车轮边驱动系统零件图和总装图。 关键词:行星齿轮减速器;轮边驱动系统;轮边减速器;NGW;轮毂电机;

汽车轮边减速器

……………………. ………………. ………………… 山东农业大学 毕 业 论 文 轮边减速器的设计 院 部 机械与电子工程学院 专业班级 车辆工程 届 次 2012 学生姓名 二O 一二年 五 月 八日 装 订 线 ……………….……. …………. …………. ………

目录 摘要.............................................................. - 2 - 第一章绪论........................................................ - 4 - 1.1 课题背景及意义.............................................. - 4 - 1.2 本文的研究内容.............................................. - 4 - 第二章轮边减速器总体设计方案...................................... - 5 - 2.1 轮边减速器的工作原理........................................ - 5 - 2.2 行星齿轮的选型.............................................. - 6 - 2.3 行星传动的方案设计.......................................... - 6 - 2.4 行星齿轮传动的齿轮结构设计.................................. - 9 - 第三章轮边减速器传动设计的计算................................... - 10 - 3.1 行星齿轮传动的配齿计算..................................... - 11 - 3.2 轮边减速器太阳轮计算载荷的确定............................. - 11 - 3.2.1 主要参数的初步确定................................... - 11 - 3.2.2 太阳轮齿面接触强度校核............................... - 12 - 3.2.3 确定传动主要尺寸..................................... - 13 - 3.2.4 太阳轮齿根弯曲疲劳强度计算........................... - 14 - 3.3 轮边减速器工作参数及齿轮材料参数的确定..................... - 15 - 3.4 行星轮,齿圈的校核计算..................................... - 15 - 第四章中心轮的计算机仿真......................................... - 16 - 第五章结束语...................................................... - 18 - 参考文献.. (19) 致谢 (20)

相关主题