搜档网
当前位置:搜档网 › 专题三第1讲基本不等式与线性规划

专题三第1讲基本不等式与线性规划

专题三第1讲基本不等式与线性规划
专题三第1讲基本不等式与线性规划

第1讲 基本不等式与线性规划

高考定位 高考对本内容的考查主要有:(1)基本不等式是C 级要求,理解基本不等式在不等式证明、函数最值的求解方面的重要应用;(2)线性规划的要求是A 级,理解二元一次不等式对应的平面区域,能够求线性目标函数在给定区域上的最值,同时对一次分式型函数、二次型函数的最值也要有所了解.

真 题 感 悟

1.(2017·江苏卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.

解析 一年的总运费与总存储费用之和为y =6×600x +4x =3 600x +

4x ≥2 3 600x ×4x =240,当且仅当

3 600

x =4x ,即x =30时,y 有最小值240. 答案 30

2.(2016·江苏卷)已知实数x ,y 满足约束条件???x -2y +4≥0,

2x +y -2≥0,3x -y -3≤0,

那么x 2+y 2的取值范

围是________.

解析 作出实数x ,y 满足的可行域如图中阴影部分所示,则x 2+y 2即为可行域内的点(x ,y )到原点O 的距离的平方.

由图可知点A 到原点O 的距离最近,点B 到原点O 的距离最远.点A 到原点O 的距离即原点O 到直线2x +y -2=0的距离d =|0-2|12+22=255,则(x 2+y 2

)min =45;

点B 为直线x -2y +4=0与3x -y -3=0的交点,即点B 的坐标为(2,3),则(x 2+y 2)max =13.综上,x 2+y 2的取值范围是????

??

45,13.

答案 ????

??45,13

3.(2016·江苏卷)已知函数f (x )=2x

+? ??

??12x ,若对于任意x ∈R ,不等式f (2x )≥mf (x )

-6恒成立,则实数m 的最大值为________.

解析 由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=(f (x ))2-2. ∵f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0, ∴m ≤(f (x ))2+4f (x )对于x ∈R 恒成立.

又(f (x ))2+4f (x )=f (x )+4f (x )≥2

f (x )·4

f (x )=4,且(f (0))2+4f (0)

=4,

∴m ≤4,故实数m 的最大值为4. 答案 4

4.(2016·江苏卷)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.

解析 因为sin A =2sin B sin C ,所以sin(B +C )=2sin B sin C , 所以sin B cos C +cos B sin C =2sin B sin C , 等式两边同时除以cos B cos C , 得tan B +tan C =2tan B tan C . 又因为tan A =-tan(B +C )=

tan B +tan C

tan B tan C -1

所以tan A tan B tan C -tan A =2tan B tan C , 即tan B tan C (tan A -2)=tan A .

因为A ,B ,C 为锐角,所以tan A ,tan B ,tan C >0, 且tan A >2,

所以tan B tan C =tan A tan A -2,所以原式=tan 2A

tan A -2

.

令tan A -2=t (t >0),则tan 2A tan A -2=(t +2)2t =t 2+4t +4t =t +

4

t +4≥8,当且仅当t =2,即tan A =4时取等号. 故tan A tan B tan C 的最小值为8. 答案 8

考 点 整 合

1.利用基本不等式求最值

(1)如果x >0,y >0,xy =p (定值),当x =y 时,x +y 有最小值2p (简记为:积定,和有最小值).

(2)如果x >0,y >0,x +y =s (定值),当x =y 时,xy 有最大值1

4s 2(简记为:和定,积有最大值).

2.简单的线性规划问题

解决线性规划问题首先要找到可行域,再根据目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域上的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.

热点一 利用基本不等式求最值

【例1】 (1)(2017·山东卷)若直线x a +y b =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.

(2)(2017·苏州调研)已知正数x ,y 满足x +y =1,则4x +2+1

y +1

的最小值为________.

解析 (1)∵直线x a +y

b =1(a >0,b >0)过点(1,2), ∴1a +2

b =1(a >0,且b >0),

则2a +b =(2a +b )? ??

??

1a +2b

=4+b a +4a b ≥4+2b a ·4a b =8.

当且仅当b a =4a

b ,即a =2,b =4时上式等号成立. 因此2a +b 的最小值为8.

(2)设x +2=m ,y +1=n ,m >2,n >1, 则m +n =x +2+y +1=4,

4x +2+1y +1

=4m +1n =? ????4m +1n ? ????m 4+n 4=54+n m +m 4n ≥54+2

n m ·m 4n =94,

当且仅当n m =m 4n ,m =83,n =4

3时取等号,

故4x +2+1y +1

的最小值为94. 答案 (1)8 (2)9

4

探究提高 1.利用基本不等式求最值,要注意“拆、拼、凑”等变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值,等号能够取得.

2.特别注意:(1)应用基本不等式求最值时,若遇等号取不到的情况,则应结合函数的单调性求解.

(2)若两次连用基本不等式,要注意等号的取得条件的一致性,否则会出错. 【训练1】 (1)(2017·天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1

ab

的最小值为________.

(2)若实数a ,b 满足1a +2

b =ab ,则ab 的最小值为________. 解析 (1)∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +

1ab ≥2

4ab ·

1

ab =4,

当且仅当????

?a 2=2b 2,4ab =1ab ,即?????a 2=22,b 2=24时取得等号. (2)依题意知a >0,b >0,则1a +2b ≥2

2ab =22ab ,

当且仅当1a =2

b ,即b =2a 时,“=”成立.

∵1a +2b

=ab

,∴ab ≥22ab ,即ab ≥22,

∴ab 的最小值为2 2. 答案 (1)4 (2)2 2

热点二 简单的线性规划问题 [命题角度1] 求线性目标函数的最值

【例2-1】 (1)(2017·天津卷改编)设变量x ,y 满足约束条件???2x +y ≥0,

x +2y -2≥0,

x ≤0,y ≤3,

目标函数z =x +y 的最大值为________.

(2)(2017·全国Ⅰ卷)设x ,y 满足约束条件???x +2y ≤1,

2x +y ≥-1,x -y ≤0,

则z =3x -2y 的最小值为

________.

解析 (1)作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最优解在B (0,3)处取得,故z max =0+3=3.

(2)作出约束条件所表示的可行域如图中阴影部分所示,

由z =3x -2y 得y =32x -z 2,求z 的最小值,即求直线y =32x -z

2的纵截距的最大值,当直线y =32x -z

2过图中点A 时,纵截距最大,由?

??2x +y =-1,x +2y =1解得A 点坐标为

(-1,1),此时z =3×(-1)-2×1=-5. 答案 (1)3 (2)-5

[命题角度2] 求非线性目标函数的最值

【例2-2】 (2017·徐州、宿迁、连云港模拟)已知实数x ,y 满足???y ≤x -1,x ≤3,x +y ≥2,

则y x 的

取值范围是________.

解析 不等式组对应的平面区域是以点(3,-1),(3,2)和? ??

??

32,12为顶点的三角形

及其内部,设z =y

x ,则z 表示平面区域内的点与原点连线所在直线的斜率,则当z =y x 经过(3,-1)时取得最小值-13,经过点(3,2)时取得最大值23,故y

x 的取值范

围是??????-13,23.

答案 ??????-13,23

[命题角度3] 线性规划中的含参问题

【例2-3】 (2017·南京师大附中模拟)设变量x ,y 满足约束条件???x +y ≤4,y ≥x ,x ≥1,

若目

标函数z =ax +y 的最小值为-2,则a =________.

解析 约束条件对应的可行域是以点(1,1),(1,3)和(2,2)为顶点的三角形及其内部.当a ≥-1时,当目标函数y =-ax +z 经过点(1,1)时,z 取得最小值,则z min =a +1=-2,即a =-3(舍去);当a <-1时,当目标函数y =-ax +z 经过点(2,2)时,z 取得最小值,则z min =2a +2=-2,即a =-2,符合题意,故a =-2. 答案 -2

探究提高 1.线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;

二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.

2.对于线性规划中的参数问题,需注意:

(1)当最值是已知时,目标函数中的参数往往与直线斜率有关,解题时应充分利用斜率这一特征加以转化.

(2)当目标函数与最值都是已知,且约束条件中含有参数时,因为平面区域是变动的,所以要抓住目标函数及最值已知这一突破口,先确定最优解,然后变动参数范围,使得这样的最优解在该区域内即可.

【训练2】 (1)(2017·山东卷改编)已知x ,y 满足约束条件???x -y +3≤0,

3x +y +5≤0,x +3≥0,

则z =x

+2y 的最大值是________.

(2)若实数x ,y 满足???2x -y +2≥0,2x +y -6≤0,0≤y ≤3,

z =mx -y (m <2)的最小值为-5

2,则m =

________.

解析 (1)由已知得约束条件的可行域如图中阴影部分所示,故目标函数z =x +2y 经过点C (-3,4)时取最大值z max =-3+2×4=5.

(2)作出约束条件所表示的可行域如图中阴影部分所示,

z =mx -y (m <2)的最小值为-52,可知目标函数的最优解过点A ,由??

?y =3,2x -y +2=0,解得A ? ??

??12,3,

∴-52=m

2-3,解得m =1. 答案 (1)5 (2)1

1.多次使用基本不等式的注意事项

当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性,否则就会出错,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法. 2.基本不等式除了在客观题考查外,在解答题的关键步骤中也往往起到“巧解”的作用,但往往需先变换形式才能应用.

3.解决线性规划问题首先要作出可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.

一、填空题

1.(2017·全国Ⅱ卷改编)设x ,y 满足约束条件???2x +3y -3≤0,2x -3y +3≥0,y +3≥0,

则z =2x +y 的最小

值是________.

解析 可行域如图阴影部分所示,当直线y =-2x +z 经过点A (-6,-3)时,所求最小值为-15.

答案 -15

2.若0

解析 因为0

? ????3x +4-3x 22=4

3,当且仅当3x =4-3x ,即x =2

3时取等号. 答案 23

3.(2017·海门中学检测)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1

a ,n =a +1

b ,则m +n 的最小值是________.

解析 由题意知ab =1,所以m =b +1a =2b ,n =a +1

b =2a ,所以m +n =2(a +

b )≥4ab =4,当且仅当a =b =1时取等号. 答案 4

4.(2017·宿迁调研)若实数x ,y 满足xy +3x =3? ?

???0

解析 由xy +3x =3可得y +3=3x ,又06,y >3,所以3x +1

y -3=y

+3+

1y -3=(y -3)+1y -3

+6≥2(y -3)·1

y -3

+6=8,当且仅当y =4时取

等号,故3x +1

y -3的最小值是8.

答案 8

5.(2017·无锡期末)设不等式组???x ≥1,

x -y ≤0,x +y ≤4

表示的平面区域为M ,若直线y =kx -2

上存在M 内的点,则实数k 的取值范围为________.

解析 平面区域M 是以点(1,1),(1,3)和(2,2)为顶点的三角形区域(含边界),直线y =kx -2,即k =y +2

x 表示区域M 内的点(x ,y )与点(0,-2)连线的斜率.当经过点(2,2)时,k 取得最小值2;当经过点(1,3)时,k 取得最大值5,故实数k 的取值范围为[2,5]. 答案 [2,5]

6.已知x ,y ∈R ,且x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围是________.

解析 因为2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,所以6-(x 2+4y 2)≤x 2+4y

22,所

以x 2+4y 2≥4,当且仅当x =2y 时取等号,又因为(x +2y )2=6+2xy ≥0,即2xy ≥-6,所以z =x 2+4y 2=6-2xy ≤12.综上可得4≤x 2+4y 2≤12. 答案 [4,12]

7.(2017·北京卷)已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是________. 解析 法一 ∵x ≥0,y ≥0且x +y =1.∴2xy ≤x +y =1,从而0≤xy ≤1

4,因此x 2+y 2=(x +y )2-2xy =1-2xy ,所以1

2≤x 2+y 2≤1.

法二 可转化为线段AB 上的点到原点距离平方的范围,AB 上的点到原点距离的范围为????

??22,1,则x 2+y 2的取值范围为??????

12,1.

答案 ????

??12,1

8.(2016·全国Ⅰ卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.

解析 设生产产品A 、产品B 分别为x 件、y 件,利润之和为z 元,

则???1.5x +0.5y ≤150,

x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,

即???3x +y ≤300,

10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N ,

目标函数为z =2 100x +900y .

作出不等式组表示的平面区域为图中阴影部分内(包括边界)的整点,即可行域. 由图可知当直线z =2 100x +900y 经过点M 时,z 取得最大值.

联立方程组???10x +3y =900,

5x +3y =600,得M 的坐标为(60,100),

所以当x =60,y =100时,

z max =2 100×60+900×100=216 000(元). 答案 216 000 二、解答题

9.设关于x ,y 的不等式组???2x -y +1>0,

x +m <0,y -m >0

表示的平面区域内存在点P (x 0,y 0),满

足x 0-2y 0=2,求实数m 的取值范围. 解 先根据约束条件

???2x -y +1>0,

x +m <0,y -m >0

画出可行域(图略), 要使可行域存在,必有m <-2m +1,要求可行域包含直线y =1

2x -1上的点,只要边界点(-m ,1-2m )在直线y =12x -1的上方,且(-m ,m )在直线y =1

2x -1的下方,

故得不等式组?????m <-2m +1,

1-2m >-12m -1,m <-1

2m -1,

解之得m <-2

3. 故实数m 的取值范围是? ?

?

??-∞,-23.

10.(1)当点(x ,y )在直线x +3y -4=0上移动时,求3x +27y +2的最小值; (2)已知x ,y 都是正实数,且x +y -3xy +5=0,求xy 的最小值.

解 (1)由x +3y -4=0,得x +3y =4,

所以3x +27y +2=3x +33y +2≥23x ·33y +2=23x +3y +2=234+2=20, 当且仅当3x =33y 且x +3y -4=0,即x =2,y =2

3时取等号,此时所求的最小值为20.

(2)由x +y -3xy +5=0,得x +y +5=3xy , 所以2xy +5≤x +y +5=3xy , 所以3xy -2xy -5≥0, 所以(xy +1)(3xy -5)≥0, 所以xy ≥53,即xy ≥25

9,

当且仅当x =y =53时取等号,故xy 的最小值是25

9.

11.(2017·天津卷)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:

已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.

(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? 解 (1)由已知,x ,y 满足的数学关系式为

?????70x +60y ≤600,

5x +5y ≥30,x ≤2y ,x ≥0,y ≥0,

即?????7x +6y ≤60,

x +y ≥6,

x -2y ≤0,

x ≥0,y ≥0,

该二元一次不等式组所表示的平面区域为图1中的阴影部分:

(2)设总收视人次为z 万,则目标函数为z =60x +25y .

考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-12

5

,随z 变化的一

族平行直线,z 25为直线在y 轴上的截距,当z

25取得最大值时,z 的值最大. 又因为x ,y 满足约束条件,所以由图2可知,当直线z =60x +25y 经过可行域上的点M 时,截距z

25最大,即z 最大.

解方程组???7x +6y =60,

x -2y =0,

得点M 的坐标为(6,3).

所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.

基本不等式与线性规划

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2 ≥+一正:两个数或式子必须都为 正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小( 1.设41 4,4-+-=>x x y x 2.设 4 1 ,4-+ =>x x y x 3.1,1>>b a ,则a b b a log log +的最小为 .4.下列函数中,最小值为22的是 ( ) A .x x y 2+= B .)0(sin 2 sin π<<+=x x x y C .x x e e y -+=2 D .2 log 2log 2 x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x +x 1 B .y= sinx +x sin 1 ,x ∈(0,2π) C .y= 2 32 2++x x D .y= x x 1 +

6.若lg x +lg y =2,则x 1+y 1 的最小值为( ) A .201 B .51 C .2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 142+-= 的最小值 为 . 8.若1>=+y x y x 则y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 已知312,0,0=+>>y x y x ,则y x 11+的最小 . 若实数a 、b 满足的最小值是则b a b a 22,2+=+ ( ) A .8 B .4 C .22 D .4 22 和定,积有最大(和定的判断依据:相反符号) 1.设 , 20<

不等式与线性规划

1. 不等式2560x x -++≥的解集是______________________________ 2. ()21680k x x --+<的解集是425x x x ??<->???? 或,则k =_________ 3. 不等式20ax bx c ++>的解集为{} 23x x <<,则不等式20ax bx c -+>的解集是___ 4. 若0a b >>,则()()0a bx ax b --≤的解集是_____________________ 5. 已知点(2 , 1)和点(-4 , 5)在直线 3x –2y + m = 0 的两侧,则 m 的取值范围 为_________ 6. 若?????≥+≤≤2 22y x y x ,则目标函数 z = x + 2 y 的取值范围是______________ 7. 已知x ,y 满足?????≥-+≥≥≤-+0320 ,1052y x y x y x ,则x y 的最大值为___________,最小值为____________ 8. 不等式组260302x y x y y +-≥??+-≤??≤? 表示的平面区域的面积为___________ 9. 、已知x 、y 满足以下约束条件220240330x y x y x y +-≥??-+≥??--≤? ,则z=x 2+y 2的最大值和 最小值分别是___________ 10. 已知x 、y 满足以下约束条件5503x y x y x +≥??-+≤??≤? ,使z=x+ay(a>0)取得最小值 的最优解有无数个,则a 的值为___________ 11. 若不等式kx 2-2x+6k<0(k ≠0). (1)若不等式解集是{x|x<-3或x>-2},求k 的值; (2)若不等式解集是R ,求k 的取值。 12. 某运输公司接受了向抗洪抢险地区每天至少送180t 支援物资的任务.该公司有8辆载重为6t 的A 型卡 车与4辆载重为10t 的B 型卡车,有10名驾驶员;每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型车为320元,B 型车为504元.请你们为该公司安排一下应该如何调配车辆,才能使公司所花的成本费最低?若只调配A 型或B 型卡车,所花的成本费分别是多少?

基本不等式与线性规划

不等式(二) 一.基本不等式(ab b a 2≥+一正:两个数或式子必须都为正数. 二定;必须有和定或积定 三相等:等号成立为最值存在的充分,那里使用基本不等式,那两个数相等) 积定,和有最小(积定的判断依据:互为倒数关系) 1.设4 1 4,4-+-=>x x y x 的最小值为 . 2.设4 1 ,4-+ =>x x y x 的最小值为 . 3.1,1>>b a ,则a b b a log log +的最小为 . 4.下列函数中,最小值为22的是 ( ) A .x x y 2+ = B .)0(sin 2 sin π<<+ =x x x y C .x x e e y -+=2 D .2log 2log 2x x y += 5.下列各函数中,最小值为2的是 ( ) A .y=x + x 1 B .y= sinx +x sin 1,x ∈(0,2 π) C .y= 2 322++x x D .y=x x 1 + 6.若lg x +lg y =2,则 x 1 +y 1的最小值为( ) A . 20 1 B . 5 1 C . 2 1 D .2 7.(10.重庆)已知0>t ,则函数t t t y 1 42+-=的最小值为 . 8.若1>=+y x y x 则 y x 2 1+的最小 . (09.天津)设0,0>>b a ,若3是a 3与b 3的等比中项,则b a 1 1+的最小值为( ) A .8 B .4 C .1 D .4 1 总结:常见倒数关系 x x a a -与 a b b a log log 与

高考数学二轮复习专题突破训练一第2讲不等式与线性规划理含2014年高考真题

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2 +bx +c >0(a ≠0),再求相应一元二次方程ax 2 +bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f x g x >0(<0)?f (x )g (x )>0(<0); ②变形? f x g x ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x ) >a g (x ) ?f (x )>g (x ); ②当0a g (x ) ?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2 ≥0(a ∈R ). (2)a 2 +b 2 ≥2ab (a 、b ∈R ). (3) a +b 2 ≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22 ≥ a +b 2 ≥ab ≥ 2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1.若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A.? ? ???1,43 B.? ???? 12,43 C.? ? ???1,74 D.? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4. 综上,12<a <7 4,故选D. 2.已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0 D.(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D. 3.设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3.由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33. 4. 若a ,b ,c 为实数,则下列命题为真命题的是( ) A.若a >b ,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2

不等式组与简单的线性规划

第三节 不等式组与简单的线性规划第一部分 五年高考荟萃 2009年高考题 一、选择题 1. (2009山东卷理)设x ,y 满足约束条件?? ? ??≥≥≥+-≤--0,002063y x y x y x 若目标函数z=ax+by (a>0,b>0)的是最大值为12, 则23a b +的最小值为 ( A.625 B.3 8 C. 3 11 D. 4 答案 A 解析 不等式表示的平面区域如图所示阴影部分,当直线ax+by= z (a>0,b>0) 过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时, 目标函数z=ax+by (a>0,b>0)取得最大12, 即4a+6b=12,即2a+3b=6, 而 23a b +=2323131325()()26666 a b b a a b a b ++ =++≥+=,故选A. 【命题立意】:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求 23a b +的最小值常用乘积进而用基本不等式解答. 2.(2009安徽卷理)若不等式组0 34 34x x y x y ≥??+≥? ?+≤? 所表示的平面区域被直线43 y kx =+ 分为面积 相等的两部分,则k 的值是A. 73 B. 37 C. 43 D. 3 4 答案 B

∴S △ABC = 144(4)12 3 3- ?= ,设y kx =与34x y +=的 交点为D ,则由122 3 B C D S S A B C ?=?= 知12 D x = ,∴52 D y = ∴ 5147,2 2 3 3 k k =? + = 选A 。 3.(2009安徽卷文)不等式组 所表示的平面区域的面积等于 A.2 3 B.32 C.3 4 D.4 3 解析 由340340 x y x y +-=?? +-=?可得(1,1)C ,故S 阴 = 142 3 c AB x ??= ,选C 。 答案 C 4.(2009四川卷文)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元。该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是 A. 12万元 B. 20万元 C. 25万元 D. 27万元 答案 D 解析 ?? ≤+1832y x 目标函数y x z 35+= 作出可行域后求出可行域边界上各端点的坐标,经验证知: 当x =3,y =5时可获得最大利润为27万元,故选D 5.(2009宁夏海南卷理)设x,y 满足241,22x y x y z x y x y +≥?? -≥-=+??-≤? 则 A.有最小值2,最大值3 B.有最小值2,无最大值 C.有最大值3,无最小值 D.既无最小值,也无最大值 答案 B 解析 画出可行域可知,当z x y =+过点(2,0)时,min 2z =,但无最大值。选B.

线性规划与基本不等式

线性规划及基本不等式 一、知识梳理 (一)二元一次不等式表示的区域 1、对于直线0=++C By Ax (A>0),斜率K=__________,与x 轴的交点为________与y 轴的交点为___________ 2、 当B>0时, 0>++C By Ax 表示直线0=++C By Ax 上方区域; 0<++C By Ax 表示直线0=++c By Ax 的下方区域. 当B<0时, 0>++C By Ax 表示直线0=++C By Ax 下方区域; 0<++C By Ax 表示直线0=++c By Ax 的上方区域. 3、问题1:画出不等式组?????≤≥+≥+-3005x y x y x 表示的平面区域 问题2:求z=x-3y 的最大值和最小值 注、(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z=Ax+By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z=Ax+By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.满足线性约束条件的解(x,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. (2)、用图解法解决简单的线性规划问题的基本步骤: 1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). 2.设z=0,画出直线l0. 3.观察、分析,平移直线l0,从而找到最优解. 4.最后求得目标函数的最大值及最小值. (3)、线性目标函数的最值常在可行域的顶点处取得 (二)基本不等式 1.基本形式:,a b R ∈,则222a b ab +≥;0,0a b >>, 则a b +≥,当且仅当a b =时等号成 立2.、已知x 为正数,求2x+x 1 的最小值

七篇不等式讲二元一次不等式(组)与简单线性规划问题

第3讲二元一次不等式(组)与简单的线性规划问题 1 ?考查二元一次不等式组表示的区域面积和目标函数最值 (或取值范围). 2.考查约束条件、目标函数中的参变量的取值范围. 【复习指导】 1 .掌握确定平面区域的方法(线定界、点定域). 2.理解目标函数的几何意义,掌握解决线性规划问题的方法 (图解法),注意线性规划问题与其他知识的综合. KAOJIiZIZHUDAOXUE —B— 01 考基自主导学 基础梳理 1.二元一次不等式表示的平面区域 (1)一般地,直线I: ax+ by+ c= 0把直角坐标平面分成了三个部分: ①直线I上的点(x, y)的坐标满足ax+ by+ c= 0; ②直线I 一侧的平面区域内的点(x, y)的坐标满足ax+ by+ c>0; ③直线I另一侧的平面区域内的点(x, y)的坐标满足ax+ by+ cv0. 所以,只需在直线I的某一侧的平面区域内,任取一特殊点(X0, y°),从ax0 + by。 + c值的正负,即可判断不等式表示的平面区域. (2)由于对直线Ax+ By + C = 0同一侧的所有点(x, y),把它的坐标(x, y)代入Ax + By+ C所得到实数的符号都相同亠所以只需在此直线的某一侧取一个特殊点 (X0, y0),由AX0+ By°+ C的符号即可判断 Ax+ By+ C>0表示直线 Ax+ By+ C =0哪一侧的平面区域. 2.线性规划相关概念

——助< 谭_ ----- 一种方法 确定二元一次不等式表示的平面区域时,.……经常采用“直线定界,.特殊点定域…”的方法.?…. (1)直线定界,即若不等式不含等号,则应把直线画成虚线;...若不等式含有等号, .把直线画成实线:.…. (2)特殊点定域,即在直线Ax土 By 士.C亍.0.的某一侧取一个.特殊点…(X., y o)作为测试点代入不等式检验,…若满足不等式,.则表示的就是包括该点的这一侧,……否则就表示直线的另一侧:…特别地,当….C^0时,.常把原点作为测试点;…当….一C. 0 .时,常选点.(1,0)或者(0,1)作为测试点,.… 一个步骤 利用线性规划求最值,一般用图解法求解,其步骤是:.…… (1)在平面直角坐标.系内作出可行域;…一… (2)考虑目标函数的几何意义,.将目标函数进行变形; . (3)确定最优解:.在可行域内平行移动冃标函数变形后的直线,从而确定最优解;. ⑷求最值:将最优解代入目标函数即可求出最大值或最小值, .... 两个防范 ⑴画出平面区域,..避免失误的重要方法就是首先使二元一次不等式标准化一. .. (2)求二元一次函数.-z. ax 土 b.y(ab.于.0).的最值,将函数..z. ax 土 by转化为直线的斜.. 截式:y三二bx 土b,通过求直线的截距b的最值间接求出…乙的最值

高中不等式的基本知识点和练习题(含答案)

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则不等式的解的各种情况 如下表: 2、简单的一元高次不等式的解法: 标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3 3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥?? ≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < ()f x

4—简单的线性规划、基本不等式

4—简单的线性规划、基本不等式 知识块一:求目标函数的最值 归纳起来常见的命题角度有:(1)求线性目标函数的最值;(2)求非线性目标的最值; (3)求线性规划中的参数. 1.设x ,y 满足约束条件???? ? x +y -7≤0,x -3y +1≤0, 3x -y -5≥0,则z =2x -y 的最大值为( ) A .10 B .8 C .3 D .2 解析:选B 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8. 2.若x ,y 满足???? ? y ≤1,x -y -1≤0, x +y -1≥0, 则z =3x +y 的最小值为 ________. 解析:根据题意画出可行域如图,由于z =3x +y 对应的直线斜率为-3,且z 与x 正相关,结合图形可知,当直线过点A (0,1)时,z 取得最小值1. 答案:1 角度二:求非线性目标的最值 3.在平面直角坐标系xOy 中,M 为不等式组???? ? 2x -y -2≥0,x +2y -1≥0, 3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )

A .2 B .1 C .-1 3 D .-12 解析:选C 已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-1 3 . 4.设实数x ,y 满足不等式组???? ? x +y ≤2y -x ≤2, y ≥1,则x 2+y 2的取值围是( ) A .[1,2] B .[1,4] C .[2,2] D .[2,4] 解析:选B 如图所示,不等式组表示的平面区域是△ABC 的部(含边界),x 2+y 2表示的是此区域的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值围是[1,4]. 角度三:求线性规划中的参数 5.若x ,y 满足???? ? x +y -2≥0,kx -y +2≥0, y ≥0,且z =y -x 的最小值为-4,则k 的值为( ) A .2 B .-2 C.1 2 D .-12 解析:选D 作出线性约束条件???? ? x +y -2≥0,kx -y +2≥0, y ≥0 的可行域.当k >0时,如图①所示,此时可行域 为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值. 当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意. 当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ????-2 k ,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ????-2k ,0时,有最小值,即-????-2k =-4?k =-1 2 .故选D.

不等式与线性规划教案

一 体验高考 1.(2012年高考福建卷,理9)若函数y=2x 图象上存在点(x,y)满足约束 条件?? ? ??≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( B ) (A)21 (B)1 (C)2 3 (D)2 解析:∵x+y-3=0和y=2x 交点为(1,2), ∴只有m ≤1时才能符合条件,故选B. 2.(2012年高考福建卷,理5)下列不等式一定成立的是( C ) (A)lg(x 2+4 1)>lg x(x>0) (B)sin x+ x sin 1 ≥2(x ≠k π,k ∈Z ) (C)x 2+1≥2|x|(x ∈R ) (D) 1 1 2 +x >1(x ∈R ) 解析:当x>0时,x 2+41≥2·x ·2 1 =x, 故lg(x 2+41)≥lg x(x>0), 当且仅当x=2 1 时取等号,因此A 不对, B 中由于x ≠k π,k ∈Z 时,sin x 的正、负不确定, 因此sin x+ x sin 1≥2或sin x+x sin 1 ≤-2,故B 不正确, C 中,由基本不等式x+y ≥2xy (x>0,y>0)知x 2+1≥22x =2|x|,故C 一定成立, 而D 中,由于x 2≥0,则x 2+1≥1.因此0<1 1 2+x ≤1. 从而D 不正确,因此选C.

3.(2011年高考湖南卷,理10)设x,y ∈R,且xy ≠0,则(x 2+21y )(21x +4y 2 )的最小值为 . 解析:(x 2+ 21y )(21x +4y 2)=1+4x 2y 2 +221y x +4 =5+(4x 2y 2+ 221y x )≥5+22 22 214y x y x =5+2×2=9. 当且仅当4x 2y 2=221y x 即x 2y 2=2 1时取得最小值9. 答案:9 二备考感悟 1.命题与备考 (1)不等式解法常与二次函数、集合等知识交汇在一起命题;基本不等 式常与函数或代数式的最值问题、不等式恒成立问题、实际应用相互交汇命题.在备考中要熟练掌握各种不等式的解法,注意基本不等式成立的条件. (2)线性规划有时单独考查目标函数的最值问题,或求字母的取值范围问题,有时也会与函数、平面向量、解析几何等相互交汇考查,求解此类问题时应准确作出不等式表示的平面区域. 2.小题快做:线性规划问题中,若不等式组表示的平面区域具有边界且目标函数是线性的,则目标函数的最值就在其区域边界的顶点处取得. 三热点考向突破 考向一 不等式的解法 解不等式的常见策略 1.解一元二次不等式的策略:先化为一般形式ax 2+bx+c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集. 2.解简单的分式不等式的策略:将不等式一边化为0,再将不等式等价转化为整式不等式(组)求解; 3.解含指、对数不等式的策略:利用指、对数函数的单调性将其转化

二元一次不等式组与简单线性规划问题

二元一次不等式(组)与简单线性规划问题 课堂巩固 1.若222x y x y ≤?? ≤??+≥? ,则目标函数z x y =-的取值范围是 A .[1,1]- B .[2,0]- C .[0,2] D .[2,2]- 2.在平面直角坐标系中,若不等式组101010x y x ax y +-≥?? -≤??-+≥? (α为常数)所表示的平面区域内的面积等于2,则a 的值为 A. -5 B. 1 C. 2 D. 3 3.已知D 是由不等式组2030 x y x y -≥?? +≥?,所确定的平面区域,则圆 22 4x y +=在区域D 内的弧长为 [ ] A 4π B 2 π C 34π D 32π 4.设,x y 满足24,1,22,x y x y x y +≥?? -≥??-≤? 则z x y =+ (A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值 5.不等式组222232320 x x x x x x ?-->--? ?+-

1 ,01(),03 x x x x ?0)的最大值为12,则2a +3b 的 最小值为 A . 256 B .83 C .11 3 D .4 3.已知O 为直角坐标系原点,P ,Q 的坐标均满足不等式组43250 22010x y x y x +-≤?? -+≤??-≥? ,则cos POQ ∠的最小值 为 A . 1 2 B .22 C .32 D .1 4.在如图所示的坐标平面的可行域(阴影部分且包括边 界)内,目标函数ay x z -=2取得最大值的最优解有无 数个,则a 为 A .-2 B .2 C .-6 D .6 二、填空题 5.设220 240330x y x y x y +-≤??-+≤??-+≥? ,则目标函数22 z x y =+取得最大值时,x y += 6.若函数()f x = 则方程1()3f x =-的解集为 . 7.已知函数2 lg ,(0)()1,(0) x x f x x x ->?=?-≤?则不等式()0f x >的解集为______________。 8.在极坐标系中,由三条直线0=θ ,3 π θ= ,1sin cos =+θρθρ围成图形的面积是________. 三、解答题 9.制订投资计划时,不仅要考虑可能获得的盈利而且要考虑可能出现的亏损。某投资人打算投资甲、乙两 个项目。根据预测,甲、乙项目可能的最大盈利利率分别为100%和50%,可能的最大亏损率分别为30%和10%。投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过万元。问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

必修五不等式及线性规划

不等式 1. 实数的性质: 0>-?>b a b a ;0<-??<,a b b a . 传递性 a b >且b c a c >?>. 加法性质 a b a c b c >?+>+;a b >且c d a c b d >?+>+. 乘法性质 ,0a b c ac bc >>?>;0a b >>,且00c d ac bd >>?>>. 乘方、开方性质 0,n n a b n N a b *>>∈?>;0,n n a b n N a b *>>∈?>. 倒数性质 11,0a b ab a b >>? <. 3. 常用基本不等式: 条 件 结 论 等号成立的条件 a R ∈ 20a ≥ 0a = ,a R b R ∈∈ 2 2 2a b ab +≥,2()2 a b ab +≤, 22 2()22a b a b ++≥ a b = 0,0>>b a 基本不等式: 2a b ab +≥ 常见变式: 2≥+b a a b ; 21 ≥+a a a b = 0,0>>b a 22112 2 2b a b a ab b a +≤ +≤≤+ a b = 4. 利用重要不等式求最值的两个命题: 命题1:已知a ,b 都是正数,若ab 是实值P ,则当a=b=时,和a +b 有最小值2.

命题2:已知a ,b 都是正数,若a +b 是实值S ,则当a=b=2 s 时,积ab 有最大值 42s . 注意:使用重要不等式求最值时,要注意三个条件:一“正”二“定”三“等”,即各项均为正数,和或 积为定值,取最值时等号能成立,以上三个条件缺一不可. 5.一元二次不等式的解法:设a>0,x 1x 2是方程ax 2+bx+c=0的两个实根,且x 1≤x 2,则有 结论:ax 2+bx+c>0 ? 2 0040 a a b a c >?=?-0 △=0 △<0 图象 ax 2+bx+c=0的解 x=x 1或x=x 2 x=x 1=x 2=-b/2a 无实数解 ax 2+bx+c>0解集 {x ︱xx 2} {x ︱x ≠x 1 } R ax 2+bx+c<0解集 {x ︱x 1

练习-线性规划与基本不等式

线性规划与基本不等式 1.若222x y x y ????+? ≤,≤,≥,则目标函数2z x y =+的取值范围是( ) A.[26], B.[25], C.[36], D.[35], 2.已知x y ,满足约束条件5003x y x y x -+??+??? ≥,≥,≤.则24z x y =+的最大值为( ) A.5 B.38- C.10 D.38 3.若变量x ,y 满足约束条件30101x y x y y -+≤??-+≥??≥? ,则z =2x +y -4的最大值为( ) A .-4 B .-1 C .1 D .5 4.已知目标函数2z x y =+中变量x y ,满足条件4335251x y x y x --??+取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C.4 D.53 8.已知0x >,0y >,且231x y +=,则23 x y +的最小值为( )

不等式和线性规划试题

高2015级高二下期线性规划和不等式集训试题 3月2日星期天下午2:30高二十班教室(带必修5) 1、设变量x ,y 满足约束条件22024010x y x y x +-≥?? -+≥??-≤? ,则目标函数32z x y =-的最小值为( ) A .6- B .4- C .2 D . 答案:B 2、设变量y x ,满足约束条件?? ? ??≤-≥+-≥-+01042022x y x y x ,则目标函数x y z 32-=的最大值为( ) A .-3 B .2 C .4 D .5 【答案】C 3、点(x ,y )满足??? x +y -1≥0, x -y +1≥0, x ≤a , 若目标函数z =x -2y 的最大值为1,则实数a 的值是 ( ) A .1 B .-1 C .-3 D .3 选A 由题意可知,目标函数经过点(a,1-a )时达到最大值1,即a -2(1-a )=1,解得a =1.

C 5、设0,0 x y x y +≥?? -≥?与抛物线2 4y x =-的准线围成的三角形区域(包含边界)为D ,) ,(y x P 为D 的一个动点,则目标函数2z x y =-的最大值为( ) A. 1- B. 0 C. 2 D. 3

6、若不等式组0 3434 x x y x y ≥??+≥? ?+≤?, 所表示的平面区域被直线4 3y kx =+ 分为面积相等的两部分,则k 的值是( B )A 、73 B 、37 C 、43 D 、3 4 7、已知2z x y =+,x y ,满足2y x x y x m ≥?? +≤??≥? ,且z 的最大值是最小值的4倍,则m 的值是 ( ) A . 14 B . 15 C . 16 D .17 考点:简单线性规划

不等式与线性规划问题试题

基本不等式 1. 若x >0,y >0,且x +y =18,则xy 的最大值是________. 2. 已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 3. 已知x >0,y >0,且2x +y =1,则1x +2 y 的最小值是_____________. 4. (2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是 ( ) A.24 5 B.28 5 C .5 D .6 5. 圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,则ab 的取值范围是 ( ) A.????-∞,14 B.????0,14 C.??? ?-1 4,0 D.? ???-∞,1 4 题型一 利用基本不等式证明简单不等式

例 1 已知x >0,y >0,z >0. 求证:????y x +z x ????x y +z y ???? x z +y z ≥8.

已知a >0,b >0,c >0,且a +b +c = 1. 求证:1a +1b +1c ≥9. 题型二 利用基本不等式求最值 例

2 (1)已知x >0,y >0,且2x +y =1,则1x +1 y 的 最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. (1)已知x >0,y >0,x +2y +2xy =8,则 x +2y 的最小值是 ( ) A .3 B .4 C.9 2 D.112 题型三 基本不等式的实际应用 1.(2010·惠州模拟)某商场中秋前30天月饼销售总量f (t )与时间t (0

线性规划和基本不等式常见题型

线性规划常见题型及解法 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。 一、求线性目标函数的取值范围 例1、 若x 、y 满足约束条件222 x y x y ≤?? ≤??+≥? ,则z=x+2y 的取值范围是 ( ) A 、[2,6] B 、[2,5] C 、[3,6] D 、(3,5] 解:如图,作出可行域,作直线l :x+2y =0,将直线 向右上方平移,过点A (2,0)时,有最小值2, 过点B (2,2)时,有最大值6,故选 A 二、求可行域的面积 例2、不等式组260 302x y x y y +-≥?? +-≤??≤? 表示的平面区域的面积为 A 、4 B 、1 C 、5 D 、无穷大 解:如图,作出可行域, △ABC 的面积即为所求, 由梯形OMBC 的面积减去梯形OMAC 的面积即可,选 B 三、求可行域中整点个数 例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数 A 、9个 B 、10个 C 、13个 D 、14个 解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0) 2 (0,0)x y x y x y x y x y x y x y x y +≤≥≥??-≤≥? ? -+≤≥??--≤? 作出可行域如右图,是正方形内部(包括边界),容易得 到整点个数为13个,选 D 四,求非线性目标函数的最值 例4、已知x 、y 满足以下约束条件220240330x y x y x y +-≥?? -+≥??--≤? ,则 z=x 2 +y 2 的最大值和最小值分别是( ) A 、13,1 B 、13,2 C 、13,4 5 D 、

不等式与线性规划含答案

不等式与线性规划 考情解读 (1)在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.(2)多与集合、函数等知识交汇命题,以填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f (x )g (x ) >0(<0)?f (x )g (x )>0(<0); ②变形?f (x )g (x ) ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x )>a g (x )?f (x )>g (x ); ②当0a g (x )?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2≥0(a ∈R ). (2)a 2+b 2≥2ab (a 、b ∈R ). (3)a +b 2≥ab (a >0,b >0). (4)ab ≤(a +b 2 )2(a ,b ∈R ). (5) a 2+b 22≥a +b 2≥ab ≥2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等. (2)解不含实际背景的线性规划问题的一般步骤:①画出可行域;②根据线性目标函数的几何意义确定最优解;③求出目标函数的最大值或者最小值.

相关主题