搜档网
当前位置:搜档网 › 高中数学人教版必修五不等式知识点最完全精炼总结

高中数学人教版必修五不等式知识点最完全精炼总结

高中数学人教版必修五不等式知识点最完全精炼总结
高中数学人教版必修五不等式知识点最完全精炼总结

2012.3.26

4.公式: 1.两实数大小的比较

??

?

??<-?<=-?=>-?>0b a b a 0b a b a 0

b a b a 一. 不等式(精简版)

3.基 本不等式定理

?

??

?

?

???????

?

?????????????????-≤+?<≥+?>≥+

???

????+≤+≥+??

??

????????

?+≤??? ??+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a

a b )b a (2b a ab 2

b a 2b a ab 2b a ab )b a (2

1b a ab 2b a 2

22222

2

222倒数形式同号)分式形式根式形式整式形

式1122a b a b --+≤≤≤

+2.不等式的性质:8条性质.

3.解不等式

(1)一元一次不等式 (2)一元二次不等式:

???

?<<

>>

≠>)0a (b

x )0a (a b

x )0a (b ax

一元二次不等式的求 解流程:

一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.

五解集:根据图象写出不等式的解集. (3)解分式不等式:

高次不等式:

(4)解含参数的不等式:(1)

(x – 2)(ax – 2)>0

(2)x 2 – (a +a 2)x +a 3>0;

(3)2x 2 +ax +2 > 0;

注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有:

1、讨论a 与0的大小;

2、讨论⊿与0的大小;

3、讨论两根的大小;

二、运用的数学思想:

1、分类讨论的思想;

2、数形结合的思想;

3、等与不等的化归思想

(4)含参不等式恒成立的问题:

??????????≠≤??≤>??>0)x (g 0)x (g )x (f 0)

x (g )x (f 0)x (g )x (f 0)x (g )

x (f 0

)())((21>---n a x a x a x Λ

???

??用图象

分离参数后用最值函数、、、3

21

例1.已知关于x 的不等式

在(–2,0)上恒成立,求实数a 的取值范围. 例2.关于x 的不等式

对所有实数x ∈R 都成立,求a 的取值范围.

(5)一元二次方程根的分布问题:

方法:依据二次函数的图像特征从:开口方向、判别式、对称轴、 函数值三个角度列出不等式组,总之都是转化为一元二次不等式组求解.

20,31

x

x a x x >≤++恒成立,

例3.若对任意

则 的取值范围.

a

22(3)210x a x a +-+-<)

1(log 22++-=ax ax y

二次方程根的分布问题的讨论:

()

2

f k

b

k

a

>

?

??

-<

?

?

?>

??

1.x1< x2< k

()0

2

f k

b

k

a

>

?

??

->

?

?

?>

??

2.k < x1< x

()0

f k< 3.x1< k < x2

4. k 1 < x 1 < x 2 < k 2 5. x 1 < k 1 < k 2 < x 2

1212()0(

)00

2f k f k b k k a >??

>???

?>?

?<-

12

()0()0f k f k >??>?

6. k 1

122

()0

()0()0f k f k f k >??

? 4解线性规划问题的一般步骤:

第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点;

第三步:解方程的最优解,从而求出目标函数的最大值或最小值。

z ax by =+2

2y

x z +=y

z x

=

x

练习:1.求满足 | x | + | y | ≤4 的整点(横、纵坐标为整数)的个数。

4.求函数

的最小值.

5.已知两个正数 满足 求使 恒成立的 的取值范围.

1. 实数的性质:

0>-?>b a b a ;0<-?

2. 不等式的性质:

3. 常用基本不等式:

22

1

2.()2log (01)log f x x x x =++<<求函的最大值;

1

4.f(x)=x+

1

x ≥+(x 4)的最小值2(1)4()(1)1

x f x x x ++=>-+4,

a b +=,a b 28

m a b +≥m 3

7. 不等式证明方法:

基本方法:比较法、综合法、分析法、反证法 辅助方法:换元法(三角换元、均值换元等)、放缩法、构造法、判别式法

特别提醒:不等式的证明,方法灵活多样,它可以和很多内容结合.高考解答题中,常渗透不等式证明的内容,最常用的思路是用分析法探求证明途径,再用综合法加以叙述。我们在利用不等式的性质或基本不等式时要注意等号、不等号成立的条件。

例:解下列不等式:

(1) 27120x x -+>; (2) 2230x x --+≥;

(3)

2210x x -+<;

(4)

2220x x -+<.

解:(1)方程2

7120x x -+=的解为123,4x x ==.根据2712y x x =-+的图象,可得原不等式27120

x x -+>的解集是{|

34}x x x <>或.

(2)不等式两边同乘以1-,原不等式可化为2

230x x +-≤.

方程2

230x x +-=的解为123,1x x =-=.

根据

223y x x =+-的图象,可得原不等式2230x x --+≥的解集是{|31}x x -≤≤.

(3)方程2

210x x -+=有两个相同的解121x x ==.

根据

221y x x =-+的图象,可得原不等式2210x x -+<的解集为?.

(4)因为0?<,所以方程2

220x x -+=无实数解,根据222y x x =-+的图象,可得原不等式2220x x -+<的解集

为?.

练习1. (1)解不等式

073

<+-x x ;(若改为307

x x -≤+呢?) (2)解不等式

23

17

x x -<+;

解:(1)原不等式?

??>-<+??

?<->+?03,

0703,07x x x x 或{|73}x x ∴-<<

(该题后的答案:{|73}x x -<≤).

(2)

10

07

x x -<+即{|710}x x ∴-<<.

8、线性规划问题的解题方法和步骤

解决简单线性规划问题的方法是图解法,即借助直线(线性目标函数看作斜率确定的一族

平行直线)与平面区域(可行域)有交点时,直线在y 轴上的截距的最大值或最小值求解。它的步骤如下:

(1)设出未知数,确定目标函数。

(2)确定线性约束条件,并在直角坐标系中画出对应的平面区域,即可行域。

(3)由目标函数z =ax +by 变形为y =-b a x +b

z

,所以,求z 的最值可看成是求直线y =

-b a x +b

z

在y 轴上截距的最值(其中a 、b 是常数,z 随x ,y 的变化而变化)。 (4)作平行线:将直线ax +by =0平移(即作ax +by =0的平行线),使直线与可行域有

交点,且观察在可行域中使b

z

最大(或最小)时所经过的点,求出该点的坐标。

(5)求出最优解:将(4)中求出的坐标代入目标函数,从而求出z 的最大(或最小)值。

9、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点

()

00,x y P .

①若 0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方. ②若 0B >,000x y C A +B +<,则点()00,x y P 在直线0x y C A +B +=的下方. 10、在平面直角坐标系中,已知直线0x y C A +B +=.

①若 0B >,则0x y C A +B +>表示直线0x y C A +B +=上方的区域;0x y C A +B +<表示直线0x y C A +B +=下方的区域.

②若 0B <,则0x y C A +B +>表示直线0x y C A +B +=下方的区域;0x y C A +B +<表示直线0x y C A +B +=上方的区域.

11、最值定理

设x 、y 都为正数,则有

⑴ 若x y s +=(和为定值),则当x y =时,积xy 取得最大值2

4

s .

⑵ 若xy p =(积为定值),则当x y =时,和x y +取得最小值. 即:“积定,和有最小值;和定,积有最大值” 注意:一正、二定、三相等

几种常见解不等式的解法 重难点归纳

解不等式对学生的运算化简等价转化能力有较高的要求,随着高考命题原则向能力立意的进一步转化,对解不等式的考查将会更是热点,解不等式需要注意下面几个问题

(1)熟练掌握一元一次不等式(组)、一元二次不等式(组)的解法

(2)掌握用零点分段法解高次不等式和分式不等式,特别要注意因式的处理方法

(3)掌握无理不等式的三种类型的等价形式,指数和对数不等式的几种基本类型的解法 (4)掌握含绝对值不等式的几种基本类型的解法

(5)

在解不等式的过程中,要充分运用自己的分析能力,把原不等式等价地转化为易解的不等式

(6)对于含字母的不等式,要能按照正确的分类标准,进行分类讨论

典型题例示范讲解

例1:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(

当分式不等式化为

)0(0)

()

(≤<或x g x f 时,要注意它的等价变形 ①

0)()(0)

()

(

0)()(0)(0)()(0

)(0)()(0)()

(

用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含

重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.

不等式左右两边都是含有x 的代数式,必须先把它们移到一边,使另一边为0再解.

例:解不等式:(1)01522

3>--x x x ;(2)0)2()5)(4(3

2

<-++x x x .

解:(1)原不等式可化为

0)3)(52(>-+x x x

把方程0)3)(52(=-+x x x 的三个根3,2

5

,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.

∴原不等式解集为?

?????><<-3025x x x 或 (2)原不等式等价于

??

?>-<-≠????>-+≠+?>-++2

450)2)(4(0

50

)2()5)(4(32x x x x x x x x x 或

∴原不等式解集为{}

2455>-<<--

19

x y

1.已知x>0,y>0,且+=1,求x+y的最小值.6

必修五-不等式知识点总结[1]

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

最新高一下学期期末复习之——必修五不等式知识点及主要题型-讲义含解答

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、, ac b 42-=?, 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2

一元二次方程 ()的根 2 > = + + a c bx ax 有两相异实根 ) ( , 2 1 2 1 x x x x< 有两相等实根 a b x x 2 2 1 - = =无实根的解集 )0 ( 2 > > + + a c bx ax{} 2 1 x x x x x> <或 ? ? ? ? ? ? - ≠ a b x x 2 R 的解集 )0 ( 2 > < + + a c bx ax{} 2 1 x x x x< ?>≥?? ≠ ? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f>在区间D上恒成立,则等价于在区间D上() min f x A >若不等式()B x f<在区间D上恒成立,则等价于在区间D上() max f x B < (三)线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax+By+C=0同一侧的所有点(y x,),把它的坐标(y x,)代入

高中数学必修五-不等式知识点精炼总结

高中数学必修五-不等式知识点精炼总结 4.公式: 3.解不等式 (1)一元一次不等式 3.基 本不等式定理 ? ?? ? ? ??????? ? ?????????????????-≤+?<≥+?>≥+ ??? ????+≤+≥+?? ?? ???????? ?+≤??? ??+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a a b )b a (2b a ab 2 b a 2b a ab 2b a ab )b a (2 1b a ab 2b a 2 22222 2 222倒数形式同号)分式形式根式形式整式形 式11 22a b a b --+≤≤≤+???? ? <<>> ≠>)0a (a b x )0a (a b x )0a (b ax 2.不等式的性质:8条性质.

(2)一元二次不等式: +bx+c x 1 x 2 x y O y x O x 1 y x O

一元二次不等式的求 解流程: 一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. (3)解分式不等式: 高次不等式: (4)解含参数的不等式:(1) (x – 2)(ax – 2)>0 (2)x 2 – (a +a 2)x +a 3>0; (3)2x 2 +ax +2 > 0; 注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有: 1、讨论a 与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小; 二、运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想 (4)含参不等式恒成立的问题: ??????????≠≤??≤>??>0)x (g 0)x (g )x (f 0) x (g )x (f 0)x (g )x (f 0)x (g ) x (f 0 )())((21>---n a x a x a x Λ

高中数学必修五教案-基本不等式

第一课时 3.4基本不等式 2a b +≤(一) 教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 教学重点: 2 a b +≤的证明过程; 教学难点:理解“当且仅当a=b 时取等号”的数学内涵 教学过程: 一、复习准备: 1. 回顾:二元一次不等式(组)与简单的线形规划问题。 2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 二、讲授新课: 1. 教学:基本不等式 2a b +≤ ①探究:图形中的不等关系,将图中的“风车”抽象成如图,在 正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。(教师提问→学生思考→师生总结) ②思考:证明一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a ③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥, (a>0,b>0)2a b +≤ 2 a b +≤ : 用分析法证明:要证 2a b +≥, 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 ⑤练习:已知x 、y 都是正数,求证:(1)y x x y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8 x 3y 3.

必修五基本不等式题型分类(绝对经典)

一对一个性化辅导教案课题基本不等式复习 教学 重点 基本不等式 教学 难点 基本不等式的应用 教学目标掌握利用基本不等式求函数的最值学会灵活运用不等式 教学步骤及教学内容一、教学衔接: 1、检查学生的作业,及时指点; 2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。 二、内容讲解: 1.如果那么当且仅当时取“=”号). 2.如果那么(当且仅当时取“=”号) 3、在用基本不等式求函数的最值时,应具备三个条件:一正二定三相等。 ①一正:函数的解析式中,各项均为正数; ②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③三取等:函数的解析式中,含变数的各项均相等,取得最值。 三、课堂总结与反思: 带领学生对本次课授课内容进行回顾、总结 四、作业布置: 见讲义 管理人员签字:日期:年月日 作1、学生上次作业评价:○好○较好○一般○差 备注:

基本不等式复习

知识要点梳理 知识点:基本不等式 1.如果(当且仅当时取“=”号). 2.如果(当且仅当时取“=”号). 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等。 ①一正:函数的解析式中,各项均为正数; ②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③三取等:函数的解析式中,含变数的各项均相等,取得最值。 类型一:利用(配凑法)求最值 1.求下列函数的最大(或最小)值. (1)求的最小值; (2)若 (3)已知,,且. 求的最大值及相应的的值变式1:已知 类型二:含“1”的式子求最值

2.已知且,求的最小值. 变式1:若 变式2: 变式3:求函数 类型三:求分式的最值问题 3. 已知,求的最小值 变式1:求函数

高中数学必修五基本不等式学案

高中数学必修五基本不等式:ab≤a+b 2(学案) 学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点). [自主预习·探新知] 1.重要不等式 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”). 思考:如果a>0,b>0,用a,b分别代替不等式a2+b2≥2ab中的a,b,可得到怎样的不等式? [提示]a+b≥2ab. 2.基本不等式:ab≤a+b 2 (1)基本不等式成立的条件:a,b均为正实数; (2)等号成立的条件:当且仅当a=b时取等号. 思考:不等式a2+b2≥2ab与ab≤a+b 2成立的条件相同吗?如果不同各是 什么? [提示]不同,a2+b2≥2ab成立的条件是a,b∈R;ab≤a+b 2成立的条件 是a,b均为正实数. 3.算术平均数与几何平均数 (1)设a>0,b>0,则a,b的算术平均数为a+b 2,几何平均数为 (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 思考:a+b 2≥ab与? ? ? ? ? a+b 2 2 ≥ab是等价的吗? [提示]不等价,前者条件是a>0,b>0,后者是a,b∈R. 4.用基本不等式求最值的结论 (1)设x,y为正实数,若x+y=s(和s为定值),则当x=y=s 2时,积xy有最

小值为2xy . (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为(x +y )2 4. 5.基本不等式求最值的条件 (1)x ,y 必须是正数. (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值? [提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值. [基础自测] 1.思考辨析 (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2 +2 x 2+1 的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√ 2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________. 400 [因为x ,y 都是正数, 且x +y =40,所以xy ≤? ???? x +y 22 =400,当且仅当x =y =20时取等号.] 3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤? ???? x +8-x 22 =16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]

必修五不等式大复习-知识点加练习-适合整章复习

必修五不等式综合 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若 ,a b c d ><,则a c b d ->-) ,但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除, 但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 练习一、: (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 1 1,0<<<则若; ⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c -> ->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______ 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。 练习二;(1)设0,10>≠>t a a 且,比较21 log log 21+t t a a 和的大小 (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小 (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积

必修五-不等式知识点汇总复习课程

必修五-不等式知识点 汇总

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 0>? 0=? 0a )的图象 ) )((212x x x x a c bx ax y --=++= ) )((212x x x x a c bx ax y --=++= c bx ax y ++=2 一元二次方程 ()的根 00 2>=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ??????-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21x x x x << ? ? 注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a

高中数学必修五 第3章 不等式 同步练习 3.4基本不等式(含答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A.12 B.22a b + C.2ab D.a 3. 设x >0,则133y x x =--的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且141x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C .1 1 1 a b c ++≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .111x y +≥ C 2≥ D .11xy ≥ 8. a ,b 是正数,则 2,2a b ab a b ++三个数的大小顺序是 ( ) A. 22a b ab a b ++ 22a b ab a b +≤+ C.22ab a b a b ++ D.22 ab a b a b +≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

基本不等式的应用(适合高二必修五)

基本不等式的应用 一.基本不等式 1.(1)若R b a,,则ab b a 22 2 (2)若R b a,,则2 2 2 b a ab (当且仅当b a 时取“=”)2. (1) 若* ,R b a ,则 ab b a 2 (2) 若 * ,R b a ,则a b b a 2(当且仅当 b a 时取“=”) (3)若 * ,R b a ,则2 2 b a ab (当且仅当b a 时取“=”) 3.若0x ,则12x x (当且仅当1x 时取“=”);若0x ,则12x x (当且仅当1x 时取“=”) 若0x ,则11122-2x x x x x x 即或 (当且仅当b a 时取“=”) 4.若0ab ,则2a b b a (当且仅当b a 时取“=”)若0ab ,则 22-2a b a b a b b a b a b a 即 或 (当且仅当b a 时取“=”) 5.若R b a,,则2 ) 2 (2 2 2 b a b a (当且仅当b a 时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大” . (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、 证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2 +1 2x 2 (2)y =x + 1 x 解:(1)y =3x 2 + 1 2x 2≥23x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1 x ≥2 x · 1x =2; 当x <0时,y =x + 1x = -(-x -1 x )≤-2x · 1x =-2 ∴值域为(-∞,- 2]∪[2,+∞) 解题技巧:技巧一:凑项例1:已知54 x ,求函数142 45 y x x 的最大值。 解:因45 0x ,所以首先要“调整”符号,又1(42) 45 x x 不是常数,所以对42x 要进行拆、凑项, 5,5 404 x x , 1142 5 43 45 5 4y x x x x 231 当且仅当15454x x ,即1x 时,上式等号成立,故当1x 时,max 1y 。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

最新必修五不等式知识点

不等式的基本知识 1 (一)不等式与不等关系 2 1、应用不等式(组)表示不等关系;不等式的主要性质: 3 (1)对称性:a b b a (2)传递性:c a c b b a >?>>, 4 (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) 5 (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, 6 bd ac d c b a >?>>>>0,0(同向同正可乘) 7 (5) 倒数法则:b a a b b a 110,> 8 (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 9 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 10 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号11 ——结论) 12 3、应用不等式性质证明不等式 13 (二)解不等式 14 1、一元二次不等式的解法 15 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 16 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,17 ac b 42-=?,则不等式的解的各种情况如下表: 18

0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2 一元二次方程 ()的根 002>=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(0 2>>++a c bx ax {}21x x x x x ><或 ??????-≠a b x x 2 R 的解集)0(0 2><++a c bx ax {}21x x x x << ? ? 2、简单的一元高次不等式的解法: 19 标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次20 项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通21 过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,22 写出不等式的解集。()()()如:x x x +--<112023 23

数学必修五 第三章 不等式 知识点总结

数学必修五 第三章 不等式 一、知识点总结: 1、 比较实数大小的依据:①作差:0a b a b ->?>;0a b a b -=?=;0a b a b ->>?>时,1a a b b =?=,1a a b b ?<时,,1a a b b =?=,1a a b b 2、 不等式的性质 3、一元二次不等式的解法步骤:①将不等式变形,使一端为0且二次项的系数大于0;②计算相应的判别式;③当0?≥时,求出相应的一元二次方程的根;④根据对应二次函数的图象,写出不等式的解集。(大于0取两边,小于0取中间).含参数的不等式如20(0)ax bx c a ++>≠解题时需根据参数的取值范围依次进行分类讨论:①二次项系数的正负;②方程20(0)ax bx c a ++=≠中?与0的关系;③方程20(0)ax bx c a ++=≠两根的大小。 4、一元二次方程根的分布:一般借助二次函数的图象加以分析,准确找到限制根的分布的等价条件,常常用以下几个关键点去限制:(1)判别式;(2)对称轴;(3)根所在区间端点函数值的符号。设12,x x 是实系数一元二次方程20(0)ax bx c a ++=>的两个实根,则12,x x 的分布情况列表如下:(画出函数图象并在理解的基础上记忆)

5、一元高次不等式()0 f x f x>常用数轴穿根法(或称根轴法、区间法)求解,其步骤如下:①将()最高次项的系数化为正数;②将() f x分解为若干一次因式或二次不可分解因式的积;③将每一个根标在数轴上,从右上方向下依次通过每一点画曲线(注意重根情况,偶重根穿而不过,奇重根既穿又过);④根据曲线显现出的符号变化规律,写出不等式的解集。 6、简单的线性规划问题的几个概念:①线性约束条件:由关于,x y的二元一次不等式组成的不等式组是对,x y的线性约束条件;②目标函数:要求最值的关于,x y的解析式,如:22 z x y =+,

《基本不等式》典型例题

高中数学必修五典题精讲 典题精讲 例1(1)已知0<x < 31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x < 3 1,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=6 1时,等号成立.∴x=61时,函数取得最大值12 1. 解法二:∵0<x <31,∴3 1-x >0. ∴y=x(1-3x)=3x(31-x)≤3[2 31x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1?=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x 1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+ )(1x -≥2,当且仅当-x=x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+ x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与11+x 的积为常数. 解:∵x >-1,∴x+1>0.

高中数学必修五第三章复习知识点及题型

必修五第三章 不等式 一.不等关系与不等式 1、0a b a b ->?>;0a b a b -=?=;0a b a b -?<;②,a b b c a c >>?>;③a b a c b c >?+>+; ④,0a b c ac bc >>?>,,0a b c ac bc >>?+>+; ⑥0,0a b c d ac bd >>>>?>;⑦()0,1n n a b a b n n >>?>∈N >; ⑧()0,1n n a b a b n n >>?>∈N >. 例1 对于实数判断下列命题真假:,,,c b a (1)若;,bc ac b a <>则 (2);,2 2b a bc ac >>则若 (3)22,0b ab a b a >><<则若 (4) .0,0,1 1, <>>>b a b a b a 则若 例2(1).已知x ∈R,则22+x 与2的大小关系是?( ). A.22 +x >2 B.222 ≥+x C.22 +x <2 D.222≤+x (2).2)2(-≥n m 等价的是( ). A.2)2(-≤n m B.m n ≥-2)2( C.m n ≤-2)2( D.2)2(-n ? 0=? 0a 的图象 方程02 =++c bx ax )0(>a 的根 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221- == 没有实数根 )0(02>>++a c bx ax )0(02 ><++a c bx ax 例3(1)2. 函数122-+=x x y 的定义域是 ( ) A.{} 34>-++bx ax 的解为3 12 1<<-x ,则b a +等于 ( ) A.10 B.-10 C.14 D.-14 (3) 对于任意的实数x ,不等式04)2(2)2(2 <----x a x a 恒成立,实数a 的取值范围是( ) A.()2,∞- B.(]2,∞- C.()22,- D.(]22,- (4) 解关于的不等式)0(01)1(2 ><++-a x a ax . 例4.解不等式(1)()()()0321≥-+-x x x (2)()()()0321>-+-x x x (3)() ()()()032112≤-+-+-x x x x x (4)()()()()032112 >-+-+x x x x (5)012<-+x x (6)221≤-+x x (7)027313222 ≥+-+-x x x x 例5(1).已知不等式22 622 >++++x x kx kx 对任意R x ∈恒成立,求k 的取值范围。 (2)函数()()862++-=k kx kx x f 的定义域为R ,求k 的取值范围 。 (3)若不等式0122 ≤--+a x x 对一切[]0,2-∈x 恒成立,求实数a 的取值范围 。

高中数学必修五《基本不等式》培优专题

高中数学——基本不等式培优专题 目录 培优(1)常规配凑法 培优(2)“1”的代换 培优(3)换元法 培优(4)和、积、平方和三量减元 培优(5)轮换对称与万能k法 培优(6)消元法(必要构造函数求异) 培优(7)不等式算两次 培优(8)齐次化 培优(9)待定与技巧性强的配凑 培优(10)多元变量的不等式最值问题 培优(11)不等式综合应用

培优(1) 常规配凑法 1.(2018届温州9月模拟)已知242=+b a (a,b ∈R ),则a+2b 的最小值为_____________ 2. 已知实数x,y 满足116 2 2 =+y x ,则22y x +的最大值为_____________ 3.(2018春湖州模拟)已知不等式9)1 1)((≥++y x my x 对任意正实数x,y 恒成立,则正实数m 的最小值 是( ) A.2 B.4 C.6 D.8 4.(2017浙江模拟)已知a,b ∈R,且a ≠1,则b a b a -++ +1 1 的最小值是_____________ 5.(2018江苏一模)已知a ﹥0,b ﹥0,且ab b a =+3 2,则ab 的最小值是_____________ 6.(诸暨市2016届高三5月教学质量检测)已知a ﹥b ﹥0,a+b=1,则 b b a 21 4+ -的最小值是_____________

7.(2018届浙江省部分市学校高三上学期联考)已知a ﹥0,b ﹥0,11 111=+++b a ,则a+2b 的最小值 是( ) A.23 B.22 C.3 D.2 培优(2) “1”的代换 8.(2019届温州5月模拟13)已知正数a,b 满足a+b=1,则b a b 1 +的最小值为_____________此时a=______ 9.(2018浙江期中)已知正数a,b 满足112=+ b a 则b a +2 的最小值为( ) A.24 B.28 C.8 D.9

高中数学人教版必修五不等式知识点最完全精炼总结

2012.3.26 4.公式: 1.两实数大小的比较 ?? ? ??<-?<=-?=>-?>0b a b a 0b a b a 0 b a b a 一. 不等式(精简版) 3.基 本不等式定理 ? ?? ? ? ??????? ? ?????????????????-≤+?<≥+?>≥+ ??? ????+≤+≥+?? ?? ???????? ?+≤??? ??+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a a b )b a (2b a ab 2 b a 2b a ab 2b a ab )b a (2 1b a ab 2b a 2 22222 2 222倒数形式同号)分式形式根式形式整式形 式1122a b a b --+≤≤≤ +2.不等式的性质:8条性质.

3.解不等式 (1)一元一次不等式 (2)一元二次不等式: ??? ?<< >> ≠>)0a (b x )0a (a b x )0a (b ax

一元二次不等式的求 解流程: 一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. (3)解分式不等式: 高次不等式: (4)解含参数的不等式:(1) (x – 2)(ax – 2)>0 (2)x 2 – (a +a 2)x +a 3>0; (3)2x 2 +ax +2 > 0; 注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有: 1、讨论a 与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小; 二、运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想 (4)含参不等式恒成立的问题: ??????????≠≤??≤>??>0)x (g 0)x (g )x (f 0) x (g )x (f 0)x (g )x (f 0)x (g ) x (f 0 )())((21>---n a x a x a x Λ

必修五不等式知识点典型例题

高中数学必修5 第三章 不等式复习 一、不等式的主要性质: (1)对称性: a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相等实根 1.一元二次不等式先化标准形式(a 化正)2.常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:“大鱼”吃两边,“小鱼”吃中间 三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等

3、平均不等式:(a 、b 为正数),即b a a b b a b a 112 2 222+≥ ≥+≥+(当a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 代数意义:?? ? ??<-=>=0a 0 00 ||a a a a a 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 4、解含有绝对值不等式的主要方法:解含绝对值的不等式的基本思想是去掉绝对值符号 五、其他常见不等式形式总结: ①分式不等式的解法:先移项通分标准化,则 0)()(0)()(>?>x g x f x g x f ;???≠≥?≥0 )(0)()(0)() (x g x g x f x g x f ②指数不等式:转化为代数不等式 )()()1()()(x g x f a a a x g x f >?>>;)()()10()()(x g x f a a a x g x f ③对数不等式:转化为代数不等式 ?????>>>?>>)()(0 )(0)()1)((log )(log x g x f x g x f a x g x f a a ?? ? ??<>>?<<>)()(0)(0 )()10)((log )(log x g x f x g x f a x g x f a a ④高次不等式:数轴穿根法: 奇穿,偶不穿 例题:不等式03 )4)(23(2 2≤+-+-x x x x 的解为( ) A .-1++C By Ax l (或0<) :直线定界,特殊点定域。 注意: )0(0<>++或C By Ax 不包括边界 )0(0≤≥++C By Ax 包括边界 2. 线性规划 我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。解决这类问题的基本步骤是: 注意:1. 线性目标函数的最大值、最小值一般在可行域的顶点处取得; 2. 线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数个。

相关主题