搜档网
当前位置:搜档网 › 抽屉原理和容斥原理

抽屉原理和容斥原理

抽屉原理和容斥原理
抽屉原理和容斥原理

I .抽屉原则

10个苹果放入9个抽屉中,无论怎么放,一定有一个抽屉里放了2个或更多个苹果.这

个简单的事实就是抽屉原则.由德国数学家狄利克雷首先提出来的.因此,又称为狄利克雷原则.

将苹果换成信、鸽子或鞋,把抽屉换成信筒、鸽笼或鞋盒,这个原则又叫做信筒原则、

鸽笼原则或鞋盒原则.抽屉原则是离散数学中的一个重要原则,把它推广到一般情形就得到下面几种形式: 原则一:把m 个元素分成n 类(m >n ),不论怎么分,至少有一类中有两个元素. 原则二:把m 个元素分成n 类(m >n )

(1)当n |m 时,至少有一类中含有至少

n m

个元素; (2)当n |m 时,至少有一类中含有至少[n

m

]+1个元素.

其中n m 表示n 是m 的约数,n m 表示n 不是m 的约数,[

n m ]表示不超过n

m

的最大整数.

原则三:把1221+-+++n m m m 个元素分成n 类,则存在一个k ,使得第k 类至

少有k m 个元素. 原则四:把无穷多个元素分成有限类,则至少有一类包含无穷多个元素. 以上这些命题用反证法极易得到证明,这里从略.

一般来说,适合应用抽屉原则解决的数学问题具有如下特征:新给的元素具有任意性.

如10个苹果放入9个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果. 对一个具体的可以应用抽屉原则解决的数学问题还应搞清三个问题: (1)什么是“苹果”?

(2)什么是“抽屉”? (3)苹果、抽屉各多少?

用抽屉原则解题的本质是把所要讨论的问题利用抽屉原则缩小范围,使之在一个特定

的小范围内考虑问题,从而使问题变得简单明确. 用抽屉原则解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律. 用抽屉原则解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律. 用抽屉原则解题的关键是利用题目中的条件构造出与题设相关的“抽屉”. Ⅱ. 容斥原则 当我们试图对某些对象的数目从整体上计数碰到困难时,考虑将整体分解为部分,通过对每个部分的计数来实现对整体的计数是一种明智的选择.将整体分解为部分也就是将有限集X 表示成它的一组两两互异的非空真子集A 1,A 2,…A n 的并集,即

},,,{.2121n n A A A A A A X ==?集合叫做集合X 的一个覆盖.一个特殊情况

是,集族?中的任意两个集合都不相交,这时我们称集族?为集合X 的一个(完全)划分.如?为集合X 的划分,则对集合X 的计数可通过熟知的加法公式

||||||||||321n A A A A X ++++= ①

进行,但是,要找到一个划分并且其中所有子集易于计数的有时并非易事. 我们可以考虑通过对任意的集族中的子集的计数来计算|X|,当集族?中至少存在两个集合的交非空时,我们称这个覆盖为集合X 的不完全划分. 对于集合X 的不完全划分,显然有有

||||||||21n A A A X +++< ②

因为在计算|A i |时出现了对某些元素的重复计数,为了计算|X|,就得将②式右边重复计算的部分减去,如果减得超出了,还得再加上,也就是说我们要做“多退少补”的工作.完成这项工作的准则就是容斥原理. 是十九世纪英国数学家西尔维斯提出的. 容斥原理有两个公式. 1.容斥公式

定理1 设则为有限集,),,2,1(n i A i =

∑∑

=≤<≤=-=-++-

=

n

i n

j i i n

i n j i i

i n

i A A A A

A 1

11

1

1||)

1(|||||| ③

证明:当,/,/,,12211

21B A A B A A B A A n ='='== 设时由加法公式有

|

||||||||)||(||)||(|||||||||||,||||||,|||||2121212

12

12122

11A A A A B B A B A B A A B A A A A A B A A B A -+=+-+-=++'+'=''==+'=+'

结论成立.

若n =k 时结论成立,则由

∑∑

∑=≤<≤=+=-+=+=+=+=+=-+-++-

=-+=-+=k

i k

j i k

i i k i k

i k j i i i i k

i k i k

i k i k

i k i k i i k i A A A A A A A A A A A A A A A 1

11

11

1

11

1111

1111

||||)

1(|||||

)(||||||

)(|||||||

≤<≤+=+++-+-+

k

i i k i k

i k

k j k i k A A A A A A A 111

111|)(|)1(|)()(||

∑∑

+=+≤<≤+=-++-

=11

1

111

||)1(||||k i k j i i k i k

j i i

A A A A

知,

1+=k n 时结论成立.

由归纳原理知,对任意自然数n ,公式③成立. 公式③称为容斥公式,显然它是公式①的推广.

如果将i A 看成具有性质i P 的元素的集合,那么n A A A X 21=就是至少具有n

个性质n P P P ,,,21 之一的元素的集合. 因此,容斥公式常用来计算至少具有某几个性质之一的元素的数目.

数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。它的概念与方法已经有效地渗透到所有的现代数学。可以认为,数学的所有内容都是在“集合”中讨论、生长的。

集合是一种基本数学语言、一种基本数学工具。它不仅是高中数学的第一课,而且是整个数学的基础。对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。 有限集元素的个数(容斥原理) 请看以下问题:

开运动会时,高一某班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,

问同时参加田径比赛和球类比赛的有多少人?只参加游泳一项比赛的有多少人?

解决这个问题需要我们研究集合元素的个数问题(请读者参阅高中教材《数学》第一册(上)P23-P23阅读材料“集合元素的个数”。)

为此我们把有限集合A的元素个数记作card(A)

可以证明:

(1) card(A∪B)=card(A)+card(B)-card(A∩B);

(2) card(A∪B∪C)=card(A)+card(B)+card(C)

-car d(A∩B)-card(A∩C)-card(B∩C)

+card(A∩B∩C)

如下图所示:

由图1-3-1,有

card(A∪B)=①+②+③=(①+②)+(②+③)-②=

card(A)+card(B)-card(A∩B)

card(Cu(A∪B))=card(U)-card(A∪B)=card(U)-card(A)-card(B)+card(A∩B)

又由图1-3-2,有

card(A∪B∪C)=①+②+③+④+⑤+⑥+⑦=

(①+④+⑤+⑦)+(②+⑤+⑥+⑦)+(③+④+⑥+⑦)-(⑤+⑦)-(⑥+⑦)-(④+⑦)+⑦=

card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)

现在我们可以来回答刚才的问题了:

设A={参加游泳比赛的同学},B={参加田径比赛的同学},C={参加球类比赛的同学}

则card(A)=15,card(B)=8,card(C)=14,card(A∪B∪C)=28

且card(A∩B)=3,card(A∩C)=3,card(A∩B∩C)=0

由公式②得28=15+8+14-3-3-card(B∩C)+0

即card(B∩C)=3

所以同时参加田径和球类比赛的共有3人,而只参加游泳比赛的人有15-3-3=9(人)

例6.计算不超过120的合数的个数

分析1:用“筛法”找出不超过120的质数(素数),计算它们的个数,从120中去掉质数,再去掉“1”,剩下的即是合数。

解法1:120以内:

① 既不是素数又不是合数的数有一个,即“1”;

② 素数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、

53、59、61、67、71、73、79、83、89、97、101、103、107、109、113、共30个。

所以不超过120的合数有120-1-30=89(个)

(附:筛法:从小到大按顺序写出1-120的所有自然数:

先划掉1,保留2,然后划掉2的所有倍数4,6,…120等;保留3,再划掉所有3的倍数6,9…117、120等;保留5,再划掉5的所有倍数10,15,…120;保留7,再划掉7的所有倍数,…这样,上面数表中剩下的数就是120以内的所有素数,这种方法是最古老的寻找素数的方法,叫做“埃斯托拉‘筛法’”) 说明:当n 不很大时,计算1-n 中的合数的个数困难不大;但当n 很大时,利用筛法就很困难、很费时了,必须另觅他途。

[分析2]受解法1的启发,如果能找出1-n 中质数的个数m ,则n -1-m 就是不超过n 的合数的个数。由初等数论中定理:a 是大于1的整数。如果所有不大于√a 的质数都不能整除a ,那么a 是质数。因为120<121=112,√120<11,所以不超过120的合数必是2或3或5或7的倍数,所以只要分别计算出不超过120的2、3、5、7的倍数,再利用“容斥原理”即可。

解法2:设S 1={a∣1≤3≤120,2∣a};S 2={b∣1≤b≤120,3∣b};S 3={c∣1≤3≤120,5∣c};S 4={d∣1≤d≤120,7∣d},则有:

card(S 1)=[120/2]=60,card(S 2)=[120/3]=40,card(S 3)=[120/5]=24,card(S 4)=[120/7]=17;

([n]表示n 的整数部分,例如[2,4]=2,…)

card(S 1∩S 2)=[120/2×3]=20,card(S 1∩S 3)=[120/2×5]=12, card(S 1∩S 4)=[120/2×7]=8,card(S 2∩S 3)=[120/3×5]=8, card(S 2∩S 4)=[120/3×7]=5,card(S 3∩S 4)[120/5×7]=3,

card(S 1∩S 2∩S 3)[120/2×3×5]=4,card(S 1∩S 2∩S 4)=[120/2×3×7]=2,

card(S 1∩S 3∩S 4)=[120/2×5×7]=1,card(S 2∩S 3∩S 4)=[120/3×5×7]=1,

card(S 1∩S 2∩S 3∩S 4)=[120/2×3×5×7]=0

∴card(S 1∪S 2∪S 3∪S 4)=card(S 1)+card(S 2)+card(S 3)+card(S 4)-card(S 1∩S 2)-card(S 1∩S 3)-card(S 1∩S 4)-card(S 2∩S 3)-card(S 2∩S 4)-card(S 3∩S 4)+card(S 1∩S 2∩S 3)+card(S 1∩S 2∩S 4)+card(S 1∩S 3∩S 4)+card(S 2∩S 3∩S 4)-card(S 1∩S 2∩S 3∩S 4)=(60+40+24+17)-(20+12+8+8+5+3)+(4+2+1+1)-0=141-56+8=93 ∵2,3,5,7是质数 ∴93-4=89

即不超过120的合数共有89个。四、有限集合子集的个数

问题:

(1) 集合{a}一共有几个子集?

(2) 集合{a,b}一共有几个子集?

(3) 集合{a,b,c}一共有几个子集?

(4) 集合{a,b,c,d}一共有几个子集?

(5) 猜想集合{a

1,a

2

…,a

n

}一共有几个子集?

(6) 利用上述猜想确定符合下列条件的集合M的个数:

{1,2}M{1,2,3,4,5,6,7,8,9,10}。

以上诸问题都牵涉到有限集合子集的个数问题。

有限集合{a}的子集有:φ,{a};共两个

有限集合{a,b}的子集有:φ,{a},{b},{a,b};共4=22个;

有限集合{a,b,c}的子集有:φ;{a},{b},{c};{a,b},{a,c},{b,c};{a,b,c};8=23个;

有限集合{a,b,c,d}的子集有:φ;{a},{b},{c},{d};{a,b},{a,c},{a,d},{b,c},{b,d},{c,d};{a,b,c},{a,b,d},{a,c,d},{b,c,d}; {a,b,c,d};共16=24个。这里,{a,b,c,d}的子集可以分成两部分,一部分不包括d,是{a,b,c}的子集;另一部分包括d,是{a,b,c}中每一个子集与{d}的并集。

循此思路,注意到2,4=22,8=23,16=24的规律,可以猜想有限集合{a

1,a

2

…,

a

n

}的子集共有2n个,其中非空子集有2n-1个;真子集也有2n-1个,非空真子集有2n-1-1=2n-2个。

利用上述猜想,问题(6)中集合M的个数应当有28=256个。

例7.一个集合含有10个互不相同的两位数。试证,这个集合必有2个无公共元素的子集合,此两子集的各数之和相等。

分析:两位数共有10,11,……,99,计99-9=90个,最大的10个两位数依次是90,91,……,99,其和为945,因此,由10个两位数组成的任意一个集

合中,其任一个子集中各元素之和都不会超过945,而它的非空子集却有210-1=1023个,这是解决问题的突破口。

解:已知集合含有10个不同的两位数,因它含有10个元素,故必有210=1024个子集,其中非空子集有1023个,每一个子集内各数之和都不超过90+91+…98+99=945<1023,根据抽屉原理,一定存在2个不同的子集,其元素之和相等。如此2个子集无公共元素,即交集为空集,则已符合题目要求;如果这2个子集有公共元素,则划去它们的公共元素即共有的数字,可得两个无公共元素的非空子集,其所含参数之和相等。

说明:此题构造了一个抽屉原理模型,分两步完成,计算子集中数字之和最多有945个“抽屉”,计算非空子集得1023个“苹果”,由此得出必有两个子集数字之和相等。第二步考察它们有无公共元素,如无公共元素,则已符合要求;如有公共元素,则去掉相同的数字,得出无公共元素并且非空的两个子集,满足条件。可见,有限元素子集个数公式起了关键作用。 例8.设A ={1,2,3,…,n},对X A ,设X 中各元素之和为N x ,求N x 的

总和

∑?A

X x

N

解:A 中共有n 个元素,其子集共有2n 个。A 中每一个元素在其非空子集中都出现了2n-1次,(为什么?因为A 的所有子集对其中任一个元素i 都可分为两类,一类是不含i 的,它们也都是{1,2,…,i-1,i+1,…n}的子集,共2n-1个;

另一类是含i 的,只要把i 加入到刚才的2n-1

个子集中的每一个中去)。因而求A 的所有子集中所有元素之和Nx 的总和时,A 中每一个元素都加了2n-1次,即出现了2n-1次,故得

∑?A

X x

N

=1×2n-1+2×2n-1+…+n……2n-1=(1+2+…+n)·2n-1=

n(n+1)/2×2n-1=n(n+1)×2n-2

说明:这里运用了整体处理的思想及公式1+2+…+n =(1/2)n(n+1),其理论依据是加法的交换律、结合律、乘法的意义等。得出集合中每一个元素都在总和中出现了2n-1次,是打开解题思路之门的钥匙孔。 赛题精讲

例1设ABC 为一等边三角形,E 是三边上点的全体. 对于每一个把E 分成两个不相交子集

的划分,问这两个子集中是否至少有一个子集包含着一个直角三角形的三个顶点?(第24届IMO 第4题)

【证明】如图I —3—2—1,在边BC 、CA 、AB 上分别取三点

P 、Q 、R ,使.3

,3,3AB

RB CA QA BC PC ===

显然 △ARQ ,△BPR ,△CQP 都是直角三角形. 它们的锐

角是30°及60°.

设E 1,E 2是E 的两个非空子集,且

==2121,E E E E E 由抽屉原则P 、Q 、R 中

至少有两点属于同一子集,不妨设P 、Q ∈E 1. 如果BC 边上除P 之外还有属于E 1的点,那么结论已明.

设BC 的点除P 之外全属于E 2,那么只要AB 上有异于B 的点S 属于E 2,设S 在BC 上的投影点为S′,则△SS ′B 为直角三角形. 再设AB 内的每一点均不属于E 2,即除B 之外全属于E 1,特别,R 、A ∈E 1,于是A 、Q 、R ∈E 1,且AQR 为一直角三角形. 从而命题得证.

【评述】此例通过分割图形构造抽屉. 在一个几何图形内有若干已知点,我们可以根据问题

的要求把图形进行适当的分割,用这些分割成的图形作为抽屉,再对已知点进行分类,集中对某一个或几个抽屉进行讨论,使问题得到解决.

例2:在1,4,7,10,13,…,100中任选出20个数,其中至少有不同的两组数,其和都

等于104,试证明之. (第39届美国普特南数学竞赛题)

【证明】给定的数共有34个,其相邻两数的差均为3,我们把这些数分成如下18个不相交

的集合.

{1},{52},{4,100},{7,97},…{49,55}. 且把它们分作是18个抽屉,从已知的34个数中任取20个数,即把前面两个抽屉

中的数1和52都取出,则剩下的18个数在后面的16个抽屉中至少有不同的两个抽屉中的数全被取出,这两个抽屉中的数互不相同,每个抽屉中的两个数的和都是104.

【评述】此例是根据某两个数的和为104来构造抽屉. 一般地,与整数集有关的存在性问题

也可根据不同的需要利用整数间的倍数关系、同余关系来适当分组而构成抽屉. 例3 设 ,,,321a a a 是严格上升的自然数列:

<<<321a a a ,

求证:在这个数列中有无穷多个m a 可以表示为

q p m ya xa a +=,

这里q p ≠是两个正整数,而y x ,是两个适当的整数. (第17届IMO 第2题) 【证明】对严格上升的自然数列 <<<321a a a ,取以1a 为模的剩余类,则可分为1a 类 {0},{1},{2},…,{11-a }.

考虑无穷数列,,,32 a a 由抽屉原则,其中有无穷多项属于同一类,不妨设这一剩余类

是{r},且记其中数值最小的那一项为q a ,显然1>q ,于是

,1r ua a q +=

其中的u 是某个正整数,其他的属于这一剩余类的任一项m a 可表示为

.1r a a q +=ν

由于,,u a a q m >>ν故所以有

.)(111q q m a a u ua a a a +-=-+=νν

令u x -=ν,这是一个正整数,再令1=y ,则上式成为

.1q m ya xa a -=

显然,这里的q p <=1.

例4:设n x x x ,,,21 为实数,满足12

232221=++++n x x x x ,求证:对于每一整数2≥k ,

存在不全为零的整数),,2,1(1||,,,,21n i k a a a a i n =-≤使得并且

.1

)1(||2211--≤

+++n n n k n

k x a x a x a

【证明】由柯西不等式得 ))(111(|)||||(|2

232221222221n n x x x x x x x +++++++≤+++

即n x x x n ≤

+++||||||21 .

所以,当有时,10-≤≤k a i

||||||2211n n x a x a x a +++

.

)1(|)||||)(|1(21n k x x x k n -≤+++-≤

把区间))1(,0[n k -等分成12

-k 个小区间,每个小区间的长度为

1

)1(--n

k n

k ,由于

每个i a 能取k 个整数,因此n

n n k x a x a x a 共有||||||2211+++ 个正数,由抽屉原则

知必有二数会落在同一个小区间之内,设它们分别是

||||1

1

i n

i i i

n

i i x a x

a ∑∑=='''与,

因此有∑=--≤

''-'n

i n

i i i k n

k x a a 1

1

)1(|||)(|

① 很明显,我们有

.,,2,1,1||n i k a a i i =-≤''-'

现在取??

?<'-''≥''-'=)

0(,

)0(,

i i i i i i i x a a x a a a 如果如果

这里i =1,2,…,n ,于是①可表示为

∑=--≤

n

i n i i k n

k x a 1

.1

)1(||

这里i a 为整数,适合.,,2,1,1||n i k a i =-≤

【评述】如上例所示,在证明存在某些有界量使相关的不等式成立时,可类似地把某区间

划分为若干小区间作为抽屉,借用抽屉原则来证明.

例5:一个国际社团的成员来自六个国家共有1978人,用1,2,…,1977,1978来编号,

试证明:该社团至少有一个成员的编号或者与他的两个同胞的编号之和相等,或者是其中一个同胞的编号的两倍. (第20届IMO 第6题)

【证明】可用反证法来证明与本题完全相当的下列问题:把整列1,2,…,1978按任一方

式分成六组,则至少有一组具有这样的性质:其中有一个数或等于四组中其他两数之和,或等于其中某一个数的两倍. 假设这六组中的每一组数都不具备上述性质,也就是说每一组数都具备下列性质,记作性质(P ): 同组中任何两数之差必不在此组中.

因为如果有b a ,连同b a -都在同一组中,那么由)(b a b a -+=可知,这组已具备题

目所要求的性质. 因1978÷6>329,所以由抽屉原则可以肯定有一个组A ,其中至少有380个正整数,现在从A 中任意取出330个数业,记其中最大的那个数为1a ,把1a 分别减去其余329个数而得到329个差,它们互不相等且均小于1978. 由性质(P ),它们不会再在组A 中,即应属于其余五组. 又因329÷5÷>65.再由抽屉原则可以肯定有一组B ,其中至少含有上述329个数中的66个数,从B 中任取66个数且记其中最大的那个数为b 1,再把b 1减去其余65个数,得出的差显然不再属于B ,当然也不会属于A. 假如其中的某一个数b b -1属于A ,由于1b 与b 分别可以写为

a a

b a a b -='-=111,

其中a a '与都属于A ,于是 a a a a a a b b '-=--'-=-)()(111

这就同A 具备性质(P )的假设相违背,这就是说上述65个数必属其余四个数组. 由于65÷4>16,所以至少有一组,称为C ,至少会有上述65个整数中的17个,反复进行上述推理,最后可得一数组F ,其中至少会有两个数,大数与小数之差是一个小于1978的正整数,可是它不在A 、B 、C 、D 、E 、F 的任一组中,这显然是一个矛盾,这矛盾说明至少有一组数不具备性质(P ).即题目的结论是正确的.

【评述】我们容易发现,如果把此题中1978改为任何一个不小于1957的正整数后其结论

仍是成立的. 上例的解答过程说明了对有些数学问题需要我们连续运用抽屉原则,而且每构造一次抽屉都把范围缩小一些.

例6:已知1与90之间的19个(不同的)正整数,两两的差中是否一定有三个相等?(匈

牙利数学竞赛题,1990年)

【证明】设这19个数为 .9011921≤<<<≤a a a

由于)()()(1217181819119a a a a a a a a -++-+-=- , 若右边的18个差中无三个相等,而只有两个相等,且取最小的,则 ,90)921(2119=+++?>- a a

这与89190119=-≤-a a 矛盾. 所以两两的差中定有三个相等. 抽屉原则实际上都是重叠原则,这里再介绍抽屉原则的几种变形:

平均量重叠原则:把一个量S 任意分成n 份,则其中至少有一份不大于n

S

,也至少有一份不少于

n

S . 面积的重叠原则:在平面上有n 个面积分别是A 1,A 2,…,A n 的图形,把这n 个图形按任何方式一一搬到某一个面积为A 的固定图形上去,

(1)如果A 1+A 2+…+A n >A ,则至少有两个图形有公共点;

(2)如果A 1+A 2+…+A n

例7:在一个面积为20×25的长方形内任意放进120个面积为1×1的正方形,证明:在这

个长方形内一定还可以放下一个直径为1的圆,它和这120个正方形的任何一个都不相重叠. (第1届全俄数学奥林匹克试题)

【证明】要使直径为1的圆完全放在一个矩形里,它的圆心应与矩形任何一条边的距离不

小于

21,这可从20×25的长方形ABCD 的每一边剪去一个宽为2

1

的长条,则余下的长方形A ′B ′C ′D ′的面积为19×24=456[如图I —3—2—2(a )].这样,任意放进长方形ABCD 内的直径为1的圆心都在长方形A ′B ′C ′D ′中,此外,圆心应与任何一个正方形的边界的距离也大于21,即在任何一个小正方形以外加上2

1的框[如图I —3—2—2(b )所得图形的面积是

4

342141ππ+=+?

+. 用这样的120个图形互不相交地去覆盖长方形A ′B ′C ′D ′,它们的总面积等于 ).4

3(120π

+

?

但是 ).4

3(120π

+

?.4562.15304

2

.312120=?=+?

< 这说明用这样的120图形不能覆盖一个面积为456的长方形,从而可以在长方形ABCD 内放置一个直径为1的圆,它不与所有的小正方形中的任何一个重叠. 例8:设n 与k 是正整数,n k n

n <<>2

,

3平面上有n 个点,其中任意三点不共线,如果其中每个点都至少和其他k 个点用线段连接,则连接的线段中至少有三条围成一个三角形.(波兰数学竞赛题,1968年) 【证明】因为n

k n 2

,3>

>所以2≥k .这表明:n 个点中必有两个点a 与b ,它们之间连一段线段,余下的点构成的集合记作中用线段与a 连接的所有点的集合记作A ,而与b 连接的所有点的集合记作B. 显然A ∪B 是X 的子集,因此,|A ∪B|≤|X|=n -2. 另一方面,由已知条件,1||,1||-≥-≥k B k A ,则由容斥公式, ||22||||||||2B A k B A B A B A n --≥-+=≥- 即 02||>-≥n k B A .

这就证明了φ≠B A ,也就是说B A 中必有一点c ,它与a ,b 构成一个△abc .

7-7-5 容斥原理之最值问题.教师版

1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分, C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进 来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 教学目标 知识要点 7-7-5.容斥原理之最值问题 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数, 1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次, 多加了1次. 2.再排除:A B C A B B C A C ++---

小学奥数之容斥原理

五.容斥原理问题 1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( ) A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种 2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是 解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( ) A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。 分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+ a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤ 再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。 然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。 故只解出第二题的学生人数a2=6人。 3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。 假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)

《三集合容斥原理》

三集合容斥原理 华图教育梁维维 我们知道容斥原理的本质是把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复的一种计数的方法。之前我们叙述过了两集合容斥原理,下面我们来看一下三集合容斥原理,相对于两集合容斥原理而言,三集合容斥原理的难度有所增加,但总体难度适中,所以三集合容斥原理在国家公务员考试中出现的频率较高,在其他省份考试以及各省份联考当中也时有出现,下面我们了解一下三集合容斥原理的公式。 三集合容斥原理公式: 三者都不满足的个数。 总个数- = + - - - + + =| | | | | | | | | | | | | || |C B A C B C A B A C B A C B A 有些问题,可以直接代入三集合容斥原理的公式进行求解。 【例1】如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?( ) A.15 B.16 C.14 D.18 【解析】依题意,假设阴影部分的面积为x,代入公式可得:64+180+160-24-70-36+x=290,解得x=16,正确答案为B选项。 近几年,直接套用三集合公式的题目有所减少,开始出现条件变形的题目,往往告诉大家“只满足两个条件的共有多少”这样的信息,看似无法直接套用公式,其实只要掌握本质,仍然可以直接套用公式。 【例2】(2012河北-44)某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?() A. 148 B. 248

容斥原理的极值问题

容斥原理的极值问题文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

有关容斥原理的极值问题 所谓“极值问题”就是通常说的最大值,最小值的问题,题干中通常有“至少”,“至多”等题眼,解决这类问题通常有两种方法,一是极限思想,另一种就是逆向思维。 通过以下几个例题具体看一下: 1. 某社团共有46人,其中35人爱好戏剧,30人爱好体育,38人爱好写作,40人爱好收藏,至少有几个4个活动都参加 解析: 逆向思维,分别考虑不喜欢其中某项活动的人数是多少,由题意可知,分别为11,16,8,6,只有当这四项集合互相没有交集的时候,四项活动都喜欢的人数才最少,因此最少人数为46-11-16-8-6=5 2. 参加某部门招聘考试的共有120人,考试内容共有6道题。1至6道题分别有86人,88人,92人,76人,72人和70人答对,如果答对3道题或3道以上的人员能通过考试,那么至少有多少人能通过考试 解析(极限思想):要使通过的人最少,那么就是对1道,2道的人最多,并且应该是对2道的人最多(这样消耗的总题目数最多),假设都只对了2道,那120人总共对了240道,而现在对了86+88+92+76+72+70=484,比240多了244道,每个人还可以多4道(这样总人数最少),244/4=61。(逆向思维):先算出来1-6题每题错的人数120-86=34 120-88=32 120- 92=28 120-76=44 120-72=48 120-70=50 要使通过的人数最少,就是没通过的人数最多,让错的人都只错4道就错的人最多,总的错的题数为 34+32+28+44+48+50=236236/4=59120-59=61

2015国家公务员考试行测:数学运算-容斥原理和抽屉原理

【导读】国家公务员考试网为您提供:2015国家公务员考试行测:数学运算-容斥原理和抽屉原理,欢迎加入国家公务员考试QQ群:242808680。更多信息请关注安徽人事考试网https://www.sodocs.net/doc/5e14028058.html, 【推荐阅读】 2015国家公务员笔试辅导课程【面授+网校】 容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠 的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数 目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是 A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、 数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一 门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现 两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1 次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩ C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

三者容斥问题3个公式

三集合容斥原理按题型可以分为两种题型,一种为标准型公式,另一种为变异型公式,接下来,我们就着重看看三集合容斥原理的标准型公式。 集合Ⅰ、Ⅱ、Ⅲ,满足标准型公式: 三集合容斥原理标准型公式:Ⅰ+Ⅱ+Ⅲ-Ⅰ·Ⅱ-Ⅰ·Ⅲ-Ⅱ·Ⅲ+Ⅰ·Ⅱ·Ⅲ=总个数-三者都不满足个数 通过观察公式,我们可以看到在公式中,出现了9个量,而这个式子的适用前提就是知8求1,即在题目中,若我们看到了8个已知量,要求1个未知量的时候,就要使用这个公式(注:而题目中有时候也是知7求1,其中的三者都不满足的个数可能为零),具体题目如下: (陕西2015)针对100名旅游爱好者进行调查发现,28人喜欢泰山,30人喜欢华山,42人喜欢黄山,8人既喜欢黄山又喜欢华山,10人既喜

欢泰山又喜欢黄山,5人既喜欢华山又喜欢黄山,3人喜欢这三个景点,则不喜欢这三个景点中任何一个的有( )人。 A.20 B.18 C.17 D.15 E.14 F.13 G.12 H.10 解:通过观察,我们发现了八个已知量,还要我们求另一个未知量,故可以用上述公式,我们将数据逐个代入可得: 28+30+42-8-10-5+3=100-x,其中x为我们要求的量,求得x=20,答案选择A。 接着,我们来看一下三集合变异型的公式,如下图示:

从上式中,我们可以看出,要使用变异型公式,题目中必须要出现仅满足2个情况的个数,这就是与标准型公式最大的不同,下面我们就看看具体的题目: (广东2015)某乡镇举行运动会,共有长跑、跳远和短跑三个项目。参加长跑的有49人,参加跳远的有36人,参加短跑的有28人,只参加其中两个项目的有13人,参加全部项目的有9人。那么参加该次运动会的总人数为( )。 A.75 B.82 C.88 D.95 解:由于题目中出现“只参加其中两个项目的有13人”,故使用变异型公式,得到下面列式:49+36+28-1×13-2×9=x,通过尾数法(若题目中选项的尾数都不一样的话,就可以用尾数法快速得到答案),判断出答案为82,选B。 但是,现在变异型公式也出现一些变形的形式,例如国考2015中的这道三集合容斥原理,就给我带来了一写在解题是需要着重注意的地方,下面我们仔细分析一下题目 (国家2015)某企业调查用户从网络获取信息的习惯,问卷回收率为90%。调查对象中有179人使用搜索引擎获取信息,146人从官方网站获取信息,246人从社交网络获取信息,同时使用这三种方式的有115人,使用其中两种的有24人,另有52人这三种方式都不使用,问这次调查共发出了多少份问卷?( ) A.310 B.360

三集合非标准型容斥原理

国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|政法干警| 招警| 军转干| 党政公选| 法检系统| 路转税| 社会工作师 三集合非标准型容斥原理 ———————————————海南华图数资老师,胡军亮近些年考试经常出现容斥原理的题型,容斥原理分为两集合型跟三集合型,三集合容斥原理又包括标准型和非标准型,三集合容斥原理与三集合标准型容斥原理都是相对好掌握的。这里给大家讲解三集合非标准型容斥原理题的解题方法。首先看下面三个公式 (1) 都不满足 总数- ) (= + + + - + +C B A C A C B B A C B A (2)三条件都不满足 总数 只满足两条件- * 2 -= - + +C B A C B A (3)满足三条件 只满足两条件 只满足一个条件* 3 * 2+ + = + +C B A 公式(1)是标准型公式,公式(2)、(3)都是非标准型公式。 【例1】某乡镇对集贸市场36种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。其中,两项同时不合格的5种,三项同时不合格的2种。问三项全部合格的食品有多少种?() A. 14 B. 21 C. 23 D. 32 解析:该题目为典型的容斥原理题,但是题目提到“两项同时不合格的有5种”,这句话的意思就是只满足两个条件的数量是5,该题属于三集合容斥原理非标准型题,带入公式(2)得到: 7+9+6-5-2*2=36-X,尾数法知道答案选C。 【例2】某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。则只有一项不合格的建筑防水卷材产品有多少种? A. 17 B. 12 C. 15 D. 20 解析:该题涉及到只满足一项不合格、同时两项不合格、三项都不合格,属于三个集合非标准型容斥原理的题,带入公式(3)得到: 8+10+9=X+2*7+1,尾数法知道答案选B。 从上面的两道例题的讲解可以看到三集合非标准型容斥原理虽然不是很好理解,但是记住题型的特征,用正确的公式直接套用来解题还是很容易掌握的。

公务员笔试之行测:巧解三集合容斥原理问题

2014年公务员行测:巧解三集合容斥原理问题 华图教育 三集合容斥原理此类题型主要出现在近年来各省的省考中,主要是有三个独立的个体,此类题型主要的做题方法是公式法和作图法。近年来直接套用三集合公式的题目有所减少,开始出现条件变形的题目,不管容斥原理的题目怎么变化,但我们只要掌握住核心思想——剔除重复,那么做任何一个容斥原理题目都能够得心应手。 根据上图,可得三集合容斥原理核心公式: =A +B +C -A B -B C -A C +A B C =-x A B C 总数 一、直接利用公式型 【例1】(2012年4月联考)某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为: A. 7人 B. 8人 C. 5人 D. 6人 【答案】A 【解析】设同时报乙、丙职位的人数为x ,则根据三集合容斥原理公式有:22+16+25-8-6-x+0=42-0,解得x=7。因此,本题答案为A 选项。 二、三集合容斥原理作图型 若在题目中任何一个位置看到“只满足”或“仅满足”,则公式法不能够再用,采用作图法来解题,注意,在作图的时候不管三七二十一,先画三个两两相交的圈,再往里填数字即可,填的时候注意从中间往外一层一层填。 【例2】(2007年江苏)一次运动会上,17名游泳运动员中,有8名参加了仰泳,有10 C x B A

名参加蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这17名游泳运动员中,只参加1个项目的人有多少?() A.5名 B.6名 C.7名 D.4名 【答案】B 【解析】本题问题中出现了“只”,故只能采用作图法。于是有 仰 1 2 2 2 3 4 3 蛙自由 只参加1个项目的人数为1+2+3=6。因此,本题答案为B选项。 【例3】(2012年河北)某乡镇对集贸市场36种食品进行检查,发现超过保持期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。其中,两项同时不合格的5种,三项同时不合格的2种。问三项全部合格的食品有多少种?() A.14 B.21 C.23 D.32 【答案】C 【解析】 a d b c 其中d为三项同时不合格的部分,a+b+c为两项同时不合格的部分。设三项全部合格的食品有x种。根据题意有:36-x=7+9+6-5-2×2,解得x=23。因此,本题答案为C选项。 【注】该题注意,由于7+6+9这部分把三项同时不合格的部分共加了3次,减去5的

国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲

2015国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲 容斥原理和抽屉原理是国家公务员测试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末测试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C -A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到:公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

三集合非标准规范型容斥原理

三集合非规范型容斥原理 ———————————————海南华图数资老师,胡军亮近些年考试经常出现容斥原理的题型,容斥原理分为两集合型跟三集合型,三集合容斥原理又包括规范型和非规范型,三集合容斥原理与三集合规范型容斥原理都是相对好掌握的。这里给大家讲解三集合非规范型容斥原理题的解题方法。首先看下面三个公式 (1) (2) (3) 公式(1)是规范型公式,公式(2)、(3)都是非规范型公式。 【例1】某乡镇对集贸市场36种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。其中,两项同时不合格的5种,三项同时不合格的2种。问三项全部合格的食品有多少种?() A. 14 B. 21 C. 23 D. 32 解读:该题目为典型的容斥原理题,但是题目提到“两项同时不合格的有5种”,这句话的意思就是只满足两个条件的数量是5,该题属于三集合容斥原理非规范型题,带入公式(2)得到: 7+9+6-5-2*2=36-X,尾数法知道答案选C。 【例2】某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。则只有一项不合格的建筑防水卷材产品有多少种? A. 17 B. 12 C. 15 D. 20 解读:该题涉及到只满足一项不合格、同时两项不合格、三项都不合格,属于三个集合非规范型容斥原理的题,带入公式(3)得到: 8+10+9=X+2*7+1,尾数法知道答案选B。 从上面的两道例题的讲解可以看到三集合非规范型容斥原理虽然不是很好理解,但是记住题型的特征,用正确的公式直接套用来解题还是很容易掌握的。 1 / 1

容斥原理习题加答案

1.现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有( ) A、27人 B、25人 C、19人 D、10人 【答案】B 【解析】直接代入公式为:50=31+40+4-A∩B 得A∩B=25,所以答案为B。 2.某服装厂生产出来的一批衬衫大号和小号各占一半。其中25%是白色的,75%是蓝色的。如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件() A、15 B、25 C、35 D、40 【答案】C 【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A∩B,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10-A∩B,得:A∩B=35。 3.某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,

不参加其中任何一种考试的都15人。问接受调查的学生共有多少人()A.120 B.144 C.177 D.192 【答案】A 【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推其他部分数字: 根据每个区域含义应用公式得到: 总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数 =63+89+47-{(x+24)+(z+24)+(y+24)}+24+15 =199-{(x+z+y)+24+24+24}+24+15 根据上述含义分析得到:x+z+y只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+z+y的值为46人;得本题答案为120. 4.对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人() 人人人人 【答案】A 【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推其他部分数字: 根据各区域含义及应用公式得到: 总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数 100=58+38+52-{18+16+(12+ x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x=14。52=x+12+4+Y=14+12+4+Y,得到Y=22人。

容斥原理之最值问题

1. 了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用. 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分, C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A 类、 B 类与 C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下: 教学目标 知识要点 7-7-5.容斥原理之最值问题 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; A B A B +-1 A B

集合与容斥原理

第一讲集合与容斥原理 数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。它的概念与方法已经有效地渗透到所有的现代数学。可以认为,数学的所有内容都是在“集合”中讨论、生长的。 集合是一种基本数学语言、一种基本数学工具。它不仅是高中数学的第一课,而且是整个数学的基础。对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。集合的划分反映了集合与子集之间的关系,这既是一类数学问题,也是数学中的解题策略——分类思想的基础,在近几年来的数学竞赛中经常出现,日益受到重视,本讲主要介绍有关的概念、结论以及处理集合、子集与划分问题的方法。 1.集合的概念 集合是一个不定义的概念,集合中的元素有三个特征: (1)确定性设A是一个给定的集合,a是某一具体对象,则a或者是A的元素,或者不是A的元素,两者必居其一,即a∈A与a?A仅有一种情况成立。 (2)互异性一个给定的集合中的元素是指互不相同的对象,即同一个集合中不应出现同一个元素. (3)无序性 2.集合的表示方法 主要有列举法、描述法、区间法、语言叙述法。常用数集如:R , ,应熟记。 N, Z Q 3.实数的子集与数轴上的点集之间的互相转换,有序实数对的集合与平面上的点集可以互相转换。对于方程、不等式的解集,要注意它们的几何意义。 4.子集、真子集及相等集 (1)A?? B A?B或A=B; (2)A?B?A?B且A≠B; (3)A=B?A?B且A?B。 5.一个n阶集合(即由个元素组成的集合)有n2个不同的子集,其中有n2-1个非空子集,也有n2-1个真子集。 6.集合的交、并、补运算 x∈} A B={A |且B x∈ x x∈} A B={A |或B x x∈ x?} A∈ {且A =| I x x 要掌握有关集合的几个运算律: (1)交换律A B=B A,A B=B A; (2)结合律A (B C)=(A B) C, A ( B C)=(A B) C;

容斥原理之最值问题

7-7-5.容斥原理之最值问题 教学目标 1.了解容斥原理二量重叠和三量重叠的内容; 2.掌握容斥原理的在组合计数等各个方面的应用. 知识要点 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A U B=A+B-A I B(其中符号“U”读作“并”,相当于中文“和”或者“或”的意思;符号“I”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A I B,即阴影面积.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:A I B,即阴影面积. 1.先包含——A+B 重叠部分A I B计算了2次,多加了1次; 包含与排除原理告诉我们,要计算两个集合A、B的并集A U B的元素的个数,可分以下两步进行: 第一步:分别计算集合A、B的元素个数,然后加起来,即先求A+B(意思是把A、B的一切元素都“包含” 进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C=A I B(意思是“排除”了重复计算的元素个数).二、三量重叠问题 A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数-既是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A U B U C=A+B+C-A I B-B I C-A I C+A I B I C.图示如下:

抽屉原理

网易新闻 微博 邮箱 闪电邮 相册 有道 手机邮 印像派 梦幻人生 更多博客博客首页 博客话题 热点专题 博客油菜地 找朋友 博客圈子 博客风格 手机博客 短信写博 邮件写博 博客复制摄影摄影展区 每日专题搜博文搜博客随便看看关注此博客选风格不再艰难搬家送Lomo卡片注册登录显示下一条| 关闭86012747lktd的博客andrsw@https://www.sodocs.net/doc/5e14028058.html, QQ:86012747 导航 首页日志相册音乐收藏博友关于我日志86012747 加博友关注他 最新日志 倒推法解题数的整除奇数、偶数质数、合数小学数学思维训练5-5.组合图小学数学思维训练5-6.公约数博主推荐 相关日志 随机阅读 7大细节破译男人是否来电?破解《黎明之前》口碑形成之谜收租婆的忧伤谁人知?禁看湖南卫视引发的大哭与大笑独家:超闪亮水晶配饰BlingBling惹人爱Selina剃头俞灏明植皮偶像明星也难做首页推荐 毛利:烂人完美标本游资为什么炒作农产品?美国人忙着捡便宜兽兽亮相车展遭围攻洗澡时发现婆婆是双性恋为何有些物种要变性更多>> 抽屉原理抽屉原理习题(初一) 抽屉原理习题默认分类2008-04-17 16:03:44 阅读217 评论0 字号:大中小订阅

简单 1.在一米长的线段上任意点六个点。试证明:这六个点中至少有两个点的距离不大于20厘米。 2.在今年入学的一年级新生中有370多人是在同一年出生的。请你证明:他们中至少有两个人是在同一天出生的。 3.夏令营有400个小朋友参加,问:在这些小朋友中, (1)至少有多少人在同一天过生日? (2)至少有多少人单独过生日? (3)至少有多少人不单独过生日? 4.学校举行开学典礼,要沿操场的400米跑道插40面彩旗。试证明:不管怎样插,至少有两面彩旗之间的距离不大于10米。 5.在100米的路段上植树,问:至少要植多少棵树,才能保证至少有两棵之间的距离小于10米? 6.在一付扑克牌中,最少要拿多少张,才能保证四种花色都有? 7.在一个口袋中有10个黑球、6个白球、4个红球。问:至少从中取出多少个球,才能保证其中有白球? 8.口袋中有三种颜色的筷子各10根,问: (1)至少取多少根才能保证三种颜色都取到? (2)至少取多少根才能保证有两双颜色不同的筷子? (3)至少取多少根才能保证有两双颜色相同的筷子? 9.据科学家测算,人类的头发每人不超过20万根。试证明:在一个人口超过20万的城市中,至少有两人的头发根数相同。 10.第四次人口普查表明,我国50岁以下的人口已经超过8亿。试证明:在我国至少有两人的出生时间相差不超过2秒钟。 11.证明:在任意的37人中,至少有四人的属相相同。

公务员考试行测备考:巧解三集合容斥原理问题

公务员考试行测备考:巧解三集合容斥原理问题 三集合容斥原理此类题型主要出现在近年来各省的省考中,主要是有三个独立的个体,此类题型主要的做题方法是公式法和作图法。近年来直接套用三集合公式的题目有所减少,开始出现条件变形的题目,不管容斥原理的题目怎么变化,但我们只要掌握住核心思想--剔除重复,那么做任何一个容斥原理题目都能够得心应手。 根据上图,可得三集合容斥原理核心公式: 一、直接利用公式型 【例1】(2012年4月联考)某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为: A. 7人 B. 8人 C. 5人 D. 6人 【答案】A 【解析】设同时报乙、丙职位的人数为x,则根据三集合容斥原理公式有: 22+16+25-8-6-x+0=42-0,解得x=7。因此,本题答案为A选项。 二、三集合容斥原理作图型 国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|

若在题目中任何一个位置看到“只满足”或“仅满足”,则公式法不能够再用,采用作图法来解题,注意,在作图的时候不管三七二十一,先画三个两两相交的圈,再往里填数字即可,填的时候注意从中间往外一层一层填。 【例2】(2007年江苏)一次运动会上,17名游泳运动员中,有8名参加了仰泳,有10名参加蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这17名游泳运动员中,只参加1个项目的人有多少?() A.5名 B.6名 C.7名 D.4名 【答案】B 【解析】本题问题中出现了“只”,故只能采用作图法。于是有 仰 只参加1个项目的人数为1+2+3=6。因此,本题答案为B选项。 国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|

抽屉原理和容斥原理

I .抽屉原则 10个苹果放入9个抽屉中,无论怎么放,一定有一个抽屉里放了2个或更多个苹果.这 个简单的事实就是抽屉原则.由德国数学家狄利克雷首先提出来的.因此,又称为狄利克雷原则. 将苹果换成信、鸽子或鞋,把抽屉换成信筒、鸽笼或鞋盒,这个原则又叫做信筒原则、 鸽笼原则或鞋盒原则.抽屉原则是离散数学中的一个重要原则,把它推广到一般情形就得到下面几种形式: 原则一:把m 个元素分成n 类(m >n ),不论怎么分,至少有一类中有两个元素. 原则二:把m 个元素分成n 类(m >n ) (1)当n |m 时,至少有一类中含有至少 n m 个元素; (2)当n |m 时,至少有一类中含有至少[n m ]+1个元素. 其中n m 表示n 是m 的约数,n m 表示n 不是m 的约数,[ n m ]表示不超过n m 的最大整数. 原则三:把1221+-+++n m m m 个元素分成n 类,则存在一个k ,使得第k 类至 少有k m 个元素. 原则四:把无穷多个元素分成有限类,则至少有一类包含无穷多个元素. 以上这些命题用反证法极易得到证明,这里从略. 一般来说,适合应用抽屉原则解决的数学问题具有如下特征:新给的元素具有任意性. 如10个苹果放入9个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果. 对一个具体的可以应用抽屉原则解决的数学问题还应搞清三个问题: (1)什么是“苹果”? (2)什么是“抽屉”? (3)苹果、抽屉各多少? 用抽屉原则解题的本质是把所要讨论的问题利用抽屉原则缩小范围,使之在一个特定

集合整体重复型公式巧解容斥原理问题

行测数学运算技巧:三集合整体重复型公式巧解容斥原理问题 一、介绍三集合整体重复型核心公式 在三集合题型中,假设满足三个条件的元素数量分别是A、B和C,而至少满足三个条件之一的元素的总量为W。其中,满足一个条件的元素数量为x,满足两个条件的元素数量为y,满足三个条件的元素数量为z,可以得到以下两个等式: W=x+y+z A+B+C=x×1+y×2+z×3 二、典型的三集合整体重复型的题目讲解 例1、某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动。现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?(2004年浙江公务员考试行测第20题) A. 15人 B.16人 C.17人 D.18人 【答案】A 解析:此题有两种解法可以解出: 解一:分别设只参加英语和语文、英语和数学、语文和数学小组的人为x、y、z,则只参加英语小组的人为17-5-x-y,只参加语文小组的人有30-5-x-z,只参加数学小组的人有13-5-y-z,则只参加三个小组中的一个小组的人和只参加其中两个小组的人和三个小组都参加的人的总和为总人数,即17-5-x-y+30-5-x-z+13-5-y-z+x+y+z+5=35。则求x+y+z=15,所以只参加一个小组的人数的和为15。 解二:套用三集合整体重复型公式: W=x+y+z A+B+C=x×1+y×2+z×3 35=x+y+5 17+30+13=x×1+y×2+5×3 解得:x= 15,y=15

例2、某调查公司就甲、乙、丙三部电影的收看情况向125人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,其中有24人三部电影全看过,20人一部也没有看过,则只看过其中两部电影的人数是( )(2009年江苏公务员考试行测A类试卷第19题) A. 69 B.65 C.57 D.46 【答案】D 解析:本题也是一道典型的三集合整体重复型题目,直接套用三集合整体重复型公式: W=x+y+z A+B+C=x×1+y×2+z×3 这里需要注意的是W=105,而非125, 105=x+y+24 89+47+63=x×1+y×2+24×3 两个方程,两个未知数,解出y=46,这里y表示只看过两部电影的人数,即所求。 例3、某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试?准备参加的有24人,准备选择两种考试参加的有46人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人?(2010年国家公务员考试行测第47题) A. 120 B.144 C.177 D.192 【答案】A 解析:本题的特征也很明显,直接套用公式,只是要注意的是,题目中最后问的是接受调查的总人数,我们求出W之后,还需要再加上不参加其中任何一种考试的那15个人, W=x+46+24 63+89+47=x×1+46×2+24×3 通过解方程,可以求出W=105,这只是至少准备参加一种考试的人数,所以接受调查的总人数为105+15=120。 例4、某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格,则三项全部合格的建筑防水卷材产品有多少种?(2011 年国家公务员考试行测试卷第74题) A. 37 B.36 C.35 D.34

容斥原理与鸽巢原理的应用

摘要 容斥原理和鸽巢原理作为组合数学中的基本内容,就原理本身而言简单易懂.然而,由于此二者分别在组合计数问题和存在性问题的应用中所展现出来的魅力,国内外学者在很多书籍、学术性论文中关于容斥原理和鸽巢原理的应用进行了探讨,并且关于此方面的研究已取得一系列的成果. 本文主要是以综述的方式从起源、理论和应用三方面对容斥原理和鸽巢原理进行了介绍和分类探讨. 首先介绍了容斥原理分别与加法理论、减法理论的区别与优势,并与实际问题相结合突出其优势所在.其次本文介绍了鸽巢原理的两种具体形式及其推论,并对鸽巢原理在数学理论研究、数学竞赛题目、解决实际生活中的问题等方面的应用进行介绍后,对鸽巢原理的应用中所常见的几种构造“鸽巢”的方法进行了分类谈论. 最后,针对鸽巢原理,我们给出针对新疆某区域关于旅游产品的实际应用实例,并提出了个人见解. 关键词:容斥原理,鸽巢原理,构造方法,鸽巢,鸽子

ABSTRACT As the basic content of combinatorial mathematics, the principle of tolerance and the theory of pigeon nest the principle itself is simple and understandable. However, due to the charm of the two applications in combinatorial counting and existential problems, scholars at home and abroad have probed into the application of the principle of tolerance and the pigeon nest in many books and academic papers, And the research on this aspect has made a series of achievements. In this paper, the author introduces and classifies the theory of tolerance and doctrine and the principle of pigeon nest in the way of summarization from the origin, theory and application. Firstly, the differences and advantages between the theory of tolerance and exclusion and the theory of addition and subtraction were introduced. and the actual problem with the combination of highlighting its advantages. Secondly, this paper introduces two concrete forms of pigeon nest principle and its inference, and introduces the application of pigeon nest principle in mathematics theory research, Maths contest problem, solving real life problems and so on. , several common methods of constructing pigeon nest in the application of pigeon nest principle are classified and discussed. Finally, according to the pigeon Nest principle, we give a practical example of the tourism products in a region of Xinjiang, and put forward personal opinions. KEY WORDS: inclusion-exclusion principle, pigeonhole principle, construction method, pigeonhole, pigeon

相关主题