搜档网
当前位置:搜档网 › UDF(用户自定义特征)的创建和使用

UDF(用户自定义特征)的创建和使用

UDF(用户自定义特征)的创建和使用
UDF(用户自定义特征)的创建和使用

UDF(用户自定义特征)的创建和使用

bysgjunfeng

1、什么是UDF?

2、UDF使用过程

2.1创建参照模型

2.2创建UDF

2.3放置UDF

3、替换UDF

4、UDF搭配族表的使用

1、什么是UDF?

UDF即用户自定义特征。也就是说可以将数个特征组合起来形成一个新的自己定义的特征,并且会保存在UDF数据库中,随时调入。(类似于AutoCAD中的动态

块)

用户自定义特征用来复制相同或相近外形的特征组,此功能类似于“特征复制”,但又有所不同,功能上比较全面、灵活,但相应的步骤比较繁琐。因此,如果会用特征复制,特别是特征复制里的新参考,将会对此命令有所帮助。

UDF和特征复制的最大区别有以下两点:

●特征复制仅适用于当前的模型,而UDF可以适用与不同的模型。

●特征复制的局部组无法用另一个局部组替换,而UDF可被另一个UDF替换

UDF的使用流程大体可分为三步:规划并创建参照模型——建立UDF——放置UDF,下面我们用一个简单的例子来说明如何使用UDF。

2、UDF使用过程

在使用UDF之前,首先要创建UDF,缺省时,Pro/ENGINEER将创建的UDF保存在当前工作目录中。为此,可创建UDF库目录,要访问Pro/ENGINEER 的UDF库目

录,可指定带置文件选项"pro_group_dir"的目录名。这样,每次插入UDF时将

自动打开该目录。

建立好参照模型后,单击单击"工具"(Tools)>"UDF 库"(UDF Library)。出现下

图所示UDF菜单

该对话框各选项含义如下:

创建 (Create):建立新的UDF并将其添加到UDF库。

修改 (Modify):修改现有的 UDF。如果有参照零件,系统将在单独的零件窗口

显示 UDF。

列表 (List):列出当前目录中的所有UDF文件,用于查看UDF信息。

数据库管理 (Dbms):管理当前UDF数据库。即对当前UDF数据库中的UDF进行保存、另存为、备份、重命名、拭除、清除、删除等操作。

集成 (Integrate):解决源 UDF 和目标 UDF 之间的差异。

以下以实例说明如何创建及使用UDF。

假定背景:在很多时候建立零件模型时,零件的粗坯都是一个长方体,并且要求该长方体关于基准平面左右前后对称(如下图所示),这就要求在草绘里绘制矩形时要多绘制两条中心线或多标两个尺寸。下面我们将演示如何将这样的长方体

作为UDF来使用。

本实例重在介绍UDF的使用过程,希望能起到抛砖引玉的作用,使大家在实际应

用的过程当中能创建出更多实用、适合自己使用的UDF。

2.1创建参考模型(1)

(1)新建零件:UDF

(2)单击“拉伸”工具,选择“top”平面为草绘平面,视图方向和视图参照选择系统默认,建立如下所示长方体(20×10×2)。注意:为了让长方体关于“FRONT”平面和“RIGHT”

平面对称,应在草绘中绘制水平和数值两条中心线。

(3)在长方体的四个竖直边倒圆角R1。最终结果如下图

2.2建立UDF

(1)单击主菜单“工具”——“UDF库”,弹出下图所示UDF菜单管理器(2)单击上图所示菜单下的“创建”按钮,在消息区将会出现下图所示对话框,提示输入要创建的UDF的名称。输入UDF名称“box“,确认。

(3)在弹出的UDF选项栏中选择“单一的”,完成。

◆单一的:系统会复制全部信息至新建立的UDF中,必须选择是否包扩参照零件。选择该选项后,新建立的UDF与参照模型无父子关系。

◆从属的:运行时,自原始零件中复制大部分信息。新建立的UDF与参照模型保持父子关系,会随参照模型的改变而改变。

(4)在消息区中对话框中“是否包括零件参照”中选择“是”,确定。

(5)接下来会弹出创建UDF的对话框,如下图所示。

该对话框的各选项含义如下:

◆特征:选取要包括在 UDF 中的特征。

◆参照提示:放置UDF时,为需要重新指定的参照定义提示信息。个人认为本部分内容为重点。proe是参数化绘图软件,对于它的每一个特征都要求完全定位,所以在建立这些特征时都会选择许多参照进行定位:如草绘平面、参照平面、尺

寸标注的参照等等。在放置UDF时,因放置位置不同,就需要对这些参照进行重新定义,当参照很多时,用户往往记不清这些参照的用途,该功能的作用即对这些参照进行适当的说明,该说明在放置UDF时,将会显示在对话框内。

◆可变元素:指定在放置UDF时,需要重新定义的特征元素。

◆可变尺寸:(可选)在零件中放置 UDF 时,选取要修改的尺寸,并为这些尺

寸输入提示。

◆可变参数:(可选)选取在零件中放置 UDF 时要修改的参数。

◆尺寸提示:(如果定义了"可变尺寸"会出现此提示)选取要修改其提示的尺寸

并为其输入新提示。

◆尺寸值:(可选)选取属于 UDF 的尺寸,并输入其新值。

◆族表:(可选) 为 UDF 创建族表实例。

◆单位:(可选)改变当前单位。

◆外部符号:(可选)在 UDF 中包括外部尺寸和参数。

同时出现"UDF 特征"菜单及"选取特征"菜单。缺省情况下选取的是"添加"及"选取"命令。在模型树中选择“拉伸1”和“倒圆角1”作为参照特征。如下图所示。选择结束后单击菜

单“完成”——“完成返回”菜单。

(6)完成后消息栏会提示输入参照的提示信息(图8),同时绘图区域将相应的参照加亮显示(图9)。在消息区输入“长方体底面”,确定。如下图所示。

(7)接着在消息栏中输入“长度方向对称中心”(图10),模型视图对于亮显基

准平面“RIGHT”平面(图11)

(8)接着在消息栏中输入“宽度方向对称中心”(图12),模型视图对于亮显基

准平面“RRONT”平面(图13)

(9)确定后弹出下图(图14)菜单,如果提示输入无误,可按“完成/返回”继续

下一步操作。

如在上述步骤中输入错误,可单击“下一个”或“先前”切换到提示输入错误的基准(该基准在屏幕亮显),然后单击“输入提示”重新输入提示。

至此,如该UDF特征无可变尺寸,可单击确定按钮完成UDF的创建,在此,我们继续为该UDF添加可变四个尺寸(长度尺寸、宽度尺寸、高度尺寸、圆角半径)

(10)双击UDF对话框中的“可变尺寸”,系统自动弹出下图(图15)右边的菜单,并自动选中“添加”和“选取尺寸”选项。同时,绘图区域显示刚才选择加入UDF的特征的所有尺寸(图16)。因本实例中只有上述四个尺寸,所以选择“选取全部”④,然后单击“完成/返回”——“完成/返回”。

如尺寸添加有误可单击可变尺寸下的“添加”、“移除”、“显示”③来进行修

改。

(17)完成后消息区提示输入亮显尺寸的提示(图17),同时绘图区域亮显对应的

尺寸(图18)。输入“长方体高度“,确定。

(12)重复步骤11,为其他三个尺寸分别添加提示“长方体宽度”、“长方体长

度”、“圆角半径”。

如在输入提示的过程中有错误,在输入完成后双击“尺寸提示”①,将会弹出尺寸提示菜单,默认选中拾取②,然后在绘图区单击要修改的尺寸③进行修改。如

下图(图19)所示。

(13)单击udf对话框中的“确定”(上图④)。至此,该UDF特征已经添加到UDF

库中。可随时在其他零件中插入。

2.3放置UDF

放置 UDF 时,会将其包含的特征复制到当前模型中。复制的特征变为独立于或从属于 UDF 文件的组。对UDF文件进行更改时作为独立项放置的组不进行更新,所有必需的 UDF 值将随组一起复制到零件中。只要改变 UDF 的非可变尺寸并执行更新,作为从属项放置的组即会随之更改。

以下演示如何将上述创建的UDF插入用户模型:

(1)新建零件

(2)单击主菜单“插入”——“用户自定义特征”,在打开的对话框中单击工作目录,找到

刚刚创建好的UDF:“box.gph”,打开。(图20)

(3)弹出“插入用户自定义特征”对话框,如下图(图21)。在该对话框中勾选

“查看源模型”复选框,确定。

该对话框各项含义如下:

使特征从属于 UDF 的尺寸:该复选框选中时,插入到模型中的组和源UDF文件产生父子关系,源UDF非可变尺寸发生变化,模型中的组发生相应变化,反之,

为独立的。

高级参照配置:通过映射每个指定的参照来放置UDF组。清除此复选框后,可使用特征重定义界面手动定义特征放置,组中的每个特征都会重定义。

查看源模型:在单独的窗口中检索和显示 UDF 源(参照)。

(4)系统弹出下图所示两个对话框(图22),左边是源UDF的预览对话框,右边是用户自定义特征放置对话框。在UDF放置对话框中单击“1.TOP:F2(基准平面)”①,然后在模型显示区中(注意不是UDF预览窗口中的TOP平面)选择

TOP平面来映射UDF中该参照。

注意:在上图中,光标在①②③处单击,在右边参照提示区将会分别显示“长方体底面”、“长度方向对称中心”和“宽度方向对称中心”,此即在上2.2步骤

中输入的参照提示。

(5)重复步骤(4),用相应的RIGHT平面和FRONT平面替换UDF原始特征参照。

(6)单击“用户自定义特征对话框”中的第二个选项卡“变量”,如下图(图23)。在该对

话框中将长方体长宽高都改为“10”,圆角半径改为“2”,单击确定。

(7)弹出预览对话框(图24),同时模型显示区出现该特征的预览效果(图25),

确保拉伸方向如下图,确定。

(8)单击确定按钮,最终插入的UDF特征如下图

3、替换UDF

对于已经放置好的UDF,如没有分解,没有更该其中的尺寸,则可以替换为其他

的UDF。

以下这个实例将说明如何替换UDF。

(1)打开配套文件UDF.prt。

(2)放置第一个UDF特征,配套文件:udf01.gph

单击主菜单插入——用户自定义特征——在弹出的对话框中选择配套UDF文件: udf01.gph。勾选高级参照配置复选框。弹出如下图所示UDF放置对话框。该UDF有两个放置参照,将放置点参照选择为基准点PNT0,放置平面参照选择拉伸实体上表面。

(3)单击确定,完成,效果如下图

(4)放置第二个UDF特征,放置点参照选择

(5)同上,放置第二个UDF特征。放置点参照选择PNT1,其余同上。

(6)放置第三个UDF特征,放置点参照选择PNT2,放置平面如上,单击变量选项卡,将尺寸

改为下图所示

(7)插入第四个UDF特征,放置点参照选择PNT3,其余同上。最终结果如下图。

(8)在模型树上右键单击第一次放置的UDF特征,选择替换,如下图所示

(9)在弹出的替换对话框中选择“手工检索UDF”,确定,找到配套文件udf02.gph,

打开。

(10)尺寸变量处不改动,确定,最终效果如下图。

(1)新建零件,以“TOP”平面为草绘平面,拉伸长方体80*80*20,如下图所示

(2)建立基准轴A_1,距离FRONT平面和Right平面均为15,如下图所示

(3)一长方体上表面和基准轴A_1为参照,打孔,深度选项穿透,直径10,如下图。

(4)以长方体上表面为草绘平面,基准轴A_1为尺寸标注参照,拉伸去除材料,做如下六边

形盲孔,深度为5,六边形外接圆边长为R12。

(5)以长方体上表面为草绘平面,基准轴A_1为尺寸标注参照,打盲孔,深度为10,直径为15,

如下图所示。

以下开始建立UDF特征。

(6)单击主菜单“工具”——“UDF库”,弹出创建UDF菜单,单击创建,在消息区输入UDF

名称:udf_f,确定。

Fluent_UDF_第七章_UDF的编译与链接

第七章 UDF的编译与链接 编写好UDF件(详见第三章)后,接下来则准备编译(或链接)它。在7.2或7.3节中指导将用户编写好的UDF如何解释、编译成为共享目标库的UDF。 _ 第 7.1 节: 介绍 _ 第 7.2 节: 解释 UDF _ 第 7.3 节: 编译 UDF 7.1 介绍 解释的UDF和编译的UDF其源码产生途径及编译过程产生的结果代码是不同的。编译后的UDF由C语言系统的编译器编译成本地目标码。这一过程须在FLUENT运行前完成。在FLUENT运行时会执行存放于共享库里的目标码,这一过程称为“动态装载”。 另一方面,解释的UDF被编译成与体系结构无关的中间代码或伪码。这一代码调用时是在内部模拟器或解释器上运行。与体系结构无关的代码牺牲了程序性能,但其UDF可易于共享在不同的结构体系之间,即操作系统和FLUENT版本中。如果执行速度是所关心的,UDF文件可以不用修改直接在编译模式里运行。 为了区别这种不同,在FLUENT中解释UDF和编译UDF的控制面板其形式是不同的。解释UDF的控制面板里有个“Compile按钮”,当点击“Compile按钮”时会实时编译源码。编译UDF的控制面板里有个“Open按钮”,当点击“Open按钮” 时会“打开”或连接目标代码库运行FLUENT(此时在运行FLUENT之前需要编译好目标码)。 当FLUENT程序运行中链接一个已编译好的UDF库时,和该共享库相关的东西都被存放到case文件中。因此,只要读取case文件,这个库会自动地链接到FLUENT 处理过程。同样地,一个已经经过解释的UDF文件在运行时刻被编译,用户自定义的C函数的名称与内容将会被存放到用户的case文件中。只要读取这个case文件,这些函数会被自动编译。 注:已编译的UDF所用到的目标代码库必须适用于当前所使用的计算机体系结构、操作系统以及FLUENT软件的可执行版本。一旦用户的FLUENT升级、操作系统改变了或者运行在不同的类型的计算机,必须重新编译这些库。

对一个简单解释型udf程序的详细解释

对一个简单解释型udf程序的详细解释 #include "udf.h" /*udf.h是一个头文件,如果不写的话就不能使用fluent udf中的宏,函数等*/ DEFINE_PROFILE(pressure_profile, t, i) /*是一个宏,本例中用来说明进口压力与垂直坐标变量(还可以是其他的变量)的关系。pressure_profile 是函数名,可随意指定。t的数据类型是Thread *t ,t 表示指向结构体thread(这里的thread表示边界上所有的网格面的集合)的指针。i的数据类型是Int,表示边界的位置?或者说是什么每个循环内对位置变量(这里应该是质心的纵坐标)设置的数值标签*/ { real x[ND_ND]; /* 定义了质心的三维坐标,数据类型为real*/ real y; /*定义了一个变量y, 数据类型为real */ face_t f; /*定义了一个变量f, 数据类型为face_t,也就是网格面的意思,即f代表一个网格单元的网格面*/ begin_f_loop(f, t) /*表示遍寻网格面,它的意思是说在计算的时候,要扫描所定义边界的所有网格面,对每个网格面都要赋值,值存储在F_PROFILE(f, t, i)中*/ {

F_CENTROID(x,f,t); /*一个函数,它的意思是读取每个网格面质心的二维坐标,并赋值给x。x 为名称,接收三维坐标值。f为网格面(因为这里只是取的面的二维坐标,所以为f,如果是网格单元的话,这里就为c)。t为指向结构体thread(这里的thread 表示边界上所有的网格面的集合)的指针*/ y = x[1]; /*把质心的三维坐标的纵坐标的数值赋给y*/ F_PROFILE(f, t, i) = 1.1e5 - y*y/(.0745*.0745)*0.1e5; /*赋给每个网格面的数值与网格质心纵坐标的关系。其实就是赋给质心的速度值(这里只有大小)与质心纵坐标的函数关系,因为fluent在计算的时候是把数据存储到网格质心上的,所以网格质心的速度值就代表网格的速度值。这里有了网格的质心纵坐标,然后有了质心速度值与纵坐标的函数关系,那么每个进口网格面的速度值也就知道了。f依然代表网格面。t表示指向结构体thread(这里的thread表示边界上所有的网格面的集合)的指针。i每个循环内对位置变量(这里应该是质心的纵坐标)设置的数值标签*/ } end_f_loop(f, t)/*结束循环*/ } 整体来看:包括两个宏:DEFINE_PROFILE(pressure_profile, t, i)和beginend_f_loop(f, t)。两个函数:F_CENTROID(x,f,t)和F_PROFILE(f, t, i)。其他都是变量。

蒸发过程UDF程序fluent

F l u e n t蒸发相变模拟U D F 经过几天的不懈折腾,终于找到一个较为完成的用于fluent蒸发相变模拟的udf的一个程序。而且注释相对完整。 #include "udf.h" //包括常规宏 #include "sg_mphase.h" // 包括体积分数宏CVOF(C,T) #define T_SAT 373 //定义蒸发温度100℃ #define LAT_HT 1.e3 //定义蒸发潜热J/Kg DEFINE_SOURCE(liq_src, cell, pri_th, dS, eqn) //液相质量源项UDF { Thread *mix_th, *sec_th; //定义计算区线指针 real m_dot_l; //定义液相质量转移 kg/(m2.s) mix_th = THREAD_SUPER_THREAD(pri_th); //指向混合区的主相即液相的指针 sec_th = THREAD_SUB_THREAD(mix_th, 1); //指向单相控制区的气相的指针,气相为第二相

if(C_T(cell, mix_th)>=T_SAT) //如果液相单元的温度高于蒸发温度,液相向气相的质量质量转移{ m_dot_l = -0.1*C_VOF(cell, pri_th)*C_R(cell, pri_th)* fabs(C_T(cell, mix_th) - T_SAT)/T_SAT; dS[eqn] = -0.1*C_R(cell, pri_th)*fabs(C_T(cell, mix_th) - T_SAT)/T_SAT; //定义源项对质量转移偏导} else { m_dot_l = 0.1*C_VOF(cell, sec_th)*C_R(cell, sec_th)* fabs(T_SAT-C_T(cell,mix_th))/T_SAT; //如果指向混合区液相的单元温度小于蒸发温度,气相向液相的质量转移,液相得 dS[eqn] = 0.;//由于是气相向液相转移,所以液相的质量源项对质量转移的偏导为零} return m_dot_l; }

UDF 编译疑难问题

UDF 编译疑难问题 作者华南理工大学何奎2016 5月 随着用户求解的问题越来越复杂,使用fluent 软件难免使用编译型的UDF,编译型需要用户安装微软visual stadio C++ 开发软件,并做正确的环境变量配置。否则则会出现如nmake 不是内部命令的错误。除了编译环境的正确设置,还有一些细节上的疑难问题一并给出解决方法。目前这些问题都是网上搜索不到的,希望有缘人能在百度文库里找到这篇文献。 关于环境变量的设置,网络上已经有大量的实例,现介绍一种简单的环境变量配置方法: 在fluent 的安装目录下找到udf.bat, 修改以下内容: set MSVC_DEFAULT=%ProgramFiles(x86)%\Microsoft Visual Studio 14.0 if exist "%MSVC_DEFAULT%\VC\vcvarsall.bat" set MSVC=%MSVC_DEFAULT% if not "%MSVC%" == "" goto msvc_env110 这个文件中还有其他类似的语句,但是都是重复查找不同的编译环境。通过查找vcvarsall.bat,fluent才知道编译器位置。如果不是就要靠运行msvc_env110,那就要手动设置环境变量了。注意你安装了VS2015以后,在program(x86)中有Microsoft Visual Studio 14.0,Microsoft Visual Studio 12.0,Microsoft Visual Studio 11.0,其中只有一个是有效的,这个要仔细确认(一般只有一个文件夹是完整的安装,估计这样做是为了向下兼容性)。 修改完了这个路径以后就OK了。 环境变量配置完全以后,还会出现一些别的问题。如编译UDF时会利用math.h, 注意编译这个文件有可能会出现很多问题。如下: C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\INCLUDE\math.h(483): error C2059: 语法错误:“常量”C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\INCLUDE\math.h(483): error C2143: 语法错误: 缺少“)”(在“/”的前面) C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\INCLUDE\math.h(483): error C2143: 语法错误: 缺少“{”(在“/”的前面) C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\INCLUDE\math.h(483): error C2059: 语法错误:“/” C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\INCLUDE\math.h(483): error C2059: 语法错误:“)” 如果光按fluent提示的查找错误,是不可能完成错误查找的,打开math.h因为你会看见483行是这样 _Check_return_ _ACRTIMP double __cdeclcbrt(_In_ double _X);(求立方根函数) 这个语句本身是没有什么问题的。如果想修改这条语句完成math.h的编译,那就走入了死胡同。那 么换个版本的math.h呢? 于是换了个瑞典公司开发的版本Copyright 2003-2010 IAR Systems AB(瑞典著名软件开发商). 结果编译出现: C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\INCLUDE\math.h(19): fatal error C1083: 无法打开包括文件: “ycheck.h”: No such file or directory 如果你查找ycheck.h,想加入这个头文件来解决这个问题的话,你会发现在中文资料库里根本就查不到 这样的头文件。这可能是该公司内部开发的一个头文件。所以这条路又行不通。那么如果将这条预处理程 序忽略掉呢?结果就会出现以下的编译错误: C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\INCLUDE\math.h(99): error C2061: 语法错误: 标识符“__ATTRIBUTES” C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\INCLUDE\math.h(99): error C2059:

对一个简单解释型udf程序的详细解释教学文稿

对一个简单解释型u d f程序的详细解释

精品资料 对一个简单解释型udf程序的详细解释 #include "udf.h" /*udf.h是一个头文件,如果不写的话就不能使用fluent udf中的宏,函数等*/ DEFINE_PROFILE(pressure_profile, t, i) /*是一个宏,本例中用来说明进口压力与垂直坐标变量(还可以是其他的变量)的关系。pressure_profile 是函数名,可随意指定。t的数据类型是Thread *t ,t表示指向结构体thread(这里的thread表示边界上所有的网格面的集合)的指针。i的数据类型是Int,表示边界的位置?或者说是什么每个循环内对位置变量(这里应该是质心的纵坐标)设置的数值标签*/ { real x[ND_ND]; /* 定义了质心的三维坐标,数据类型为real*/ real y; /*定义了一个变量y, 数据类型为real */ face_t f; /*定义了一个变量f, 数据类型为face_t,也就是网格面的意思,即f代表一个网格单元的网格面 */ begin_f_loop(f, t) /*表示遍寻网格面,它的意思是说在计算的时候,要扫描所定义边界的所有网格面,对每个网格面都要赋值,值存储在F_PROFILE(f, t, i)中*/ { F_CENTROID(x,f,t); /*一个函数,它的意思是读取每个网格面质心的二维坐标,并赋值给x。x 为名称,接收三维坐标值。f为网格面(因为这里只是取的面的二维坐标,所以为f,如果是网格单元的话,这里就为c)。t为指向结构体thread(这里的thread表示边界上所有的网格面的集合)的指针*/ 仅供学习与交流,如有侵权请联系网站删除谢谢2

Fluent无法编译UDF文件的常见解决方法

解决Fluent无法编译UDF文件的问题 方法1 对于Fluent加载UDF时出现"The UDF library you are trying to load(libudf)is not complied for parallel use on the current platform (win64)"错误,主要是没有正确设置本机VS安装路径,导致udf编译器无法成功编译c代码。解决方法: 1. 找到Fluent内的UDF.bat编译器。这里以我自己2019R2的64位学生版为例,在D:\Program Files\ANSYS Inc\ANSYS Student\v194\fluent\ntbin\win64下找到udf.bat用记事本打开 2. 将本机Visual Studio的安装路径写入。这里以我自己VS2015为例,将本机visual studio 2015的安装路径赋值给MSVC_DEFAULT,由于VS2015的版本代号是14.0,因此将"%ProgramFiles(x86)%\Microsoft Visual Studio 14.0"替换为"D:\Program Files (x86)\Microsoft Visual Studio 14.0",保存文件即可,如图1~2所示 更改前

更改后 方法2 对于某些低版本的VS,以上操作可能不足以解决问题,需要手动配置环境变量,具体方法如下: 1.找到Fluent安装路径下的setenv.exe,双击运行选择是,路径X:\Program Files\ANSYS Inc\v130\fluent\ntbin\win64\setenv.exe 2.右键“我的电脑”—属性—高级—环境变量,添加用户变量,以VS2013为例INCLUDE=D:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\include;C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Include; LIB=D:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\lib\amd64;C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Lib\x64;C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Lib\kernel32.lib Path=D:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64;D:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDE;

64位 ANSYS FLUENT 编译UDF方法

ANSYS FLUENT 12.x 13.x版下使用Visual Studio 2010编译UDF的设置方法 COMSOL出了点问题,只能重装系统搞定。神马软件都要重装啊,今天装好ANSYS后,打开FLUENT界面时,灵感闪现,想出下面的方法设置UDF编译环境。 其实ANSYS版的FLUENT用UDF是不需要到系统环境变量里面设置path,include,lib的,如果您用的是Visual Studio 2010及后续版本,只需要按一定的规则设置udf.bat文件就行了。从udf.bat文件结构看,VS版本在VS2010以前的都可以不用设置,即可使用。 实现方法,以Win7 X64位ANSYS X64位为例: 1.找到fluent安装目录下的udf.bat(C:\Program Files\ANSYS Inc\v121\fluent\ntbin\win64\udf.bat) 用文本编辑器修改udf.bat: 添加 echo trying to find MS C compiler, version 10.0.... set MSVC_DEFAULT=%ProgramFiles(x86)%\Microsoft Visual Studio 10.0 if exist "%MSVC_DEFAULT%\vC\vcvarsall.bat" set MSVC=%MSVC_DEFAULT% if not "%MSVC%" == "" goto msvc_env100 set MSVC_DEFAULT=%ProgramFiles%\Microsoft Visual Studio 10.0 if exist "%MSVC_DEFAULT%\vC\vcvarsall.bat" set MSVC=%MSVC_DEFAULT% if not "%MSVC%" == "" goto msvc_env100 :msvc_env100 set MSVC_VERSION=100 call "%MSVC%\VC\vcvarsall.bat" amd64 goto ms_c_end 注:如果Visual Studio安装到其他盘,(可能)需要修改路径,比如装到D盘Program Files下,便这样添加: set MSVC_DEFAULT=d:\Program Files\Microsoft Visual Studio 10.0 if exist "%MSVC_DEFAULT%\vC\vcvarsall.bat" set MSVC=%MSVC_DEFAULT% if not "%MSVC%" == "" goto msvc_env100 :msvc_env100 set MSVC_VERSION=100 call "%MSVC%\VC\vcvarsall.bat" amd64 goto ms_c_end

udf编译的经验总结

转帖 udf编译的经验总结 关于:"nmake"不是内部命令或外部命令,也不是可运行程序 我在编译UDF时出现如下错误: Error: Floating point error: divide by zero Error Object: () > "nmake"不是内部命令或外部命令,也不是可运行程序 Error Object: () Error: open_udf_library:系统找不到指定目录 Error: Floating point error: divide by zero Error Object: () 我原来装的时turbo c/c++编译器,可能时环境变量没有设好的缘故。换用vc++6.0以后就没有这个问题了,另外,我用的是fluent6.2.16,希望遇到同样问题的同学借鉴一下,呵 呵。 udf编译的经验总结1)安装vc时候,只要选择了“环境变量”这一项,就不需要在“我 的电脑 > 属性 > 高级 > 环境变量”中 更改“include”“lib”“path”变量的值,保持默认状态即可; 2)如果是fluent6.1以上的版本,读入你的case文件,只要在 define->user-defined->functions->complied中, add你的udf源文件(*.c)和“udf.h”头文件,然后确定用户共享库(library name)的 名称,按“build”,就 相当于nmake用户共享库;在这一步中常出现的错误: (a)(system "move user_nt.udf libudf\ntx86\2d")0 (system "copy C:\Fluent.Inc\fluent6.1.22\src\makefile_nt.udf libudf\ntx86\2d\makefile")已复制 1 个文件。 (chdir "libudf")() (chdir "ntx86\2d")() 'nmake' 不是内部或外部命令,也不是可运行的程序 或批处理文件。 'nmake' 不是内部或外部命令,也不是可运行的程序

fluent udf学习总结

fluent udf 阶段性小结 ——Flying_U 因工作需要,最近开始学习fluent二次开发功能。现在,根据工作日志将这一段时间主要的学习过程和总结的经验整理如下。 学习计划:从4月5号开始,计划花上一个月的时间了解和学习fluent udf的基本知识。目标是能够运用udf初步实现物理模型简化、掌握udf的基本用法并能根据工作需要实现相关udf功能。 4.5-4.6:浏览网站尽可能更多了解udf的知识,结合自己的实际情况分析那些知识是自己需要进一步深入学习的。 此阶段总结:1.udf是用户自定义函数的简称,其通过与fluent接口连接实现扩展fluent功能的作用。udf的主要功能有: ●定制边界条件、材料属性、表面和体积反应率、fluent输运方程的源项、用户自定义的 标量方程的源项、扩散函数等 ●调整每次迭代后的计算结果 ●初始化流场的解 ●在需要时进行udf的异步执行 ●强化后处理功能 ●强化现有的udf模型 ●传送返回值、修改fluent变量、操作外部文件案例和data文件 2. 自己现在想要实现的是udf功能是定制边界条件、定制fluent输运方程的源项、初始化流场的解和强化后处理功能;(刚开始自己也不太明确自己到底想用udf来做什么,对应上udf的主要功能是哪一部分,然后对自己不懂没理解的功能一一查询。) 3. 有相关资料的渠道有:百度知道,百度文库和doc88。其中,百度文库各种教程最多,百度知道能够快速定位回答具体的问题,doc88资料觉得更深入一些。(对搜集的资料进行及时的整理和归纳对自己学习有很大助力,很多资料都是不完全的或者自己当时没有完全理解的需要不同版本或者前后不同时间段对照着学习。) 4.6-4.9 根据自己的需求在udf帮组手册中查找实例并尝试按实例进行对照练习,初步了解udf相关知识,打通udf实现的过程(udf编写、编译和连接)。主要目的是了解udf的基本用法,初步了解udf宏命令。 此阶段总结:1.udf帮助手册里的实例对初学者特别有用,例子难度小,侧重流程和用法。 2. 解释型udf使用基本过程:将物理模型简化,确定udf实现的功能;编制c语言源代码;启动fluent并完成相关设置;加载并解释c语言代码;将udf与fluent相关联。初次尝试觉得难度很小,只是对c语言源程序的边界有点模糊,特别是在语言结构方面。 3. 进行编译型udf使用尝试,根据需要需先安装一个c编辑器,因手头有vs2012所以直接安装vs2012。安装vs2012的过程有点艰辛,因为自己电脑上装过其他的VS版本(未完全卸载),以及其他的一些开源c编辑器(一直在用),安装vs2012过程老是不成功(这里推荐使用vs2008,网上教程较多,出现相关的问题都能较容易地找到方法解决)。最后的解决办法是重装系统(各种尝试都未能解决安装问题后,可能与以前安装过的vs卸载不完全有关),并逐步尝试环境变量的设置。vs2012与fluent环境变量成功设置如下(win7 64位系统):

Fluent UDF 中文教程UDF第7章 编译与链接

第七章UDF的编译与链接 编写好UDF件(详见第三章)后,接下来则准备编译(或链接)它。在7.2或7.3节中指导将用户编写好的UDF如何解释、编译成为共享目标库的UDF。 _ 第 7.1 节: 介绍 _ 第 7.2 节: 解释 UDF _ 第 7.3 节: 编译 UDF 7.1 介绍 解释的UDF和编译的UDF其源码产生途径及编译过程产生的结果代码是不同的。编译后的UDF由C语言系统的编译器编译成本地目标码。这一过程须在FLUENT运行前完成。在FLUENT运行时会执行存放于共享库里的目标码,这一过程称为“动态装载”。 另一方面,解释的UDF被编译成与体系结构无关的中间代码或伪码。这一代码调用时是在内部模拟器或解释器上运行。与体系结构无关的代码牺牲了程序性能,但其UDF可易于共享在不同的结构体系之间,即操作系统和FLUENT版本中。如果执行速度是所关心的,UDF文件可以不用修改直接在编译模式里运行。 为了区别这种不同,在FLUENT中解释UDF和编译UDF的控制面板其形式是不同的。解释UDF的控制面板里有个“Compile按钮”,当点击“Compile按钮”时会实时编译源码。编译UDF的控制面板里有个“Open 按钮”,当点击“Open按钮”时会“打开”或连接目标代码库运行

FLUENT(此时在运行FLUENT之前需要编译好目标码)。 当FLUENT程序运行中链接一个已编译好的UDF库时,和该共享库相关的东西都被存放到case文件中。因此,只要读取case文件,这个库会自动地链接到FLUENT处理过程。同样地,一个已经经过解释的UDF文件在运行时刻被编译,用户自定义的C函数的名称与内容将会被存放到用户的case文件中。只要读取这个case文件,这些函数会被自动编译。 注:已编译的UDF所用到的目标代码库必须适用于当前所使用的计算机体系结构、操作系统以及FLUENT软件的可执行版本。一旦用户的FLUENT升级、操作系统改变了或者运行在不同的类型的计算机,必须重新编译这些库。 UDF必须用DEFINE宏进行定义,DEFINE宏的定义是在udf.h文件中。因此,在用户编译UDF之前,udf.h文件必须被放到一个可被找到的路径,或者放到当前的工作目录中。 udf.h文件放置在: path/Fluent.Inc/fluent6.+x/src/udf.h 其中path是Fluent软件的安装目录,即Fluent.Inc目录。X代表了你所安装的版本号。 通常情况下,用户不应该从安装默认目录中复制udf.h文件。编译器先在当前目录中寻找该文件,如果没找到,编译器会自动到/src目录下寻找。如果你升级了软件的版本,但是没有从你的工作目录中删除旧版本的udf.h文件,你则不能访问到该文件的最新版本。在任何情

udf宏的功能

2.3. Model-Specific DEFINE Macros The DEFINE macros presented in this section are used to set parameters for a particular model in ANSYS Fluent. Table 2.2: Quick Reference Guide for Model-Specific DEFINE Functions – Table 2.6: Quick Reference Guide for Model-Specific DEFINE Functions MULTIPHASE ONLY provides a quick reference guide to the DEFINE macros, the functions they are used to define, and the dialog boxes where they are activated in ANSYS Fluent. Definitions of each DEFINE macro are listed in udf.h. For your convenience, they are listed in Appendix B. DEFINE_ANISOTROPIC_CONDUCTIVITY DEFINE_CHEM_STEP DEFINE_CPHI DEFINE_DIFFUSIVITY DEFINE_DOM_DIFFUSE_REFLECTIVITY DEFINE_DOM_SOURCE DEFINE_DOM_SPECULAR_REFLECTIVITY DEFINE_ECFM_SOURCE DEFINE_ECFM_SPARK_SOURCE DEFINE_EC_RATE DEFINE_EMISSIVITY_WEIGHTING_FACTOR DEFINE_FLAMELET_PARAMETERS DEFINE_ZONE_MOTION DEFINE_GRAY_BAND_ABS_COEFF DEFINE_HEAT_FLUX DEFINE_IGNITE_SOURCE DEFINE_NET_REACTION_RATE DEFINE_NOX_RATE DEFINE_PDF_TABLE DEFINE_PR_RATE DEFINE_PRANDTL UDFs DEFINE_PROFILE DEFINE_PROPERTY UDFs DEFINE_REACTING_CHANNEL_BC DEFINE_REACTING_CHANNEL_SOLVER DEFINE_SBES_BF DEFINE_SCAT_PHASE_FUNC DEFINE_SOLAR_INTENSITY DEFINE_SOLIDIFICATION_PARAMS DEFINE_SOOT_MASS_RATES DEFINE_SOOT_NUCLEATION_RATES DEFINE_SOOT_OXIDATION_RATE DEFINE_SOOT_PRECURSOR DEFINE_SOURCE DEFINE_SOX_RATE DEFINE_SPARK_GEOM (R14.5 spark model) DEFINE_SPECIFIC_HEAT DEFINE_SR_RATE DEFINE_THICKENED_FLAME_MODEL DEFINE_TRANS UDFs DEFINE_TRANSIENT_PROFILE DEFINE_TURB_PREMIX_SOURCE DEFINE_TURB_SCHMIDT UDF DEFINE_TURBULENT_VISCOSITY DEFINE_VR_RATE DEFINE_WALL_FUNCTIONS DEFINE_WSGGM_ABS_COEFF Table 2.2: Quick Reference Guide for Model-Specific DEFINE Functions Function DEFINE Macro Dialog Box Activated In anisotropic thermal conductivity DEFINE_ANISOTROPIC_CONDUCTIVITY Create/Edit Materials mixing constant DEFINE_CPHI User-Defined Function Hooks homogeneous net mass reaction rate for DEFINE_CHEM_STEP User-Defined Function Hooks all species, integrated over a time step

fluent UDF第二章

第二章.UDF的C语言基础 本章介绍了UDF的C语言基础 2.1引言 2.2注释你的C代码 2.3FLUENT中的C数据类型 2.4常数 2.5变量 2.6自定义数据类型 2.7强制转换 2.8函数 2.9数组 2.10指针 2.11声明 2.12常用C操作符 2.13C库函数 2.14用#define实现宏置换 2.15用#include实现文件包含 2.16与FORTRAN比较 2.1引言 本章介绍了C语言的一些基本信息,这些信息对处理FLUENT的UDF很有帮助。本章首先假定你有一些编程经验而不是C语言的初级介绍。本章不会介绍诸如while-do循环,联合,递归,结构以及读写文件的基础知识。如果你对C语言不熟悉可以参阅C语言的相关书籍。 2.2注释你的C代码 熟悉C语言的人都知道,注释在编写程序和调试程序等处理中是很重要的。注释的每一行以“/*”开始,后面的是注释的文本行,然后是“*/”结尾 如:/* This is how I put a comment in my C program */ 2.3FLUENT的C数据类型 FLUENT的UDF解释程序支持下面的C数据类型: Int:整型 Long:长整型 Real:实数 Float:浮点型 Double:双精度 Char:字符型

注意:UDF解释函数在单精度算法中定义real类型为float型,在双精度算法宏定义real为double型。因为解释函数自动作如此分配,所以使用在UDF中声明所有的float和double 数据变量时使用real数据类型是很好的编程习惯。 2.4常数 常数是表达式中所使用的绝对值,在C程序中用语句#define来定义。最简单的常数是十进制整数(如:0,1,2)包含小数点或者包含字母e的十进制数被看成浮点常数。按惯例,常数的声明一般都使用大写字母。例如,你可以设定区域的ID或者定义YMIN和YMAX 如下:#define WALL_ID 5 #define YMIN 0.0 #define YMAX 0.4064 2.5变量 变量或者对象保存在可以存储数值的内存中。每一个变量都有类型、名字和值。变量在使用之前必须在C程序中声明。这样,计算机才会提前知道应该如何分配给相应变量的存储类型。 2.5.1声明变量 变量声明的结构如下:首先是数据类型,然后是具有相应类型的一个或多个变量的名字。变量声明时可以给定初值,最后面用分号结尾。变量名的头字母必须是C所允许的合法字符,变量名字中可以有字母,数字和下划线。需要注意的是,在C程序中,字母是区分大小写的。下面是变量声明的例子: int n; /*声明变量n为整型*/ int i1, i2; /*声明变量i1和i2为整型*/ float tmax = 0.; /* tmax为浮点型实数,初值为0 */ real average_temp = 0.0; /* average_temp为实数,赋初值为0.1*/ 2.5.2局部变量 局部变量只用于单一的函数中。当函数调用时,就被创建了,函数返回之后,这个变量就不存在了,局部变量在函数内部(大括号内)声明。在下面的例子中,mu_lam和temp是局部变量。 DEFINE_PROPERTY(cell_viscosity, cell, thread) { real mu_lam; real temp = C_T(cell, thread); if (temp > 288.) mu_lam = 5.5e-3; else if (temp > 286.) mu_lam = 143.2135 - 0.49725 * temp; else mu_lam = 1.;

Fluent UDF 第三章 编写UDF

第 3 章 编写 UDF
第 3 章 编写 UDF
本章包含了 FLUENT 中如何写 UDFs 的概述。
3.1 概述 3.2 写解释式 UDFs 的限制 3.3 FLUENT 中 UDFs 求解过程的顺序 3.4 FLUENT 网格拓扑 3.5 FLUENT 数据类型 3.6 使用 DEFINE Macros 定义你的 UDF 3.7 在你的 UDF 源文件中包含 udf.h 文件 3.8 定义你的函数中的变量 3.9 函数体 3.10 UDF 任务 3.11 为多相流应用写 UDFs 3.12 在并行中使用你的 UDF 3.1 概述(Introduction) 在你开始编写将挂到 FLUENT 代码以增强其标准特征的 UDF 之前,你必须 知道几个基本的要求。首先,UDFs 必须用 C 语言编写。它们必须使用 FLUENT 提供的 DEFINE macros 来定义。UDFs 必须含有包含于源代码开始指示的 udf.h 文件;它允许为 DEFINE macros 和包含在编译过程的其它 FLUENT 提供的函数 定义。 UDFs 只使用预先确定的宏和函数从 FLUENT 求解器访问数据。 通过 UDF 传递到求解器的任何值或从求解器返回到 UDF 的,都指定为国际(SI)单位。 总之,当写 UDF 时,你必须记住下面的 FLUENT 要求。 UDFs: 1. 采用 C 语言编写。 2. 必须为 udf.h 文件有一个包含声明。 3. 使用 Fluent.Inc 提供的 DEFINE macros 来定义。 4. 使用 Fluent.Inc 提供的预定义宏和函数来访问 FLUENT 求解器数据。 5. 必须使返回到 FLUENT 求解器的所有值指定为国际单位。 3.2 写解释式 UDFs 的限制(Restriction on Writing Interpreted UDFs)

UDF(用户自定义特征)的创建和使用

UDF(用户自定义特征)的创建和使用 bysgjunfeng 1、什么是UDF? 2、UDF使用过程 2.1创建参照模型 2.2创建UDF 2.3放置UDF 3、替换UDF 4、UDF搭配族表的使用 1、什么是UDF? UDF即用户自定义特征。也就是说可以将数个特征组合起来形成一个新的自己定义的特征,并且会保存在UDF数据库中,随时调入。(类似于AutoCAD中的动态 块) 用户自定义特征用来复制相同或相近外形的特征组,此功能类似于“特征复制”,但又有所不同,功能上比较全面、灵活,但相应的步骤比较繁琐。因此,如果会用特征复制,特别是特征复制里的新参考,将会对此命令有所帮助。 UDF和特征复制的最大区别有以下两点: ●特征复制仅适用于当前的模型,而UDF可以适用与不同的模型。 ●特征复制的局部组无法用另一个局部组替换,而UDF可被另一个UDF替换 UDF的使用流程大体可分为三步:规划并创建参照模型——建立UDF——放置UDF,下面我们用一个简单的例子来说明如何使用UDF。 2、UDF使用过程 在使用UDF之前,首先要创建UDF,缺省时,Pro/ENGINEER将创建的UDF保存在当前工作目录中。为此,可创建UDF库目录,要访问Pro/ENGINEER 的UDF库目

录,可指定带置文件选项"pro_group_dir"的目录名。这样,每次插入UDF时将 自动打开该目录。 建立好参照模型后,单击单击"工具"(Tools)>"UDF 库"(UDF Library)。出现下 图所示UDF菜单 该对话框各选项含义如下: 创建 (Create):建立新的UDF并将其添加到UDF库。 修改 (Modify):修改现有的 UDF。如果有参照零件,系统将在单独的零件窗口 显示 UDF。 列表 (List):列出当前目录中的所有UDF文件,用于查看UDF信息。 数据库管理 (Dbms):管理当前UDF数据库。即对当前UDF数据库中的UDF进行保存、另存为、备份、重命名、拭除、清除、删除等操作。 集成 (Integrate):解决源 UDF 和目标 UDF 之间的差异。 以下以实例说明如何创建及使用UDF。 假定背景:在很多时候建立零件模型时,零件的粗坯都是一个长方体,并且要求该长方体关于基准平面左右前后对称(如下图所示),这就要求在草绘里绘制矩形时要多绘制两条中心线或多标两个尺寸。下面我们将演示如何将这样的长方体 作为UDF来使用。 本实例重在介绍UDF的使用过程,希望能起到抛砖引玉的作用,使大家在实际应

UDF

1.1什么是UDF? UDF是一种可以被加载到fluent求解器中的函数,以提高源代码的功能。比如,你可以使用UDF定义你的边界条件,材料属性和流型源项,以及自定义模型参数,初始化一种算法或增强后处理进程。 UDF可以在任何文本里用C语言编写,然后源代码保存格式为“e.g., myudf.c”。一个源文件可以包含一个或多个UDF,或者你可以定义多个源文件。关于C语言编程的一些基本资料见附录A。 UDF是被fluent Inc提供的宏定义进行定义。它们使用附加的宏代码,使fluent具有数据访问和执行其他任务的功能。 每一个UDF必须在源代码文件的开头包含“#include "udf.h"”,使得宏定义和fluent的其他宏及功能可以在运行的过程中被包含。 含有UDF的源文件可以在fluent里进行解释或编译。对于解释型UDF,在一个单一的运算进程中,源文件被解释后在运行时直接加载。而对于编译型UDF,这个过程包含2个步骤。需要首先建立一个共享的对象代码库,然后将其加载到fluent中。一旦被解释或编译,UDF将会在fluent界面中可见并可选择,然后通过在相应的控制面板中选择函数名称被连接到求解器中。 1.2为什么使用UDF? UDF可以让你自定义fluent来满足你的特殊模型需要。UDF可以在多个应用中使用,下面列举的就是一些例子。 ●定义边界条件,材料属性,表面和体积反应速率,fluent输运方程的源项, UDS输运方程的源项,扩散系数函数等。 ●一次迭代的计算值的调整。 ●初始化一种算法。 ●UDF的异步执行。 ●在迭代结束后执行,退出fluent或者加载编译UDF库。 ●增强后处理。 ●增强现有的fluent模型。

udf使用心得

我接触UDF的时间不算长,2007年7月份开始看UDF的中文帮助,花了一周时间大体看完后,第一感觉:不难啊,至少不像以前别人给我讲的很高深的样子。然后就是UDF编程,直到10月底吧。然后用的时间就不多了。然后就是这两周,我马上就要研究生毕业了,可能这周结束后用UDF编程的可能性会很小了,所以想写点东西,给刚刚学UDF编程的人,希望对大家有用。对于UDF高手,估计是不用向下看了。 UDF框架 光看书,感觉UDF不难。看例子,有些看个四五遍之后才能差不多看懂。原来,得靠UDF帮助。我主要用的是fluent v6.3自带的html格式的帮助,里面东西很全,当然也包括UDF Manual。里面自带的search功能相当好,只是要注意用好+或-号(逻辑符号),另外,这个功能似乎有些浏览器支持不太好,不过基本上用IE不太容易出问题。 对于从零开始学习UDF,建议还是先看一下UDF中文帮助,我估计大家知道的都是马世虎翻译的那本吧,感觉挺好。(没想到马世虎跟我是校友,去年给安世亚太投过一份简历,他给我打过电话,当时一阵兴奋,呵呵。) 对于只涉及到边界条件或物性等的UDF,一般用interpret就可以的,这些我觉得只需要根据例子改一下就是了。 $$ 对于要添加UDS方程的,相对难一点。我编程用的是三到五个UDS,几十个UDM。一开始编程时,没有头绪,后来看别人编的,才慢慢发现了一些基本思路。比如,可以用枚举定义UDS 或UDM,这样用起来方便。 enum{ NP, RHOH2O_Y_UP_X, RHOH2O_Y_UP_Y, RHOH2O_Y_UP_Z, N_REQUIRED_UDS };//枚举UDS变量名 对于UDM,则用N_REQUIRED_UDM代表个数。 然后在INIT与ADJUST函数中,检查变量个数时则比较方便,如: DEFINE_INIT(init_parameter,domain) { if (n_uds < N_REQUIRED_UDS) Error(”Not enough user defined scalars!(init)\n”); if (n_udm

相关主题