搜档网
当前位置:搜档网 › 农业物联网智能大棚解决方案报告书模板

农业物联网智能大棚解决方案报告书模板

农业物联网智能大棚解决方案报告书模板
农业物联网智能大棚解决方案报告书模板

农业物联网智能大棚解决方案

1.综述

农业物联网智能大棚解决方案。本系统旨在通过物联网技术实现农业大棚内的环境实时感知、数据自动统计、设备远程控制、设备自动控制、自动报警、视频监控等功能,帮助大棚种植实现数字化和自动化,实现无人值守、高产量和可复制。

系统采用光照、土壤PH(酸碱度)、空气温湿度、土壤温湿度等传感器对大棚种植环境进行实时感知,通过无线信息传输节点将数字信号传输到系统后台,经过服务器处理后形成图形化显示输出。系统提供各种统计功能并支持数据导出,能够针对指标超标等情况自动报警,当环境指标超标时能够自动开启和关闭风机、电磁阀、遮阳板等设备以实现智能化。

2.系统优势

2.1精确掌握环境指标,取代“凭感觉”

传统农业依靠的是人工对环境信息的感知,对作物生长的环境无法量化,因而难以将作物生长的最优条件总结出来,更加难以复制;此外,人工无法实现24小时的现场管理,难以实时地掌握作物生长条件。智能大棚种植通过传感器将环境信息转化成标准的数字信号并定期采样存储在数据库中,能够实现环境信号的实时采集和统计输出,能够“精确”、“全面”地掌握环境信息,实现精准的农业管理。

2.2随时随地掌握现场信息,随时随地控制现场设备

系统支持手机远程登录,用户可以在任何时间、任何地点(只要手机能上网)了解大棚内部的环境信息、视频影像,并且可以手动指挥现场设备,如喷淋设备、风机、遮阳板、灯光等等。同时,一人可以同时管理多个大棚,为客户节省了大量的人力。

2.3自动调节各项指标,为作物提供最“舒适”、最稳定的生长环境

智能大棚系统得到环境数据后,自动与设定的指标阈值进行比对,当超出正常范围时,自动启动相关设备进行现场操作,例如,当大棚内温度过高时,自动启动风机设备对大棚进行降温,当土壤湿度过低时自动开启灌溉设备对作物进行灌溉。自动化控制可以为作物提供最“舒适”和最稳定的生长环境,帮农场提高产量、减少人力、形成标准流程,方便总结和传播生产经验。

2.4形成标准化种植经验,方便大规模复制

传统大棚的管理依赖管理人员丰富的经验,且与所处的气候环境等因素相关,不利于大规模地复制,而智能大棚通过自动控制等手段降低了对人员的依赖,使工作变得简单、标准,方便迅速扩大规模。

优势对比:

3.系统功能

系统的主要功能包括:环境指标的远程监测、历史数据的统计输出、超过阈值的自动报警、现场设备的远程控制、现场设备的自动控制等。

3.1环境指标的远程监测

安插在大棚内的各种传感器设备不间断地采集周围的环境信息并通过数据传输节点上传给服务器,这些传感器包括:空气温湿度传感器、土壤温湿度传感器、光照传感器、CO2传感器、土壤PH值传感器等。用户还可以根据需要选择其他各种传感器。当客户通过浏览器访问服务器时,软件系统以图形化的界面显示当前指标,系统每隔一段时间刷新一次,刷新时间可以用户自定义,当间隔时间足够短时,即实现了实时监测。

图形化远程监测界面(以空气湿度为例)

数值式远程监测界面(以空气湿度为例)

3.2历史数据的统计输出

用户可以自行定义各种指标的存储时间间隔,例如每隔一个小时存储一次数据,则过去一天的历史数据将由24个点组成,同理,用户也可以选择每隔10分钟甚至1分钟存储一次数据。

当客户需要查询历史数据时,在系统输入查询条件,即可看到该范围内的指标变化情况,以曲线的形式输出。

物联网温室大棚智能化系统解决方案

物联网温室大棚智能化系统
解决方案

目录
1、设计原则.............................................................................................................................................. 3 2、设计依据.............................................................................................................................................. 3 3、系统简介.............................................................................................................................................. 4 3、系统架构.............................................................................................................................................. 5 4、系统组成.............................................................................................................................................. 6
结构图................................................................................................................................................ 6 现场的监测设备: ........................................................................................................................ 7 智慧大棚系统结构: .................................................................................................................... 7 智慧农业大棚系统介绍 ................................................................................................................ 8 温度控制系统 ............................................................................................................................ 8 通风控制系统 ............................................................................................................................ 8 光照控制系统 ............................................................................................................................ 9 水分控制系统 ............................................................................................................................ 9 湿度控制系统 .......................................................................................................................... 10 视频监控系统 .......................................................................................................................... 10 控制系统平台: .......................................................................................................................... 10 应用软件平台:.......................................................................................................................... 11 视频监控系统:.......................................................................................................................... 11 农业溯源系统.............................................................................................................................. 12 种植环节: .............................................................................................................................. 12 物流环节: .............................................................................................................................. 12 其他:...................................................................................................................................... 12 室外气象观测站.......................................................................................................................... 13
5、系统特点............................................................................................................................................ 14 预测性:...................................................................................................................................... 14 强大的扩展功能:...................................................................................................................... 14 完善的资料处理功能:.............................................................................................................. 14 远程监控功能:.......................................................................................................................... 14 数据联网功能:.......................................................................................................................... 14
6、项目定位............................................................................................................................................ 14 7、控制逻辑............................................................................................................................................ 16
温度控制...................................................................................................................................... 16 控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 16 控制方式: .............................................................................................................................. 16
降温控制过程:.......................................................................................................................... 16 在软件中可以设定温度默认正常的上下限的值 .................................................................. 16 温度超过设定上限时 .............................................................................................................. 16
增温控制过程:.......................................................................................................................... 16 空气湿度控制.............................................................................................................................. 16
控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 17 控制方式: .............................................................................................................................. 17 增湿控制过程:.......................................................................................................................... 17 在软件可设定湿度默认正常的上下限的值; ...................................................................... 17 湿度低于设定下限时: .......................................................................................................... 17 除湿控制过程:.......................................................................................................................... 17

智慧农业物联网的概念和意义

中国农业物联网领航者——托普农业物联网 智慧农业物联网的概念和意义 所谓“智慧农业”就是充分应用现代信息技术成果,集成应用计算机与网络技术、物联网技术、音视频技术、3S技术、无线通信技术及专家智慧与知识,实现农业可视化远程诊断、远程控制、灾变预警等智能管理及实现智能自动化。除了精准感知、控制与决策管理外,从广泛意义上讲,智慧农业还包括农业电子商务、食品溯源防伪、农业休闲旅游、农业信息服务等方面的内容。 智慧农业是农业生产的高级阶段,是集新兴的互联网、移动互联网、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。 “智慧农业”是云计算、传感网、3S等多种信息技术在农业中综合、全面的应用,实现更完备的信息化基础支撑、更透彻的农业信息感知、更集中的数据资源、更广泛的互联互通、更深入的智能控制、更贴心的公众服务。“智慧农业”与现代生物技术、种植技术等高新技术融合于一体,对提高世界农业水平具有重要意义。 2010年,托普仪器开始专注于“智慧农业”方面的研究,五年来不断摸索前进,通过吸纳专业的研究人才、和高等院校合作及相关政府领导的方向性指导,使得托普仪器的农业物联网技术在时间的打磨下越来越成熟,越来越贴近用户需求。2014年,托普仪器联合中国工程院孙九林院士团队建立企业院士工作站,使公司研发水平更加精进,更具实力。5年来,托普仪器先后完成农业物联网系统10余个,在全国各地成功搭建的项目不胜枚举。其中,长春农博园、慈溪海通时代农场、山东兰陵(苍山)农业物联网示范园、江西凤凰沟物联网生态餐厅等项目更是被广大用户所熟知,成为众人津津乐道的农业物联网成功案例。 紧跟时代,助力农业,托普人在追求自身“农业梦”的同时,也一直都在帮助别人实现他们心中的农业梦想。相信通过大家的不懈努力,托普农业物联网技术必将惠及更多的农业人。

基于农业物联网的智能监控系统

基于农业物联网的智能监控系统 0 引言 物联网拥有业界最完整的专业物联产品系列,覆盖从传感器、控制器到云计算的各种应用,构建了“质量好、技术优、专业性强,成本低,满足客户需求”的综合优势。而农业物联网技术作为一个分支,在现代农业生产中发挥重要的作用。 何为农业物联网? 农业物联网技术就是将网络技术、感应技术、应用开发技术结合,及时采集空气温湿度、光照强度、土壤温湿度、CO2浓度等环境信息,通过有线和无线方式发送给中央监控器,并以直观的图表和曲线方式将数据显示给用户,用户可以根据生产需要,设置温室卷膜、卷帘、滴灌等执行设备的自动调控条件。 目前,农业物联网技术在许多地区逐渐开展起来,在传统的大棚上运用了物联网技术。农民们灌溉土地只需要轻点鼠标即可完成,无须奔走田间,大大节省了人力。这是物联网技术和传统农业结合的产物。 传统农业的浇水、施肥、打药,农民全凭经验、靠感觉。如今瓜果蔬菜该不该浇水,施肥、打药怎样保持精确的浓度,温度、湿度、光照如何实行按需供给,都由信息化智能监控系统实时定量“精确”把关。 1 案例:在养鱼场建立智能监控系统 农业物联网技术有利于节本增效,在现代化养鱼场中也发挥着高效的作用。24小时对水产苗种繁育阶段的水温、pH值和溶氧量等进行实时监测预警。一旦发现问题,能够及时自动处理或通过短信迅速通知相关人员。据相关应用测算,使用物联网智能控制管理系统养鱼后,可节本增效20%左右,亩均可增收1000元以上,极大地提高了渔民收入。 农业物联网是物联网产业的分支,从上述案例中我们看到了这一技术对未来农业生产的改变,也看到了作为一场科技革命浪潮即将开始。 墨翟科技基于飞思卡尔I.MX27开发的视频监控系统正是基于农业市场对视频监控系统的迫切需求推出的一款智能化高科技成熟产品。它是由服务器和终端设备共同构成一个视频监视系统,终端负责采集图像,并将图像通过网线接入以太网或者通过3G传输到服务器端,服务器端完成图像显示、存储和处理功能。在服务器端可以将采集到的图像利用不同的智能识别算法可以实现对不同场合环境下智能监测的需求。即摄像头安装在需要监测的地方,接入以太网或者通过3G将图像传输给监控中心。 2视频监控系统功能设计 2.1 视频图像采集 通过摄像头采集视频图像,并将视频图像进行压缩编码。若采用高清摄像头,则图像可以达到D1(720*576)分辨率,视频压缩编码可以有很多种格式,如MPEG2、MPEG4、H.264等等,常用的是H.264格式,因为压缩率高,可减小文件大小,增加传输速率。我们采用的I.MX27平台是一个带硬件H.264编解码的CPU,采用H.264编解码不占用CPU资源,大大提高了CPU工作效率,很好的降低了系统功耗。 2. 2 视频图像本地存储和上传 摄像头采集到的图像可以选择本地存储和上传,也可以选择直接上传,选择哪种方式是根据用户需要和系统的配置决定的。本地存储的介质可以是SD卡,也可以是SATA硬盘,两

智慧农业大棚

品名:智慧农业物联网大棚实训系统 型号:EV-SHNP-02 高校物联网实训系统 -智慧农业大棚 农业物联网是现代物联网技术的发展成果之一。它是将先进的传感、通信和数据处理等物联网技术应用于农业领域,构建智能农业系统,是解决农业发展中遇到的各种问题的有效方法之一。物联网智能农业大致分为3个层次,即感知层、网络层和应用层。感知层主要实现农业生态环境的感知、作物的状态感知和动植物的质量检测等;网络层主要实现感知层所

获得信息到应用层的传输;应用层首先通过数据清洗和融合、模式识别等手段形成最终数据,然后提供给生态环境监测系统、生长监控系统、追溯系统等使用。 智能农业做为物联网技术应用的一个重要方面,是各个高校学习和研究的重点。但是由于农业生产环境的特殊背景,并不是每一个学校都有合适的场地和产品来完成这方面的研究。为了解决这个问题,东谷软件公司设计了EV-SHNP-02型智慧农业实训系统来满足学校的教学和科研使用要求。 本方案在学校教室内或者户外,建设一套高标准,高技术的智能农业大棚系统,在此智能大棚有限的空间内集中体现了物联网智能农业的3个层次,即感知层、网络层和应用层。系统融合了多种信息技术,拥有很好的演示效果。大棚内装配有多种传感器和执行器,可支持50寸触控一体机或智能手机上的App程序和WEB应用进行统一的控制和管理。 东谷软件的智能农业大棚实训系统不仅可以作为物联网工程专业《物联网软件设计》课程的实验平台,还可以用作老师和学生对智能农业进行研究的科研平台。 物联网技术在农作物种植中的应用,具体指的是利用现代电子技术、自动化控制技术、计算机及网络技术相结合。通过部署在农作物中的的传感器节点,组建感器网络,采集农作物生长过程中最为密切相关的空气温度、空气湿度、土壤水分、土壤温度、土壤PH值、光照、风速、风向、CO2等环境参数,并通过网络实时传输至远程中心服务器,中心服务器接收存储数据,结合对应的诊断知识模型对数据解析处理,以达到分布式监测,集中式管理。农业管理员、农业专家通过手机或者手持终端就可以及时掌握农作物的生长情况,及时发现农作物的生长病症,及时采取有效的控制措施。 空气温度、空气湿度、土壤温湿度、土壤PH值等是农作物种植中至关重要的环境参数,每个条件都影响着农作物的生长状况以及品质。传统的人为判断的种植模式存在效率低,无具体量化数值作为依据。因此,在农作物种植中难免会出现一些误差,另外还需大量人工和时间来处理,往往不能及时有效地察觉生产过程中的问题。

物联网温室智能控制系统的应用案例

物联网温室智能控制系统的应用案例 在全国各地区,现代化的农场种引进物联网技术是时代发展的需要,也是现代科技农业的重要体现。在乌拉特中旗海流图镇设施农业科技示范园区的温室内,物联网温室智能控制系统正在在紧罗密鼓的安装中。 物联网温室智能控制系统通过基于物联网技术对温室内外监测数据的分析,结合作物生长发育规律,利用相关设备,对温室进行实时监控,实现对作物优质、高产、高效的栽培目的。该套智能监控系统具有自动开启关闭卷帘、补光、滴灌等功能,并凭借智能化、自动化控制技术,调节作物的最佳生长环境。种植户可通过电脑、手机等信息终端随时随地查看温室内实时环境监测、预警信息,实现对温室大棚的网络智能化远程管理,充分发挥物联网技术在设施农业生产中的作用。 在地区农业的发展中,引进物联网温室智能控制系统有利于建设该地区的科技农业设施,起到示范作用,也有利于提高地区设施农业生产的科技含量和综合生产水平,促进设施农业现代化发展。另外通过农产品的安全质量追溯,可以改善市民的食品安全条件,增强市民的购买信心,提升农产品的市场竞争力。目前来看,农业物联网技术是现代农业逐步实现智能化、精确化、信息化的有力保障,而随着种植规模的扩大和温室大棚的普及推广,物联网温室智能控制系统将会得到越来越多的应用。 对于规模化的温室种植而言,借助人工管理需要大量人手和时间,并且存在难以避免的 人工误差。物联网技术的应用,真正实现了农业信息数字化、农业生产自动化、农业管理智能化,使温室大棚种植可达到提高产量、改善品质、节省人力、降低人工误差、提高经济效益的目的,实现温室种植的高效和精准化管理。托普温室种植监控系统,改变了传统温室种植管理在技术上的桎梏状态。

简述基于物联网的蔬菜大棚监控系统设计

基于物联网的蔬菜大棚监控系统设计 一、研究背景及意义 大棚蔬菜对生长环境的要求很高,大棚内的温度、湿度、光照、CO2浓度等条件都不同程度地影响着蔬菜的生长,管理好蔬菜大棚是一项异常繁琐的工作,农户除了要有一定的种植技术,还需要随时了解大棚内的环境状况。当农户种植反季节蔬菜时,更需要全天候照看大棚蔬菜,由此造成人力资源的浪费,农户普遍收益不高。如何在降低投资的基础上,减少人力成本,完成蔬菜大棚的增值创收成为当前农户的迫切需求.物联网(Internet of Things,IoT)是具有标识、感知和智能处理能力,借助通信技术互连而成的网络,目的在于为人们提供智能服务,所以基于无线传感网络的蔬菜大棚监控系统必将减轻农民的负担,用科技的手段帮助农民致富,此系统具有很强的实用价值,可以迅速推广。 二、总体设计方案 (一)系统方案论证 该方案采用终端集成通信模块(ESP8266)+OneNet设备云平台的方法,是一个简单的二级简化系统,ESP8266是目前国内外比较流行的物联网通信模块,该模块内部通过一个32位ARM11内核和四兆的Flash存储器集成了无线数据通信

转发和终端数据采集功能,ESP8266即可作为一个无线通信模块使用,同时又可作为一个MCU主控芯片,当做终端模?K 使用。ESP8266在智能农业大棚的作用是将采集的室内土壤温湿度,光照强度等数据上传到云平台,此时OneNet负责接收数据存储,并将其转发给远程移动端。 方案闪光点:将终端采集模块与无线通信模块合二为一,与传统的物联网解决方案相比,省去了主控芯片,在OneNet设备云平台实现远程监控的界面不需要单独的开发,只需要在云平台上关联相关的数据流即可生成,OneNet官方提供手机APP版,我们只需在线登录手机打开APP,就可实现远程移动端监控。极大地缩短了开发周期,节约开发成本。 方案弊端:ESP8266集终端与网络通信于一体,因此其内部可用资源单调,同普通的单片机(MCU)相比,其外设I/O很少。方案如下图2-1所示。 (二)系统总体设计方案 基于ESP8266与OneNet设备云平台的智能蔬菜温室大棚远程监控系统的总体设计方案如图2-2所示:由于ESP8266的I/O资源有限,所以本方案把终端数据的采集与控制分为了两个部分,一块ESP8266用作传感器数据采集,其中室内温度范围在5~45摄氏度,空气干湿度可监测的范围在10~90%,土壤干湿度范围在0~100%,土壤温度范围在5~45摄氏度。在另一块ESP8266用作对执行器的控制。其中加热、

现代农业智能温室大棚监测控制系统管理方案设计

现代农业智能温室大棚监测控制系统管理方案设计智能农业基于软件平台的温室大棚智能监控管理系统,结合当前新兴的物联网技术实现高效利用各类农业资源和改善环境这一可持续发展目标,不但可以最大限度提高农业现实生产力,而且是实现优质、高产、低耗和环保的可持续发展农业的有效途径。 一、概述 托普物联网研制的温室环境监测系统也可仪称之为温室智能控制系统。系统利用环境数据与作物信息,指导用户进行正确的栽培管理。物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。 精确农业(Precision Agriculture )是当今世界农业发展的新潮流,它最大的特点就是“精确”,利用卫星全球定位系统、遥测遥感技术、计算机自动控制技术和物联网等高新技术于农业生产,用以提高产量,降低能耗。精确农业的推广不但可以最大限度提高农业生产力,而且是实现优质、高产、低耗和环保的可持续发展农业的有效途径。 随着农业技术的不断发展,温室大棚已经相当普及,随之而来的温室大棚智能监控管理平台搭建的需求愈发强烈。传统的温室大棚多为人工通过简单的温湿度计量设备或者简单的仪器仪表获取环境状态参数,并根据经验手动控制各个调节阀。此种方式效率低下,控制效果也无法达到智能自动的要求,因此传统的监控管理方式已显示出诸多局限性。 二、系统设计原则 可扩展性——系统在设计过程中除满足当前需求外,还需为日后的系统扩展留有足够的接口,所有功能模块均为可组态化设计,可以灵活的增加或者删除。 可集成性——系统在设计过程中需具备高度集成性,满足于第三方平台的实时交互集成需求。 可控制性——系统建成后,要求对温室中的温湿度、光照强度、喷灌装

基于物联网技术的现代智慧农业解决方案

基于物联网技术的现代智慧农业解决方案上世纪九十年代后,无线技术的广泛应用使得它在许多国民经济领域的应用研究获得迅速发展。尤其以Zibgee无线技术为主的物联网系统,使得精准农业的技术体系广泛运用于生产实践成为可能。精准农业技术体系的实践与发展,已经引起一些国家科技决策部门的高度重视。 那么什么是智慧农业了,根据维基百科上面的定义智慧农业主要有这些解释。 所谓“智慧农业”就是充分应用现代信息技术成果,集成应用计算机与网络技术、物联网技术、音视频技术、3S技术、无线通信技术及专家智慧与知识,实现农业可视化远程诊断、远程控制、灾变预警等智能管理。 智慧农业是农业生产的高级阶段,是集新兴的互联网、移动互联网、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。 “智慧农业”是云计算、传感网、3S等多种信息技术在农业中综合、全面的应用,实现更完备的信息化基础支撑、更透彻的农业信息感知、更集中的数据资源、更广泛的互联互通、更深入的智能控制、更贴心的公众服务。“智慧农业”与现代生物技术、种植技术等高新技术融合于一体,对建设世界水平农业具有重要意义。 根据最新研究结果显示,我国实施精准农业的近期目标,一方面是总结国外发展经验,根据中国的国情找准自己的切入点,另一方面切实做好有关基于Zigbee无线技术的物联网应用与研究开发,力求走出适合中国国情的精确农业的发展道路。 托普物联网是浙江托普仪器有限公司主要经营项目之一。托普物联网依据自身研发优势,开发了多种模块化智能集成系统。 1、传感模块:即环境传感监测系统。它依据各类传感设备可以完成整个园区或完成对异地园区所需数据监测的功能。

智慧农业物联网系统设计

毕业设计(报告)课题:智慧农业物联网系统设计 学生: 夏培元系部: 物联网学院 班级: 物联网1404班学号: 2014270307 指导教师: 杨昌义 装订交卷日期: 2017年01 月日 I / 20

摘要 随着经济社会的发展,农业已经越发智能化智慧农业是农业生产的高级阶段是集新兴的互联网、移动互联、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。 基于ZigBee技术的智慧农业解决方案,成本低廉,是一般人都能负担的价格;控制更简单,让每一位刚接触的人都能轻松使用;功耗更低、组网更方便、网络更健壮,给您带来高科技的全新感受。您的温室大棚规模越大,基于ZigBee 技术的智慧农业解决方案在使用中,要准确及时地操控所有设备,最值得关注的应该就是网络信号的稳定性。鉴于温室大棚的网络覆盖区域比较广泛,我们贴心为您呈现物联无线组网!智慧农业能有效连接物联Internet通信网关和超出物联Internet通信网关有效控制区域的其它ZigBee网络设备,实现中继组网,扩大覆盖区域,并传输网关的控制命令到相关网络设备,达到预期传输和控制的效果。基于先进的ZigBee技术,物联无线中继器无需接入网线,就可自行中继组网,扩散网络信号,让网络灵活顺畅运行,保障您的所有设备正常运行。主要采集温湿度,从而控制农植物的水分和光照。 关键词:物联网;智慧农业;云计算;物联网架构;ZigBee II / 20

智能农业与物联网(论文)

农业复杂大系统的智能控制与农业物联网关系探讨 陈一飞 (中国农业大学信息与电气工程学院电子信息工程系,北京100083) 摘要:基于复杂大系统智能控制理念来研究农业大系统的控制智能问题是一个富有挑战意义的课题。本文基于大系统控制理论以及的智能控制的定义构造出以农业复杂大系统智能控制为核心的智能农业系统架构,并对智能农业的内涵进行了阐述,指出智能农业应该是以农业大系统智能控制为核心的闭环系统。同时按照网络结构体系论述了物联网的基本含义,首次对智能农业与农业物联网的关系进行了论述,并指出了农业物联网在智能农业大系统中的位置和作用,探讨了与智能农业大系统的接口问题。 关键词:智能农业农业物联网网络控制器 Discussing on Relation between Agricultural Internet of Things and Agriculture Complex Large System Intelligent Control Chen Yifei (Collage of Information & Electrical Power Engineering, China Agricultural University ,Beijing 100083,China) Abstract The study on Agriculture Complex Large System Intelligent Control (ACLSC) based on complex large systems cybernetics is an valuable researching content. In this paper, the frame of Intelligent Agriculture (IA) depending on large systems cybernetics and describing of intelligent control is presented, and we discussed the IA content. By the way, we indicated that IA must be close feedback control system with intelligent control. On the other hand, based on the network structure, the basic definition and frame of Internet of Things had been discussed too, and the relation between IA and Internet of Things had been researched firstly too. We designed the work position and function of Internet of Things in IA large system, and discussed the interface to connect IA system. Key words Intelligent Agriculture(IA), Agricultural Internet of Things, Network Controller 1 前言 进入21世纪后,特别是在我国十二五期间,如何使农业现代化更进一步、以及农业科技的发展支撑点在哪里等问题是农业工程界关注的话题。我国今后农业的发展是建立在农业物联网上、还是建立在发展智能农业、抑或其他方面上等都需要认真的研究。 回顾我国改革开放以来农业科技进步的脉络,无论是精准农业、数字农业、工厂化农业,还是后来提到更高层面上的农业信息化以及电脑农业等,似乎我们发现还没有很好的理顺彼此之间的关系,都是在跟着各自的概念和框架下在做各自的事情,还没有全面的、很好的从农业整体大系统角度把握农业科技的发展与技术进步[1]。十五、十一五期间、以及列入国家“863”计划的精准农业、智能化农业信息技术应用等取得了很好的研究成果。特别是2004年,我国组织实施了“数字农业科技行动”研究开发了一批实用性强的农业信息服务系统,各省地的农业信息网全面开通和附着于此的电脑农业和农业专家决策系统的普及标志着我

物联网温室大棚智能化系统解决方案

物联网温室大棚智能化系统 解决方案

目录 1、设计原则 (3) 2、设计依据 (3) 3、系统简介 (4) 3、系统架构 (5) 4、系统组成 (6) 4.1结构图 (6) 4.2 现场的监测设备: (7) 4.3 智慧大棚系统结构: (7) 4.4 智慧农业大棚系统介绍 (8) 4.4.1温度控制系统 (8) 4.4.2通风控制系统 (8) 4.4.3光照控制系统 (9) 4.4.4水分控制系统 (9) 4.4.5湿度控制系统 (10) 4.4.6视频监控系统 (10) 4.5 控制系统平台: (10) 4.6 应用软件平台: (11) 4.7 视频监控系统: (11) 4.8 农业溯源系统 (12) 4.91种植环节: (12) 4.9.2物流环节: (12) 4.9.3其他: (12) 4.9 室外气象观测站 (13) 5、系统特点 (14) 5.1 预测性: (14) 5.2 强大的扩展功能: (14) 5.3 完善的资料处理功能: (14) 5.4 远程监控功能: (14) 5.5 数据联网功能: (14) 6、项目定位 (14) 7、控制逻辑 (16) 7.1 温度控制 (16) 7.1.1控制要素: (16) 7.1.2控制设备: (16) 7.1.3控制方式: (16) 7.2 降温控制过程: (16) 7.2.1在软件中可以设定温度默认正常的上下限的值 (16) 7.2.2温度超过设定上限时 (16) 7.3 增温控制过程: (16) 7.4 空气湿度控制 (16) 5.4.1控制要素: (16) 5.4.2控制设备: (17) 5.4.3控制方式: (17) 7.5 增湿控制过程: (17) 5.5.1在软件可设定湿度默认正常的上下限的值; (17) 5.5.2湿度低于设定下限时: (17) 7.6 除湿控制过程: (17) 7.61在软件可设定湿度默认正常的上下限的值; (17)

智慧农业大棚物联网智能系统

智慧农业建设果蔬大棚物联网 项 目 方 案

前言 (3) 一、农业物联网在现代设施农业应用的意义 (4) 二、果蔬大棚物联网方案概述 (6) 系统设计原则 (6) 系统功能特点 (7) 系统组成 (8) 系统示意图 (9) 三、各子系统介绍 (9) 环境参数采集子系统 (9) 自动控制系统 (10) 视频监控子系统 (13) 信息发布系统 (14) 四、中央控制室及管理软件平台 (15) 系统平台功能 (15) 数据采集功能 (17) 设备控制 (19) 视频植物生长态势监控功能 (20) 五、项目的需求 (23)

前言 物联网信息技术在2006 年被评为未来改变世界的十大技术之一,是继互联网之后的又一次产业升级,是十年一次的产业机会。总体来说,物联网是指各类传感器和现有的互联网相互衔接的新技术,物物相连,相互感知,若干年后,地球上的每一粒沙子都有可能分配到一个确定地址,它的各种状态、参数可被感知。2009 年8 月温家宝总理在无锡提出"感知中国",物联网开始在中国受到政府的重视和政策牵引。2010 年国家发布了"十二五"发展规划纲要,其中第十三章“全面提高信息化水平‘第一节’构建下一代信息基础设施”中明确提到:推动物联网关键技术研发

和在重点领域的应用示范。在第五章“加快发展现代农业‘第二节’推进农业结构战略性调整”中提出:加快发展设施农业,推进蔬菜、果蔬、茶叶、果蔬等园艺作物标准化生产。提升畜牧业发展水平。促进水产健康养殖。推进农业产业化经营,促进农业生产经营专业化、标准化、规模化、集约化。推进现代农业示范区建设。第三节“加快农业科技创新”中提出:推进农业技术集成化、劳动过程机械化、生产经营信息化。加快农业生物育种创新和推广应用,做大做强现代种业。加强高效栽培、疫病防控、农业节水等领域的科技集成创新和推广应用,实施水稻、小麦、玉米等主要农作物病虫害专业化统防统治。加快推进农业机械化,促进农机农艺融合。发展农业信息技术,提高农业生产经营信息化水平。 2013 年国家一号文件更是着重讲述物联网技术在农业中的应用。物联网信息技术与现代农业的结合更加是国家重点推动的关键示范应用。 一、农业物联网在现代设施农业应用的意义 我国是农业大国,而非农业强国。近30 年来果蔬高产量主要依靠农药化肥的大量投入,大部分化肥和水资源没有被有效利用而随地弃置,导致大量养分损失并造成环境污染。我国农业生产仍然以传统生产模式为主,传统耕种只能凭经验施肥灌溉,不仅浪费大量的人力物力,也对环境保护与水土保持构成严重威胁,对农业可持续性发展带来严峻挑战。 本项目针对上述问题,利用实时、动态的农业物联网信息采集系统,实现快速、多维、多尺度的果蔬信息实时监测,并在信息与种植专家知识系统基础上实现农田的智能灌溉、智能施肥与智能喷药等自动控制。突破果蔬信息获取困难与智能化程度低等技术发展瓶颈。 目前,我国大多数果蔬生产主要依靠人工经验尽心管理,缺乏系统的科学指导。设施栽培技术的发展,对于农业现代化进程具有深远的影响。设施栽培为解决我国城乡居民消费结构和农民增收,为推进农业结构调整发挥了重要作用,大棚种植已在农业生产中占有重要地位。要实现高水平的设施农业生产和优化设施生物环境控制,信息获取手段是最重要的关键技术之一。

基于物联网的智能农业发展趋势

基于物联网的智能农业发展趋势 戴起伟[1] (江苏省农业科学院农业经济与信息研究所) 摘要:智能农业作为现代农业的重要标志和高级阶段,呈现出信息采集智能化、资源利用数字化、信息网络全球化、农产品电子商务分工专业化、信息应用全程化、生产管理智能化等发展趋势。物联网被视为战略新兴产业和新的经济增长点,对于智能农业未来发展具有着前所未有的应用前景,但目前在农业方面的应用还处于起步阶段,文章在分析了物联网技术对于提升农业信息化水平的重要作用后,提出了在农业方面的重点应用领域。 目前,信息技术正日益深刻地改变着世界经济格局、社会形态和人类生活方式,同时也被广泛应用于农业各个领域。智能农业或信息化农业是现代科学技术革命对农业产生巨大影响下逐步形成的一个新的农业形态,其显著特征是在农业产业链的各个关键环节,充分应用现代信息技术手段,用信息流调控农业生产与经营活动的全过程。在智能农业环境下,信息和知识成为重要投入主体,并能大幅度提高物质流与能量流的投入效率,智能农业是现代农业发展的必然趋势和高级阶段。在加快传统农业转型升级的过程中,智能农业将成为发展现代农业的重要内容,为加快发展农村经济,进一步提高农民收入提供新的经济增长极;为加快农业产业化进程,增强农业综合竞争力提供新的技术支撑。 1 智能农业是现代农业的重要标志和高级阶段 现代农业相对于传统农业,是一个新的发展阶段和渐变过程。智能农业既是现代农业的重要内容和标志,也是对现代农业的继承和发展。其基本特征是高效、集约,其核心是信息、知识和技术在农业各个环节的广泛应用。信息技术取代机械与人力,知识要素取代资本要

素和劳动要素,使得信息、知识成为驱动经济增长的主导因素,使农业增长从主要依赖自然资源转向主要依赖信息资源和知识资源。智能农业是低碳经济时代农业发展形态的必然选择,代表了农业发展的根本方向,符合人类可持续发展的愿望。 2 智能农业主要发展趋势 2.1 农作信息采集智能化、资源利用数字化 充分利用现代地球空间与地理信息技术、传感技术、手持便捷信息识别技术等获取与作物生产有关的各种生产信息和环境参数,对耕作、播种、施肥、灌溉、喷药和除草等田间作业进行数字化控制,使农业投入品的资源利用精准化,效率最大化。 2.2 农业信息网络全球化扩展 目前,信息技术已经深刻地渗透到世界的每一个角落。农业信息资源的获取和服务也正打破国界的限制,加速走向国际化和全球化。通过信息网络和各类媒体,农业信息在全世界的流量呈几何级数式扩张,流速也正以前所未有的方式进入高速时代。农业信息化深刻地影响着世界农业资源配制,助推农产品贸易的国际竞争日趋加剧。同时,农业信息资源数据库正向专业化、集成化、共享化和知识化管理方向发展,等等。 2.3 农产品电子商务分工专业化 网络和通讯技术的发展、电子商务交易的普及和成熟,使得通过网络销售农产品,可在瞬间完成信息流、资金流和实物流的交易,农产品电子商务已不再单是产品供求交易的操作,而是前延至产前订单、后续至流通配送等综合性的服务,即紧紧围绕产业链环节,在信息化管理的平台上实现信息共享、管理对接和功能配套。 2.4 农业信息传播多媒体化 视频制作与压缩技术、数字动漫技术、虚拟仿真技术、手机网络传媒技术等多媒体技术,具有传播快、覆盖广、形象生动、丰富多彩、易于操作等特点,为农业复杂问题的简化表达与传播提供了空前的便

相关主题