搜档网
当前位置:搜档网 › 常见蔬菜中重金属铅_镉含量的测定(精)

常见蔬菜中重金属铅_镉含量的测定(精)

常见蔬菜中重金属铅_镉含量的测定(精)
常见蔬菜中重金属铅_镉含量的测定(精)

生物灾害科学 2014, 37(1: 60-63 https://www.sodocs.net/doc/6111669610.html, Biological Disaster Science, V ol. 37, No. 1, 2014 swzhkx@https://www.sodocs.net/doc/6111669610.html,

收稿日期:2013-11-19

作者简介:徐红颖,女,实验师,主要从事分析化学实验工作,E-mail: xuhongying2000@https://www.sodocs.net/doc/6111669610.html,。

DOI :10.3969/j.issn.2095-3704.2014.01.011

常见蔬菜中重金属铅、镉含量的测定

徐红颖1,包玉龙2,王玉兰1

(1. 内蒙古化工职业学院,内蒙古呼和浩特 010010;2. 内蒙古疾病控制中心,内蒙古呼和浩特 010010)

摘要:通过对呼和浩特市主要大型超市的25种蔬菜75个样品中重金属Pb 、Cd 的含量进行测定,以期探明铅,镉两种重金属元素在蔬菜中的含量及分布规律。本试验采用石墨炉原子吸收光谱法测定样品的铅,镉含量。试验结果表明:不同蔬菜有不同程度的超标现象,其中超标最严重的为架豆,铅含量超过国标15倍,超标率100%,镉含量超标7倍之多,超标率33.3%,韭菜中的铅含量超标5倍多,超标率100%。试验结论:不同种类的蔬菜对相同的重金属元素以及相同的蔬菜对不同重金属元素富集吸收都存在明显的差异性;不同产地的蔬菜对重金属元素的富集吸收也存在差异性。

关键词:蔬菜;铅、镉含量;超标率;富集吸收;差异性

中图分类号:TS255.7 文献标志码:A 文章编号:2095-3704(2014)01-0060-04

Determination of Contents of Lead and Cadmium in Common Vegetables

XU Hong-ying1, BAO Yu-long2, WANG Yu-lan1

(1. Inner Mongolia Chemical Engineering Professional College, Hohhot 010010, China;

2. Inner Mongolia Center for Disease Control, Hohhot 010010, China

Abstract: Through the investigation into the contents of two heavy metals cadmium (Cd and lead (Pb in 75 samples of vegetables from 25 varieties sold in large supermarkets in Hohhot, this test was conducted to determine the status quo of the contents and distributions of these two heavy metals in vegetables. Determination samples were tested by graphite furnace atomic absorption spectrometry to get the lead and cadmium contents. Different vegetable had exceeded the standard to different degree, of which the most serious excess was in beans, in which the lead contents exceeded the national standards by 15 times, with the exceeding rate 100%, and its cadmium contents exceeded the standards by 7 times, with the exceeding rate 33.3%; as to the leek, its lead contents exceeded the standards by 5 times, with the exceeding rate 100%. Different varieties of vegetables to the same heavy metal element, or the same vegetable to different heavy metal elements, the heavy metal enrichment absorption showed significant differences, and as to the same vegetable produced in different area, the accumulation of the heavy metal absorption also showed differences.

Key words: vegetables; lead and cadmium contents; enrichment; absorption; difference

0 引言

蔬菜是生活中不可或缺的副食品,为人体提供必需的多种维生素和矿物质。随着城镇化速度加快以及工业迅速发展,使得环境污染问题目益加重,致使蔬菜中

重金属和农药残留含量急剧增加,从而给身体健

2014年第1期徐红颖等:常见蔬菜中重金属铅、镉的含量测定?61?

康带来潜在危害[1-5]。目前关于蔬菜中重金属污染和防治的研究报告很多,但是关于呼和浩特市场供应蔬菜的研究却很少,自1995年[6]和2009年[7]对呼和浩特郊区蔬菜报道之后就没有关于呼和浩特蔬菜重金属的报道。目前报道中大多采用酸消解、干灰化法和压力消解罐等方法来消解蔬菜样品,而本文采用极少使用的过硫酸铵灰化法处理蔬菜样品,该方法有助于减少待测元素的损失。通过研究测定呼和浩特市场供应蔬菜中重金属Pb 、Cd 的含量,对指导当前以及以后蔬菜的无公害化生产和环境保护等方面具有重要的指导意义,为防止重金属污染危害人体健康提供一定的依据[8-9]。

1 材料与方法

1.1 蔬菜样品

荷兰豆、架豆、扁豆、韭菜、油麦菜、生菜、六条芹、长茄子、圆茄子、茭白、滑子菇、黄瓜、白萝卜等共25个品种,75个样品,均为市售新鲜蔬菜。 1.2 主要仪器

石墨炉原子吸收分光光度计(Ice3300),马弗炉,电子天平,可调式烘干箱。测定方法见表1。 1.3 主要试剂

Pb 、Cd 标准溶液,浓硝酸,高氯酸,过硫酸铵,均为分析纯。 1.4 样品的预处理及标准溶液的配制

超市购回的蔬菜洗去泥土,晾干水分,取可食用的部分进行过硫酸铵灰化法消解,待彻底消解后,冷却用1%的稀硝酸定容至25 mL的容量瓶中。

Pb 标准溶液的配制:准确称取1.000 0 g金属铅(99.99%)分次加20 mL稀盐酸消解,加2滴硝酸,转移到1 000 mL容量瓶中,定容,即浓度为1.000 0

mg/mL。

Cd 标准溶液的配制:准确称取1.000 0 g金属镉(99.99%)分次加20 mL稀盐酸消解,加2滴硝酸,转移到1 000 mL 容量瓶中,定容,即浓度为1.000 0

mg/mL。 1.5 国家标准

2 结果与分析

2.1 不同超市不同蔬菜Pb 、Cd 含量测定结果

采用石墨炉原子吸收方法测定上述25种蔬菜的75个样品的Pb 、Cd 含量,结果见表3。实验结果表明:不同蔬菜重金属的含量不同,因为其对重金属的富集能力不同,不同超市的蔬菜来源不同,重金属含量也不相同,且有不同程度的超标现象。与国标GB 2762—2012(表2)比较,铅超标的有荷兰豆,3个样品平均含量为0.391 9 mg/kg,超过国标将近2倍,超标率100%;架豆,3个样品平均含量为2.919 mg/kg,超过国标15倍,超标率100%;韭菜中铅的平均含量为1.614

mg/kg,超过国家标准5倍之多,超标率100%;六条芹中铅的平均含量为0.352 5 mg/kg,超过国标将近1倍,超标率100%;长茄子中铅的平均含量为0.229 1

mg/kg,

表1 蔬菜中重金属含量测定方法

元素分析仪器分析方法

方法依据

Pb 原子吸收光谱仪石墨炉原子吸收光谱法 GB/T5009.12—2001 Cd

原子吸收光谱仪

石墨炉原子吸收光谱法 GB/T5009.15—2001

表2 国家标准GB 2762-2012

项目叶类蔬菜/(mg·kg-1

豆类蔬菜/(mg·kg-1

菌类蔬菜/(mg·kg-1

果实类/(mg·kg-1

根茎类/(mg·kg-1

Pb Cd

0.3 0.2

0.2 0.1

1.0 0.2

0.1 0.05

— 0.2

?62?生物灾害科学第37卷第1期

超过国标2倍多,超标率100%;圆茄子中铅的平均含量为0.067 95 mg/kg,未超出国标,超标率为50%;茭白中铅的平均含量为0.074 65 mg/kg,未超出国标,超标率为50%;其余样品均未超标,而且18个菌类的样品中有12个样品的铅含量在0.005 mg/kg以下。在架豆中镉的平均含量为0.735 9 mg/kg,超过国标7倍,超标率33.3%;韭菜中镉平均含量为0.536 mg/kg,超过国标将近3倍,超标率为100%;长茄子中镉的平均含量为0.238 6 mg/kg,超过国标2倍多,超标率50%;滑子菇中镉的平均含量为 0.511 4 mg/kg,超过国标近3倍,超标率100%,其余样品均未超标,且圆茄子中镉的含量在0.000 1 mg/kg以下。其中架豆和韭菜中的铅、镉超标率都为100%,说明受污染已经比较严重,且富集铅、镉的能力比其他的样品强。

表3 不同超市不同蔬菜Pb 、Cd 含量测定结果

样品采样地点 Pb/(mg·kg-1 Cd/(mg·kg-1 样品

采样地点 Pb/(mg·kg-1 Cd/(mg·kg-1 超市1 0.320 9 0.073 6 超市1 3.249 9 0.019 2 超市2 0.367 2 0.065 2 超市2 2.651 7 1.021 3 荷兰豆

超市3 0.487 5 0.076 4 架豆超市3 2.856 2 1.167 2 超市1

0.107 4 0.005 5 超市4 1.713 4 0.560 6 超市2 0.116 7 0.002 9 超市5 1.538 1 0.476 5 扁豆

超市3 0.136 4 0.006 4 韭菜超市6 1.589 4 0.570 9 超市4

0.018 9 0.082 1 超市4 0.136 1 0.036 4 超市5 0.094 3 0.083 7 超市5 0.129 8 0.027 5 油麦菜

超市6 0.113 8 0.071 8 生菜超市6 0.134 7 0.016 9 超市4

0.393 5 0.047 1 超市4 0.043 1 0.467 1 超市5 0.294 8 0.026 8 超市7 0.037 5 0.569 2 六条芹

超市6

0.369 2 0.040 1 滑子菇超市1 0.044 4 0.498 0 超市1 0.048 2 超市1 0.032 7 0.016 3 超市2 0.052 2 0.006 54 超市2 0.045 1 0.024 8 包菜

超市3 0.048 6 0.007 15 白萝卜超市4 0.037 4 0.018 7 超市1

0.025 6 0.007 34 超市2 0.046 5 0.006 38 超市4 0.038 5 0.009 18 超市3 0.042 7 0.005 18 青椒

超市5 0.053 2 0.012 19 花菜超市4 0.039 5 0.006 09 超市1

0.027 9 0.031 6 超市1 0.025 8 0.010 5 超市2 0.026 8 0.039 2 超市2 0.023 9 0.016 5 超市3 0.018 7 0.027 3 超市3 0.031 6 0.019 3 黄瓜

超市4 0.030 5 0.028 9 大白菜超市4 0.037 2 0.020 4 超市1

0.141 5 0.012 4 超市1 0.015 8 0.005 41 超市2 0.145 6 0.013 6 超市2 0.025 7 0.006 38 香菜

超市4

0.207 1

0.012 5

西红柿超市3

0.042 4

0.010 82

超市1 <0.005 超市1 <0.005 0.010 1 超市2 <0.005 超市3 <0.005 0.014 3 圆菇超市3

0.076 1

0.021 9

平菇超市4 0.054 2 0.012 5 超市1 <0.005 超市2 <0.005 0.005 1 超市2 <0.005 超市3 0.041 0 0.135 2 天然花菇

超市3 <0.005 茶树菇超市4 <0.005 0.014 8

超市1 <0.005 超市7 0.220 3 0.467 1 超市2 <0.005 长茄子

超市8 0.237 8 0.010 5 白雪菇

超市4 <0.005 超市7 0.043 1 0.005 1 超市1 0.061 4 0.047 5

茭白

超市8 0.106 2 0.002 4 超市2 0.072 6 0.039 3 超市3 0.070 3 0.041 5 菠菜

超市4

0.075 9

0.050 2

圆茄子

超市7 超市8

0.022 6 0.113 3

<0.000 1 <0.000 1

2014年第1期徐红颖等:常见蔬菜中重金属铅、镉的含量测定?63?

2.2 不同种类蔬菜中Pb 、Cd 均值比较

把25个品种的蔬菜分成叶菜类、根茎类、果实类、花菜类和菌类5大种类,并对其Pb 、Cd 的平均值做对比,如图1可知,不同种类的蔬菜对相同的重金属元素以及相同种类的蔬菜对不同重金属元素的吸收都存在着明显差异性。不同种类的蔬菜对Pb 、Cd 的富集顺序为:Pb 为果实类>根茎类>叶菜类>菌类>花菜类,Cd 为菌类>叶菜类>根茎类>果实类>花菜类。由此可知,根茎类和叶菜类蔬菜对铅、镉的吸收、富集能力都比较强,花菜类蔬菜对铅、镉的吸收、富集能力都最弱,果实类蔬菜对铅的吸收、富集能力最强,而对镉的吸收、富集能力稍差。

3 结语

通过对呼和浩特市场供应中25种蔬菜的中Pb 、Cd 含量的调查,并参照国家标准,发现不同的蔬菜有不同层次的超标现象,这可能与蔬菜基地的地理位置和环

境有关,比如位于高速路的两旁,工厂附近或工业三废的排放,污水灌溉,化肥滥用等等因素。所以要降低重金属污染对人们身体的危害,建议环保部门切断重金属污染途径,建立健全检测体系,定期进行环境检测等等[9-10]手段。

参考文献:

[1] 毕淑琴, 谢建活, 刘树庆, 等. 土壤重金属污染对植物产量及品质的影响研究[J]. 河北农业科学, 2006(6: 107-110. [2] 高宗军, 成世才, 代杰瑞, 等. 山东省鱼台地区蔬菜重金属污染状况及选择性种植[J]. 安徽农业科学, 2010(7: 3685-3687. [3] 金茜,

刘瑞波, 穆浩林, 等. 超市蔬菜中重金属含量的测定[J]. 遵义师范学院院报, 2008(10: 71-73.

[4] 张永志, 李劲峰, 王钢军. 温州市蔬菜、水果重金属元素污染调查研究[J]. 浙江农业学报, 2005(6: 386-387. [5] 崔旭, 葛元英, 张小红. 晋中市部分蔬菜中重金属含量及其健康风险[J]. 中国农学通报, 2009(21: 335-338. [6] 迟爱民,徐忠林. 呼和浩特市蔬菜中重金属污染的研究[J]. 干旱区资源与环境,1995(9: 86-90.

[7] 王林平, 张君, 孙海旭, 等. 波消解-火焰原子吸收光谱法测定呼和浩特市郊区农田土壤和蔬菜样品中的重金属[C]//中国

化学会. 第十届中国化学会分析化学年会暨第十届全国原子光谱学术会议论文摘要集, 2009. [8] 黄雅琴, 杨在中. 蔬菜对重金属的吸收累积特点[J]. 内蒙古大学学报: 自然科学版, 1995(5: 55-57. [9] 茹淑华, 孙世友, 王凌, 等. 蔬菜重金属污染现状、污

染来源及防治措施[J]. 河北农业科学, 2006(3: 88-91.

[10] 坦曽,洛桑,李承鼎, 等. 拉萨市区大棚蔬菜重金属污染现状分析与评价[J]. 西藏大学学报: 自然科学版, 2011(26: 32-35.

图1 不同种类的蔬菜Pb 、Cd 含量对比

GBT17141-1997土壤质量铅、镉的测定石墨炉原子吸收分光光度法

. . 索立德环保服务 方法验证报告 项目名称:铅镉 方法名称:GB/T 17141-1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法 编写人及日期:_______________ 校核人及日期:_______________ 审核人及日期:_______________

1.目的 采用《土壤质量铅、镉的测定石墨炉原子吸收分光光度法》GB/T 17141-1997对土壤里面的铅、镉的测试进行验证,并对验证结果进行评估。本实验室现有条件与标准方法的规定一致,并按照该方法做基础实验,验证本实验室现有条件下开展该检测项目的适用性。 2.方法原理 采用盐酸-硝酸-氢氟酸-高氯酸消解的方法,使铅、镉溶解于试液,然后将试液注入到石墨炉中。经过预先设定的干燥、灰化、原子化等升温程序使共存基体成分蒸发除去,同时在原子化阶段的高温下铅镉化合物离解为基态原子蒸气,并对空心阴极灯发射的特征谱线(铅283.3nm 镉228.8nm)产生选择性吸收,在选择在最佳条件下,通过背景扣除,测定铅镉的吸光度。3.试剂和材料的验证 3.1试剂的验证 3.2标准物质的验证 3.3材料的验证 无 4.仪器和设备的验证 4.1仪器的验证

设备的验证 4.2 6.样品的验证 6.1 采样方法:HJ/T 166-2004。 6.2 样品运输和保存:用塑料袋采集样品,常温下保存。 6.3 样品制备:将采集的土壤样品(一般不少于500g)混匀后用四分法缩分至100g,缩分至 100g,缩分后的土样经风干后,除去土样中石子和动植物残体等异物,用木棒研压,通过2mm 尼龙筛,混匀。用玛瑙研钵将筛过的土样研磨至全部通过100目尼龙筛,混匀后备用。 6.3.1消解 准确称取0.1~0.3g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入 5mL盐酸,于通风橱的电热板上低温加热,使样品初步分解,待蒸发至约剩2-3 mL左右时,取下稍冷,然后加入5 mL硝酸、4mL氢氟酸、2mL高氯酸,加盖后于电热板上中温加热1 h左右,然后开盖,电热板温度控制在150 ℃,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机碳化物分解。待坩埚壁上的黑色

蔬菜中重金属(Pb、Cd)含量的测定 实验报告

蔬菜中重金属(Pb、Cd)含量的测定 摘要:本实验目的在于测定蔬菜中重金属(Pb、Cd)含量。以芥菜为样品,用干法灰化处理样品,用悬汞电极微分脉冲极谱法对铅离子和镉离子进行测定,用标准加入法做定量分析。测得结果为芥菜根中铅含量为2.5579mg/kg,镉含量为3.1836mg/kg。超过国标中对铅镉含量的测定。 关键词:蔬菜;重金属(铅Pb、镉Cd);微分脉冲极谱法 1 引言 1.1 测定蔬菜中Pb、Cd含量的现实意义 随着现代工业的发展,环境污染加剧,工业“三废”的排放及城市生活垃圾、污泥和含重金属的农药、化肥的不合理使用,导致蔬菜中重金属污染加剧。蔬菜是人们生活中的重要农产品,蔬菜中具有积累性和持续性危害的重金属含量的多少,将直接影响人们的健康。其中,铅及其化合物对人体有毒,摄取后主要贮存在骨骼内,部分取代磷酸钙中的钙,不易排出,中毒较深时引起神经系统损害,严重时会引起铅毒性脑病;镉会对呼吸道产生刺激,长期暴露会造成嗅觉丧失症、牙龈黄斑或渐成黄圈,镉化合物不易被肠道吸收,但可经呼吸被体内吸收,积存于肝或肾脏造成危害,尤以对肾脏损害最为明显。因此对蔬菜中的重金属铅、镉测定的研究具有极大的现实意义。 1.2目前有关蔬菜中重金属(Pb、Cd)含量的测定方法的概述 根据《GB 5009.12-2010 食品安全国家标准食品中铅的测定》,测定食品中铅含量包括以下方法:石墨炉原子吸收光谱法、氢化物原子荧光光谱法、火焰原子吸收光谱法、二硫腙比色法、单扫描极谱法。 根据《GB/T 5009.15-2003 食品安全国家标准食品中镉的测定》,测定食品中镉含量包括以下方法:石墨炉原子吸收光谱法、原子吸收光谱法之碘化钾-4-甲基戊酮-2法、原子吸收光谱法之二硫腙-乙酸丁酯法、比色法、原子荧光法。 此外,测定食品中铅镉含量方法还有电感耦合等离子体质谱法(ICP-MS)法、二次导数极谱法、催化极谱分析法、离子选择性电极法、溶出伏安法、高效液相色谱法。用毛细管区带电泳法可准确有效地测定了奶粉中的镉、铅、铜;通过观察试纸显色法可实现了快速检测食品中镉含量的要求。 火焰原子吸收法操作简单、分析速度快、测定高浓度元素时干扰小、信号稳定;石墨炉原子吸收法灵敏、准确、选择性好,但基体干扰严重,不适合多种元素分析;电感耦合等离子体质谱法灵敏度高,选择性好,能同时分析多种元素,但价格昂贵,易受污染;紫外分光光度法简便、快速、灵敏度高、仪器简单、价格低廉、容易普及,但干扰因素较多,选择性较差。阳极溶出伏安法灵敏度高、分辨率好,仪器价格低廉,可同时测定几种元素。其次还有间接碘量法,但这一方法测定误差较大;而比色法方法虽简单,但由于要使用有毒和易挥发的三氯甲烷等试剂,有害于分析人员的健康和污染环境。

YBB00372004砷锑铅镉浸出量测定法

国家食品药品监督管理局 国家药品包装容器(材料)方法标准 (试行) YBB00372004 砷、锑、铅、镉浸出量测定法 Shen Ti Qian Ge Jin chuLia ng Cedi ngfa Tests for release of arse nic an tim ony lead and cadmium 本法适用于各类药用玻璃容器及管材中的砷、锑、铅、镉浸出量的测定。 供试液的制备 供试品为容器时取样量见下表: 表1玻璃容器容量与取样数量 供试品为玻璃管时,取总表面积(包括每截管的内、外衰面及两 端的截面)约为500cm2的玻璃管,两端截面细工研囊后作为供试品。 供试液制备将容器供试品清洗干净,并用4%(v/v)乙酸溶液灌装至满口容量的90%,

对于安瓶瓿等容量较小的容器,则灌装乙酸溶液至瓶身缩肩部.用倒置烧杯(需用平均线热膨胀系数a (20C?300C)约为3.3X 10-6K^1硼硅玻璃制成,新的烧杯须经过老化处理)或惰性材料铝箔盖住口部。 98C蒸煮2小时。冷却后取出供试品,溶液即为供试液。 将玻管供试品清洗干净,置入装有4%(v/v)乙酸溶液1000mL的玻璃容器(玻璃容器不应含有砷、锑、铅、镉元素)中,98C蒸煮2 小时.冷却后取出供试品,溶液即为供试液。 1砷浸出量测定法 试验原理供试液中含有的高价砷被碘化钾、氯化亚锡还原为三价砷.然后与锌粒和酸反应产生的新生态氢,生成砷化氢,经银盐溶液吸收后,形成红色胶态物,与标准曲线比较,测定其含量。 测定法精密量取供试液10mL、空白液10mL、标准砷溶液(每 1 mL 相当于I 卩g 的As) 1 mL、2mL、3 mL、4 mL、5 mL (必要时可根据样品实际情况调整线性范围),分别置测砷瓶中,按中华人民共和国药典2000年版二部附录忸J砷盐检查法第二法操作,用分光光度法,在510nm的波长处测定吸收度。以浓度为X轴,以吸收度为Y 轴,绘制标准曲线.与标准曲线比较确定供试品的浓度。 结果表示方法玻璃容器以As (mg/L)表示。药用玻璃管材以 As (mg/dm2)表示。 2锑浸出量测定方法 试验原理孔雀绿(C23H25N2CI)与五价锑离子形成绿色络合物,经甲苯萃取,提取有机相进行比色,与标准曲线比较,测定其含量.

蔬菜中重金属含量测量

蔬菜中重金属含量分析 摘要 本文分析了中国蔬菜重金属污染现状并介绍了铅、镉的危害。实验探究以常见蔬菜为样品,运用火焰原子吸收光谱法对其铅、镉含量进行了测定。加标回收率为93.9%~98.6%。通过实验数据对比分析,得出以下结论: 1. 白萝卜不同部位其铅、镉含量不同。露土部分的铅、镉含量分别为0.24mg/kg、0.12mg/kg,地下部分的铅、镉含量分别为0.22mg/kg、0.17mg/kg。露地部分的铅含量比地下部分高,但其镉含量比地下部分低。且白萝卜样品中铅的含量高于镉的含量,铅尚未达到污染程度,而镉已远超国标范围。 2. 不同等级的青菜、菠菜、鸡毛菜其铅、镉含量不同。普通等级的铅含量(2.18mg/kg、1.56mg/kg、0.605mg/kg)都高于精品类(1.62mg/kg、0.635mg/kg、0.276mg/kg);普通等级的镉含量(0.0780mg/kg、0.118mg/kg、0.0386mg/kg)也都高于精品类(0.0382mg/kg、0.0446mg/kg、0.0220mg/kg)。且普通蔬菜的铅含量均已超标,精品类只有鸡毛菜的铅含量未超标。而镉含量的测定结果相对要乐观些,只有普通等级的青菜与菠菜的镉含量超标,其他都正常。 3. 不同产地土豆的铅、镉含量存在差异。铅含量由高到低的顺序为:上海(1.14mg/kg)>苏州(0.682mg/kg)>南通(0.621mg/kg);镉含量由高到低的顺序为:南通(1.00mg/kg)>苏州(0.220mg/kg)>上海(0.101mg/kg)。三种产地的土豆的铅、镉含量均已超标。 关键词:火焰原子吸收光谱法;铅;镉;蔬菜

常见蔬菜中重金属铅_镉含量的测定(精)

生物灾害科学 2014, 37(1: 60-63 https://www.sodocs.net/doc/6111669610.html, Biological Disaster Science, V ol. 37, No. 1, 2014 swzhkx@https://www.sodocs.net/doc/6111669610.html, 收稿日期:2013-11-19 作者简介:徐红颖,女,实验师,主要从事分析化学实验工作,E-mail: xuhongying2000@https://www.sodocs.net/doc/6111669610.html,。 DOI :10.3969/j.issn.2095-3704.2014.01.011 常见蔬菜中重金属铅、镉含量的测定 徐红颖1,包玉龙2,王玉兰1 (1. 内蒙古化工职业学院,内蒙古呼和浩特 010010;2. 内蒙古疾病控制中心,内蒙古呼和浩特 010010) 摘要:通过对呼和浩特市主要大型超市的25种蔬菜75个样品中重金属Pb 、Cd 的含量进行测定,以期探明铅,镉两种重金属元素在蔬菜中的含量及分布规律。本试验采用石墨炉原子吸收光谱法测定样品的铅,镉含量。试验结果表明:不同蔬菜有不同程度的超标现象,其中超标最严重的为架豆,铅含量超过国标15倍,超标率100%,镉含量超标7倍之多,超标率33.3%,韭菜中的铅含量超标5倍多,超标率100%。试验结论:不同种类的蔬菜对相同的重金属元素以及相同的蔬菜对不同重金属元素富集吸收都存在明显的差异性;不同产地的蔬菜对重金属元素的富集吸收也存在差异性。 关键词:蔬菜;铅、镉含量;超标率;富集吸收;差异性 中图分类号:TS255.7 文献标志码:A 文章编号:2095-3704(2014)01-0060-04 Determination of Contents of Lead and Cadmium in Common Vegetables

(完整word版)重金属检测方法汇总

重金属检测方法汇总 重金属检测方法及应用 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

蔬菜中重金属含量测量

蔬菜中重金属含量测量 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

蔬菜中重金属含量分析 摘要 本文分析了中国蔬菜重金属污染现状并介绍了铅、镉的危害。实验探究以常见蔬菜为样品,运用火焰原子吸收光谱法对其铅、镉含量进行了测定。加标回收率为%~%。通过实验数据对比分析,得出以下结论: 1. 白萝卜不同部位其铅、镉含量不同。露土部分的铅、镉含量分别为kg、kg,地下部分的铅、镉含量分别为kg、kg。露地部分的铅含量比地下部分高,但其镉含量比地下部分低。且白萝卜样品中铅的含量高于镉的含量,铅尚未达到污染程度,而镉已远超国标范围。 2. 不同等级的青菜、菠菜、鸡毛菜其铅、镉含量不同。普通等级的铅含量(kg、kg、kg)都高于精品类(kg、kg、kg);普通等级的镉含量(kg、kg、kg)也都高于精品类(kg、kg、kg)。且普通蔬菜的铅含量均已超标,精品类只有鸡毛菜的铅含量未超标。而镉含量的测定结果相对要乐观些,只有普通等级的青菜与菠菜的镉含量超标,其他都正常。 3. 不同产地土豆的铅、镉含量存在差异。铅含量由高到低的顺序为:上海(kg)>苏州(kg)>南通(kg);镉含量由高到低的顺序为:南通(kg)>苏州(kg)>上海(kg)。三种产地的土豆的铅、镉含量均已超标。 关键词:火焰原子吸收光谱法;铅;镉;蔬菜 Analysis of heavy metals in vegetables ABSTRACT The present situation of heavy metal pollution in Chinese vegetables and the harms of lead and cadmium were introduced. Flame atomic absorption spectrophotometry was used to determine contents of lead and cadmium in seasonal vegetables. The addition standard recoveries are %~%. Conclusions have been drawn as follows: 1. The contents of lead and cadmium in the soil-exposing part are kg and kg respectively; the contents in the underground part are kg and kg respectively. The former is higher than the latter. And the contents of lead are larger than those of cadmium. The levels of lead in ternip

食品中几种常见的重金属检测方法

食品中几种常见的重金属检测方法 随着现阶段社会经济的快速发展,人们物质生活水平在不断提升,社会各界开始逐步重视食品安全问题。当前环境污染问题较为严重,各类重金属对食品安全构成了极大的威胁。为了有效应对食品安全中的重金属污染问题,当前需要对各类检测技术进行探究,促进食品安全检测工作质量的提升。 食品安全对于社会群众生命健康具有重要影响,当前相关食品检测机构需要从日常工作中提高责任意识,完善各项检测技术,确保食品安全。目前自然界中比重大于5的金属都被称为重金属,并不是所有的重金属都会对人体健康构成威胁,当重金属实际含量超出人体承受限度时会造成不同程度的危害,比如Pb、Cd、As、Hg等元素。许多重金属不能通过简单方法就能有效消除,如果人类长期使用被重金属污染后的食物,将会导致中毒问题。所以对重金属检测方法进行研究,对维护食品安全具有重要意义。 食物中常见重金属的主要来源概述 目前食品中存有的重金属来源主要有自然原因,也有诸多人为因素。自然原因主要包括不同地质和地理要素的影响,比如火山运动频繁的地区或是矿区,部分有毒重金属物质会对当地动植物产生不同程度污染,人类生活在此区域内,误食动植物都会诱发重金属中毒。人为因素导致的污染

主要是各类社会活动产生的主要后果,现阶段我国工业经济发展较快,各类工业生产活动会产生大量废渣和废水,此类废弃物当中存有较多重金属元素,如果相关部门不能对其进行有效处理,此类废弃物排放到自然环境中,不仅会破坏自然生态环境,还会对当地群众生命健康构成威胁。还有部分食物在实际存储和运输过程中与各类重金属元素进行直接接触,或是食物添加剂当中的有毒元素不断累积、发生相应化学反应都会导致重金属中毒现象的发生。 现阶段食品中几种常见的重金属检测方法探析 原子吸收光谱法。原子吸收光谱法主要是根据自由基础形态下的原子对辐射光进行共振吸收,通过光照强度来对食物中含有的重金属元素进行检测。此类方法实际操作较为便捷,能够最快速度得出相应结果,是当前食物重金属检测的重要技术。此类技术将磷酸二氢钾或是硝酸钯作为改进剂,通过添加改进剂能够使得原子温度有效降低,排除外界干扰因素,使得检测结果更加准确。现阶段在原子吸收光谱法中应用的吸收分光光度计都是通过微机进行控制,运用软件进行自动处理,简化了各项操作程序,有效缩短了实际反应时间。 原子荧光光谱法。原子荧光光谱技术是存在于原子发射和原子吸收之间的分析技术,在食物样品中添加还原剂,使得原子能够吸收特定的频率辐射,逐步形成激发态原子,此

水质 铜、铅、镉的测定 石墨炉原子吸收分光光度法水和废水监测分析方法 方法确认

水质铜、铅、镉的测定石墨炉原子吸收分光光度法水和废水监测分析方法(第四版)方法确认 1.目的 通过石墨炉原子吸收分光光度法测定水质中铜、铅、镉的浓度,分析方法精密度,判断本实验室的检测方法是否合格。 2. 适用范围 本方适用于对下水和清洁地表水。 3. 原理 将样品注入石墨管,用电加热方式使石墨炉升温,样品蒸发离解形原子蒸汽,对来自光源的特征电磁辐射产生吸收。将测得的样品吸光度和标准吸光度进行比较,确定样品中被测金属的含量。 4.仪器工作参数 5.分析方法

样品预处理 取100ml水样放入200ml烧杯中,加入硝酸5ml,在电热板上加热消解(不要沸腾)。蒸至10ml左右,加入5ml硝酸和10ml过氧化氢,继续消解,直至1ml 左右。如果消解不完全,再加入硝酸5ml和10ml过氧化氢,再次蒸至1ml左右。取下冷却,加水溶解残渣,在过滤液中加入10ml硝酸钯溶液,用水定容至100ml。 取%硝酸100ml,按上述相同的程序操作,以此为空白样。 混合标准使用溶液 用%硝酸稀释金属标准贮备溶液配制而成,使配成的混合标准溶液含量为镉ml、铜ml、ml 校准曲线的绘制 参照下表,在50ml容量瓶中,用硝酸溶液稀释混合标准溶液,配置至少5个工作标准溶液,其浓度范围应包括试料中铜、铅、镉的浓度。 注:定容体积为50ml。 样品测定 将20ul样品注入石墨炉,参照仪器工作参数表的仪器参数测量吸光度。以零浓度的标准溶液为空白样,扣除空白样吸光度后,从校准曲线上查出样品中被测金属的浓度。

计算 实验室样品中的金属浓度按下式计算: V W c 1000 ?= 式中:c —实验室样品中的金属浓度,ug/L ; W —试份中的金属含量,ug ; V —试份的体积,ml 。 6. 结果分析 选取6份样品加标,使铜、铅、镉的加标浓度均为100ug/L ,按5进行测试。由附表可知,精密度RSD<10%。铜标准偏差

食品中铅镉砷的测定(国标)

食品中铅的测定: 第一法石墨炉原子吸收光谱法 3 原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收283.3 nm 共振线, 在一定浓度范围,其吸收值与铅含量成正比,与标准系列比较定量。 4 试剂和材料 硝酸:优级纯。 4.2 过硫酸铵。 4.3 过氧化氢(30%)。 4.4 高氯酸:优级纯。 4.5 硝酸(1+1):取50 mL 硝酸慢慢加入50 mL 水中。 4.6 硝酸(0.5 mol/L):取3.2 mL 硝酸加入50 mL 水中,稀释至100 mL。 4.7 硝酸(l mo1/L):取6.4 mL 硝酸加入50 mL 水中,稀释至100 mL。 4.8 磷酸二氢铵溶液(20 g/L):称取2.0 g 磷酸二氢铵,以水溶解稀释至100 mL。 4.9 混合酸:硝酸十高氯酸(9+1)。取9 份硝酸与1 份高氯酸混合。 4.10 铅标准储备液:准确称取1.000 g 金属铅(99.99%),分次加少量硝酸(4.5),加热溶解,总量不超过37 mL,移入1000 mL 容量瓶,加水至刻度。混匀。此溶液每毫升含 1.0 mg 铅。 4.11 铅标准使用液:每次吸取铅标准储备液1.0 mL 于100 mL 容量瓶中,加硝酸(4.6)至刻度。如此经多次稀释成每毫升含10.0 ng,20.0 ng,40.0 ng,60.0 ng,80.0 ng 铅的标准使用液。 5 仪器和设备 5.1 原子吸收光谱仪,附石墨炉及铅空心阴极灯。 5.2 马弗炉。 5.3 天平:感量为1 mg。 5.4 干燥恒温箱。 5.5 瓷坩埚。 5.6 压力消解器、压力消解罐或压力溶弹。 5.7 可调式电热板、可调式电炉。 6 分析步骤 6.2 试样消解(可根据实验室条件选用以下任何一种方法消解) 6.2.1 湿式消解法:称取试样1 g~5 g(精确到0.001 g)于锥形瓶或高脚烧杯中,放数粒玻璃珠,加10 mL 混合酸(4.9),加盖浸泡过夜,加一小漏斗于电炉上消解,若变棕黑色,再加混合酸,直至冒白烟,消化液呈无色透明或略带黄色,放冷,用滴管将试样消化液洗入或过滤入(视消化后试样的盐分而定)10 mL~25 mL 容量瓶中,用水少量多次洗涤锥形瓶或高脚烧杯,洗液合并于容量瓶中并定容至刻度,混匀备用;同时作试剂空白。 6.3 测定 6.3.1 仪器条件:根据各自仪器性能调至最佳状态。参考条件为波长283.3 nm,狭缝0.2 nm~1.0 nm,灯电流5 mA~7 mA,干燥温度120 ℃,20 s;灰化温度450 ℃,持续15 s~20 s,原子化温度:1700 ℃~2300 ℃,持续4 s~5 s,背景校正为氘灯或塞曼效应。 6.3.2 标准曲线绘制:吸取上面配制的铅标准使用液10.0 ng/mL(或μg/L),20.0 ng/mL(或μg/L),40.0 ng/mL(或μg/L),60.0 ng/mL(或μg/L),80.0 ng/mL(或μg/L)各10 μL,注入石墨炉,测得其吸光值并求得吸光值与浓度关系的一元线性回归方程。

蔬菜中重金属(Pb、Cd)含量的测定 方案

蔬菜中重金属(Pb、Cd)含量的测定 11化教4班20112401072 陈天明20112401073 陈博殷摘要: 铅离子和镉离子分别于-0.42V和-0.63V电位处能产生良好的极谱波,两者的峰电位相差较大,用悬汞电极微分脉冲极谱溶出法对蔬菜不同部位(茎、叶)中铅、镉的含量测定。 关键词:重金属(铅Pb、镉Cd);微分脉冲极谱法;蔬菜; 一、引言: (一)测定蔬菜中重金属(Pb、Cd)含量的现实意义 随着现代工业的发展,环境污染加剧,工业“三废”的排放及城市生活垃圾、污泥和含重金属的农药、化肥的不合理使用,导致蔬菜中重金属污染加剧。,蔬菜是人们生活中必不可少的重要农产品, 其品质优劣, 尤其是蔬菜中具有积累性和持续性危害的重金属含量的多少,将直接影响人们的健康。食用重金属含量超标的食品, 能产生急性或慢性毒性反应, 还有致畸、致癌和致突变的潜在危害。因此对蔬菜中的重金属铅、镉研究具有极大的现实意义。 (二)目前有关蔬菜中重金属(Pb、Cd)含量的测定方法的概述 (1)光化学法 1、光度法:如国家标准中第三标准法双硫腙比色法测食品中铅含量。它主要是利用PH=8.5~9.0时,硫离子与双硫腙生成红色配合物,溶于三氯甲烷,加入柠檬酸铵,氰化钾与盐酸羟铵等,防止铁、铜、锌等杂质离子的干扰,与标准系列比较定量。国际中测镉的第三法则是用在碱性溶液中镉离子与6-溴苯并噻唑偶氮萘酚形成红色络合物,溶于三氯甲烷,氰化钾等剧毒物质。因此应用有一定局限性。 2、原子荧光光谱法:准确配制铅镉系列的标准溶液,在实验工作条件下,测定这两个元素的荧光强度,得到线性回归方程,再将待测样品的荧光强度代入方程即可得到样品中铅镉的浓度。该法快速、简便、准确且灵敏度高。 3、石墨炉原子吸收光谱法:分别准确量取一定量的铅镉储备液,配置一系列标准溶液后按所选工作仪器条件用原子吸收分光光度计测出各溶液吸光度并制作A-C标准曲线,得出其一元线性回归方程。再测出一定量试样溶液吸光度,代入回归方程中即可得到铅镉含量。 4、火焰原子吸收法(标准加入法):分别移取适量样品于容量瓶中,分别加入一系列不同体积相同浓度的铅镉标准溶液,用盐酸定容。使用空气-乙炔火焰,于原子吸收光谱仪波长283.30nm,228.85nm处分别测量铅镉的吸光度,以标准系列浓度为横坐标,以扣除空白溶液的吸光度值为纵坐标作图,根据所绘制的直线外延与横轴的交点求出铅镉元素浓度。 5、电感耦合等离子体质谱法(ICP-MS)法:精密吸取铅镉标准储备溶液,用稀硝酸稀

GBT 17141-1997 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法

江西索立德环保服务有限公司 方法验证报告 项目名称:铅镉 方法名称:GB/T 17141-1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法 编写人及日期:_______________ 校核人及日期:_______________ 审核人及日期:_______________

1.目的 采用《土壤质量铅、镉的测定石墨炉原子吸收分光光度法》GB/T 17141-1997对土壤里面的铅、镉的测试进行验证,并对验证结果进行评估。本实验室现有条件与标准方法的规定一致,并按照该方法做基础实验,验证本实验室现有条件下开展该检测项目的适用性。 2.方法原理 采用盐酸-硝酸-氢氟酸-高氯酸消解的方法,使铅、镉溶解于试液,然后将试液注入到石墨炉中。经过预先设定的干燥、灰化、原子化等升温程序使共存基体成分蒸发除去,同时在原子化阶段的高温下铅镉化合物离解为基态原子蒸气,并对空心阴极灯发射的特征谱线(铅283.3nm 镉228.8nm)产生选择性吸收,在选择在最佳条件下,通过背景扣除,测定铅镉的吸光度。3.试剂和材料的验证 3.3材料的验证

无 4.仪器和设备的验证 6.样品的验证 6.1 采样方法:HJ/T 166-2004。 6.2 样品运输和保存:用塑料袋采集样品,常温下保存。 6.3 样品制备:将采集的土壤样品(一般不少于500g)混匀后用四分法缩分至100g,缩分至100g,

缩分后的土样经风干后,除去土样中石子和动植物残体等异物,用木棒研压,通过2mm尼龙筛,混匀。用玛瑙研钵将筛过的土样研磨至全部通过100目尼龙筛,混匀后备用。 6.3.1消解 准确称取0.1~0.3g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入 5mL盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩2-3 mL左右时,取下稍冷,然后加入5 mL硝酸、4mL氢氟酸、2mL高氯酸,加盖后于电热板上中温加热1 h 左右,然后开盖,电热板温度控制在150 ℃,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机碳化物分解。待坩埚壁上的黑色有机物消失后,开盖,驱赶白烟并蒸至内容物呈粘稠状。视消解情况,可再补加2 mL硝酸、2mL氢氟酸、1 mL高氯酸,重复以上消解过程。取下坩埚稍冷,加入1mL(1+1)硝酸溶液,温热溶解可溶性残渣,全量转移至25.00 mL 容量瓶中,加入3mL 5%磷酸氢二铵冷却后用水定容至标线,摇匀。 6.4样品质控样制备: 6.4.1 空白试样的制备:用去离子水代替试样,采用和试液制备相同的步骤和试剂,制备全程序 空白溶液,并按相同条件进行测定。每批样品至少制备2个以上的空白溶液。 6.4.2 质控试样的制备:称取质控样,按样品制备步骤进行制备。 7.分析步骤 7.1曲线建立 于一组6个100.0mL容量瓶中,依次加入0.00mL、0.50mL、1.00mL、2.00mL 、3.00mL、 4.00mL、 5.00mL浓度为1mg/L铅标准使用液,再依次加入0.00mL、0.10mL、0.20mL、0.30mL 、 0.40mL、0.50mL、0.60 mL浓度为500μg/L镉标准使用液,加入12ml 5%磷酸氢二铵,再分别 7.2 曲线的测定 调整好仪器条件,将标准曲线系列点上机测定吸光度。 7.3样品的测定 上机测定样品的吸光度。 8.结果计算与表示

蔬菜中重金属含量测定

华南师范大学实验报告 学生姓名学号 专业)年级、班级 课程名称仪器分析实验实验项目蔬菜中重金属(Pb、Cd)含量的测定实验类型□验证□设计□综合实验时间 2011年月日 √ 实验指导老师实验评分 实验题目:蔬菜中重金属(Pb、Cd)含量的测定 引言: 蔬菜中含有丰富的维生素、矿质元素和膳食纤维等多种营养成分,是人们日常生活中必不可少的食物,但随着工业化进程,工业“三废”的排放、农药、化肥的不合理使用等,严重污染了水、土、气,致使菜区生态环境日益恶化,造成蔬菜品质下降,污染物积累,并通过食物链的传递放大作用,从而对整个生态环境以及人类健康带来极大危害。因此对蔬菜中的重金属铅、镉研究具有极大的现实意义。 经查阅文献,发现目前有关铅、镉的测定方法主要有以下几种: 一、光化学法 1、光度法:如国家标准中第三标准法双硫腙比色法测食品中铅含量。它主要是利用PH=8.5~9.0 时,硫离子与双硫腙生成红色配合物,溶于三氯甲烷,加入柠檬酸铵,氰化钾与盐 酸羟铵等,防止铁、铜、锌等杂质离子的干扰,与标准系列比较定量。国际中测镉 的第三法则是用在碱性溶液中镉离子与6-溴苯并噻唑偶氮萘酚形成红色络合物,溶 于三氯甲烷,氰化钾等剧毒物质。因此应用有一定局限性。 2、原子荧光光谱法:准确配制铅镉系列的标准溶液,在实验工作条件下,测定这两个元素的荧光 强度,得到线性回归方程,再将待测样品的荧光强度代入方程即可得到样品 中铅镉浓度。该法快速、简便、准确且灵敏度高。 3、石墨炉原子吸收光谱法:分别准确量取一定量的铅镉储备液,配置一系列标准溶液后按所选工 作仪器条件用原子吸收分光光度计测出各溶液吸光度并制作A-C标准曲线,得出其一元线 性回归方程。再测出一定量试样溶液吸光度,代入回归方程中即可得到铅镉含量。 4、火焰原子吸收法(标准加入法):分别移取适量样品于容量瓶中,分别加入一系列不同体积相同 浓度的铅镉标准溶液,用盐酸定容。使用空气-乙炔火焰,于原子吸收光谱仪波长 283.30nm,228.85nm处分别测量铅镉的吸光度,以标准系列浓度为横坐标,以扣除空白溶 液的吸光度值为纵坐标作图,根据所绘制的直线外延与横轴的交点求出铅镉元素浓度。 5、电感耦合等离子体质谱法(ICP-MS)法:精密吸取铅镉标准储备溶液,用稀硝酸稀释配成含铅

GBT17141997土壤质量铅,镉的测定石墨炉原子吸收分光光度法

_ 江西索立德环保服务有限公司 方法验证报告 项目名称:铅镉 方法名称:GB/T 17141-1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法 编写人及日期:_______________ 校核人及日期:_______________ 审核人及日期:_______________

1.目的 采用《土壤质量铅、镉的测定石墨炉原子吸收分光光度法》GB/T 17141-1997对土壤里面的铅、镉的测试进行验证,并对验证结果进行评估。本实验室现有条件与标准方法的规定一致,并按照该方法做基础实验,验证本实验室现有条件下开展该检测项目的适用性。 2.方法原理 采用盐酸-硝酸-氢氟酸-高氯酸消解的方法,使铅、镉溶解于试液,然后将试液注入到石墨炉中。经过预先设定的干燥、灰化、原子化等升温程序使共存基体成分蒸发除去,同时在原子化阶段的高温下铅镉化合物离解为基态原子蒸气,并对空心阴极灯发射的特征谱线(铅283.3nm 镉228.8nm)产生选择性吸收,在选择在最佳条件下,通过背景扣除,测定铅镉的吸光度。3.试剂和材料的验证 3.1试剂的验证 3.2标准物质的验证

3.3材料的验证 无 4.仪器和设备的验证 4.1仪器的验证

4.2 设备的验证

5.环境条件验证 6.样品的验证 6.1 采样方法:HJ/T 166-2004。 6.2 样品运输和保存:用塑料袋采集样品,常温下保存。 6.3 样品制备:将采集的土壤样品(一般不少于500g)混匀后用四分法缩分至100g,缩分至 100g,缩分后的土样经风干后,除去土样中石子和动植物残体等异物,用木棒研压,通过2mm 尼龙筛,混匀。用玛瑙研钵将筛过的土样研磨至全部通过100目尼龙筛,混匀后备用。 6.3.1消解 准确称取0.1~0.3g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入5mL盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩2-3 mL左右时,取下稍冷,然后加入5 mL硝酸、4mL氢氟酸、2mL高氯酸,加盖后于电热板上中温加热

重金属测定方法

重金属总量的测定采用消化→原子吸收光谱仪测定; 重金属有效态的测定采用震荡提取→原子吸收光谱仪测定 1 土壤消化(王水+HClO4法) 称取风干土壤(过100目筛)0.1 g(精确到0.0001 g)于消化管中,加数滴水湿润,再加入3 ml HCl和1 ml HNO3(或加入配好的王水4~5mL),盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。加入1 ml HClO4于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 注:最高温度不可超过130℃。消化管底部只残留少许浅黄色或白色固体残渣时,说明消化已完全。如果还有较多土壤色固体存在,说明消化未完全,应继续120~130℃消化直至完全。 2植物消化(HNO3+H2O2法) 称取待测植物1~2g(具体根据该植物对重金属吸收能力的强弱而定)于消化管中,加入5ml HNO3,盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。加入 1 ml H2O2,于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 注:植物消化完全为透明液体,无残留。植物消化前是否需要干燥根据实验要求而定。 3土壤中重金属有效态的提取 铅、锌、铜、镉有效态的提取:提取液为0.1mol/L的HCl 砷有效态的提取:提取液为0.5mol/L的NaH2PO4 水土比:10:1~20:1 提取步骤:称取1g(精确的0.0001g)土壤样品于100mL锥形瓶中,加入15mL提取液(以

土壤有效态铅和镉的测定-DTPA浸提法

1.适用范围 本规程适用于所有类型的土壤、沉积物有效态铅(Pb)、镉(Cd)的测定。 2.测试原理 用DTPA(二乙三胺五乙酸)提取剂浸提出土壤中铅和镉。用火焰原子吸收分光光度计上机分析。 3.仪器设备 天平(精确至)。 水浴恒温振荡器。 离心管:100mL聚乙烯离心管、50mLPP消解管。 瓶口移液器:符合《JJG 646-2006 移液器检定规程》计量性能要求; 原子吸收分光光度计或等同仪器。 一般实验室常用仪器和设备,玻璃容器需符合国家A级标准。 4.试剂 除非另有说明,分析时均用符合国家标准的分析纯试剂,实验用水为当天新制备的去离子水或等同纯度的水。 一级水,文中所说水均指一级水。 )= g/mL,优级纯。 硝酸:ρ(HNO 3 盐酸:ρ(HCl)= g/mL,优级纯。 硝酸溶液(体积分数为3%):用硝酸()配制。 盐酸溶液(6mol/L):用盐酸()配制。 镉标准储备液,为国家有证标准物质。 铬标准储备液,为国家有证标准物质。 铅标准中间液:精确吸取 1000mg/L的标准储备液于50mL容量瓶中,加入硝酸,用一级水定容至50mL,混匀,置于4℃冰箱保存。此溶液铅浓度为100mg/L。保存期限2年。 镉标准中间液:精确吸取 100mg/L的标准储备液于50mL容量瓶中,加入硝酸,用一级水定容至50mL,混匀,置于4℃冰箱保存。此溶液镉浓度为10mg/L。保存期限1年。 DTPA浸提剂(L TEL(三乙醇胺)LCaCl ):称取溶于()TEA和少量水中,再将 2

氯化钙(CaCl )溶于水中,加水约900mL,用6mol/L盐酸()调节pH至±(每 2 升提取剂需加6mol/L盐酸溶液约)pH值需严格控制,最后用水定容至1L,贮存于塑料瓶中。 5.分析测试 前处理 称取±过20目筛的样品于100mL聚乙烯离心管中,加入25mL pH=±的DTPA 浸提液(注意质控样品(K-111)根据证书加入, 在25±2℃(温度需严格控制)180r/min的水平振荡器上振荡两小时。取下干过滤(用快速定性滤纸过滤),弃去初滤液5mL,剩下的全部过滤至50mLPP消解管中。 校准曲线 用铅的中间液浓度,配制铅的工作曲线浓度为 mg/L, mg/L,L, mg/L, mg/L 和L。 用镉的中间液浓度,配制镉的工作曲线浓度为 mg/L, mg/L,L, mg/L, mg/L 和L。 仪器参考条件 表1 日立Za-3000工作条件 注1:除表中参数外,其他参数如无意外,不需要进行调整。 注2:该仪器需要手动进行燃烧器高度的调整。 上机测定 上机前,将仪器预热半个小时以上,仪器调节最佳工作条件,测定标准系列各点吸光值(校准曲线是减去标准空白后吸光值对浓度绘制的校准曲线),然后依次测定样品的空白、试样的吸光值。 6.数据处理 土壤样品有效态镉、铅含量以质量浓度计,数值以毫克每千克(mg/kg)表示,按下式计算:

石墨炉原子吸收法测定大米中铅镉

不同消化方法-石墨炉原子吸收法测定大米中镉的比较 秦品芝1 摘要采用干法灰化法、湿法消解法及微波消解法作为前处理方式,石墨炉原子吸收光谱法测定大米中的镉。试验结果表明,干法消解法准确度和回收率均偏低;湿法消解法空白值较高,试剂消耗量大,前处理时间长;微波消解法具有准确度高,回收率好,操作简单快速,试剂消耗小等特点。 关键词镉;微波消解;湿法消解;干法灰化 镉是食品卫生标准中的重要限量指标,国标分析方法中镉的测定有石墨炉原子吸收光谱法、火焰原子吸收光谱法、比色法和原子荧光法[1]。石墨炉原子吸收光谱法具有较高的灵敏度,已成为日常工作中测定食品中镉的首选方法。所以,本次实验采用石墨炉原子吸收法测定大米中的镉。 前处理时元素及有机物分析测试过程中不可或缺的关键步骤,也是样品分析整个过程中最费力、费时的部分,同时也会对分析结果的准确性有着较大的直接影响,预处理方法与手段的好坏将直接在测试结果中体现[2],样品前处理方法通常是干灰化法或湿消解法[3],这些方法操作繁琐,试剂用量较大,危险性高,易受沾污和损失,测定周期较长,影响因素多,测定的准确度不易控制。微波消解技术是近年来发展成熟的新的试样消解技术[4],样品在密闭消解罐中,用硝酸和过氧化氢在高温高压下对待测样品进行消化处理[5]。其优点是消解速度快,试剂用量少,操作简单安全,大大减少易挥发元素的损失和实验环境对样品的污染,降低了空白值,提高了方法的灵敏度和准确度[6]。 实验原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收228.8nm 共振线,在一定浓度范围,其吸收值与镉含量成正比,与标准系列比较定量。 2.实验材料 2.1仪器 原子吸收分光光度计;电子天平(精确度:0.01g);微波消解仪;马弗炉;超纯水器;可调式电热板;电子控温加热板。 2.2试剂 硝酸(分析纯);高氯酸(分析纯);盐酸(优级纯);过氧化氢;镉标准溶液;大米标准物质。 3.实验方法 3.1样品前处理 3.1.1干灰化法 首先将大米样品粉碎,然后准确称取2.00g~5.00g样品于瓷坩埚中,先在可控温电热板上小心加热至样品完全炭化,然后移入马弗炉中,在500~550℃灰化约8小时,冷却后取出。然后用硝酸将灰分小心溶解,若有少量样品灰化不完全,再补加一定量硝酸,在可控温电热板上小心加热,直至消化完全,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.2湿消解法 准确称取已粉碎的大米样品1.00g~2.00g于锥形瓶中,加盖小漏斗,加入体积比为5∶1硝酸高氯酸混合消化液15mL,于电热板上缓慢加热,反应趋于缓和后,慢慢加入1mL过氧化氢,继续加热消化直至溶液澄清,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.3微波消解法

土壤中铅镉的测定步骤

土壤中铅镉的测定 一、样品制备 工具: 晾干白磁盘 磨样玛瑙研钵(白色瓷研钵) 过筛尼龙筛(10目和100目)。 分装具塞磨口玻璃瓶、具塞无色聚乙烯塑料瓶,无色聚乙烯塑料袋或特制牛皮纸袋。 二、湿样晾干 摊成2 cm厚的薄层 室内,防阳光直射, 风干后称重(结果报告要求) 三、样品制备: 将采集的土壤样品(一般不少于500 g)混匀后用四分法缩分至约100 g 。 缩分后的土样经风干(自然风干或冷冻干燥)后除去土样中石子和动植物残体等异物,用木棒(或玛瑙棒)研压,通过2 mm 尼龙筛(9目或10目,除去2 mm 以上的砂砾 , 混匀。 用玛瑙研钵将通过 2 mm 尼龙筛的土样研磨至全部通过100 目(孔径0.149 mm) 尼龙筛,混匀后备用 四、注意事项 采样时的土壤标签与土壤样始终放在一起,严禁混错。 制样所用工具每处理一份样品后应擦洗一次,严防交叉

污染。 五、消解 准确称取0. 2~0. 5g(石墨炉0.1-0.3g,精确至0.0002 g)试样于50 mL 聚四氟乙烯坩埚中。用水润湿后加入 10 mL盐酸,于通风橱内的电热板上低温加热,使样品 初步分解,待蒸发至约剩3 mL 左右时,取下稍冷。 然后加入5 mL 硝酸, 5 mL 氢氟酸,3 mL 高氯酸,加盖后于电热板上中温加热 1 h 左右,然后开盖,继 续加热除硅,为了达到良好的飞硅效果,应经常摇动坩 埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机 物充分分解。待坩埚壁上的黑色有机物消失后,开盖。 驱赶臼烟并蒸至内容物呈粘稠状。 视消解情况,可再加入3 mL 硝酸、3 mL氢氟酸、 1mL 高氯酸,重复上述消解过程。当白烟再次冒尽且内容物 呈粘稠状时,取下稍冷,用水冲洗坩埚盖放内壁,并加 入1 mL 盐酸榕液(1+1) 温热溶解残渣。然后全量转移 至100 mL 分液漏斗中,加水至约50 mL 处(石墨炉法 为25mL)。 不同种类土壤所含物质差异较大,在消解时,应注意观察,各种酸的用量可视消解情况酌情增减。含有机物过 多的土壤,应增加硝酸量,使大部分有机物消化完全,再加高氯酸,否则加高氯酸会发生强烈反应,致使瓶中 内容物溅出,甚至发生爆炸,消解时务必小心。土壤消 解液应呈白色或淡黄色(含铁较高的土壤) ,没有明显

相关主题