搜档网
当前位置:搜档网 › 概率论习题参考解答1

概率论习题参考解答1

概率论习题参考解答1
概率论习题参考解答1

概率论习题参考解答1

概率论第二章习题参考解答

1. 用随机变量来描述掷一枚硬币的试验结果. 写出它的概率函数和分布函数.

解: 假设ξ=1对应于"正面朝上",ξ=0对应于反面朝上. 则

P (ξ=0)=P (ξ=1)=0.5 .

其分布函数为

??

?

??≥<≤<=1

1105

.000)(x x x x F

2. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 写出ξ的分布律和分布函数.

解: 根据题意有 P (ξ=1)=2P (ξ=0) (1)

并由概率分布的性质知 P (ξ=0)+P (ξ=1)=1 (2) 将(1)代入(2)得

3P (ξ=0)=1, 即P (ξ=0)=1/3 再由(1)式得 P (ξ=1)=2/3

因此分布律由下表所示

ξ 0 1

P (ξ=1)+P (ξ=2)+P (ξ=3)=1 (3)

(1),(2)代入(3)得:

2P (ξ=2)+P (ξ=2)+P (ξ=2)/2=1 解得P (ξ=2)=2/7, 再代回到(1)和(2)得 P (ξ=1)=4/7, P (ξ=3)=1/7 则概率函数为

)

3,2,1(27

1)(3=?=

=-i i P i ξ 或列表如下:

ξ

1 2 3 P

4/7

2/7

1/7

5. 一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求这4个中的次品数ξ的分布律.

解: 基本事件总数为420

C n =,

有利于事件{ξ=i }(i =0,1,2,3,4)的基本事件数为

i

i i C C n -=415

5, 则

001

.017

3191

1718192051234)4(031.017195

2121545171819201234)3(2167.017181914

15231212141545171819201234)2(4696.017181913

14151231314155171819201234)1(2817

.0171913

7123412131415171819201234)0(420454

20

1

15354

202

15254

203

15154204

15=??=???????====??=??????????====?????=?????????????====????=????????????====??=?????????????===C C P C C C P C C C P C C C P C C P ξξξξξ

ξ 0 1 2 3 4 P 0.2817 0.4696 0.2167 0.031

0.001

6. 一批产品包括10件正品, 3件次品, 有放回地抽取, 每次一件, 直到取得正品为止, 假定每件产品被取到的机会相同, 求抽取次数ξ的概率函数.

解: 每次抽到正品的概率相同, 均为p =10/13=0.7692, 则每次抽到次品的概率q =1-p =0.2308则ξ服从相应的几何分布, 即有

)

,3,2,1(1331310)(1

Λ=?

?

?

???===-i pq i P i i ξ

7. 上题中如果每次取出一件产品后, 总以一件正品放回去, 直到取得正品为止, 求抽取次数ξ的分布律.

解: 这样抽取次数就是有限的, 因为总共只有3件次品, 即使前面三次都抽到次品,第四次抽时次品

已经全部代换为正品, 因此必然抽到正品, 这样

ξ的取值为1,2,3,4.

不难算出,

0027

.0131

132133)4(0328

.01312

132133)3(1953

.01311

133)2(7692.01310

)1(=??===??===?====

=ξξξξP P P P

ξ的分布律如下表所示: ξ 1 2 3

4

P

0.7692 0.1953 0.0328 0.0027

8. 自动生产线在调整之后出现废品的概率为p , 当在生产过程中出现废品时立即重新进行调整, 求在两次调整之间生产的合格品数ξ的概率函数.

解: 事件ξ=i 说明生产了i 次正品后第i +1次出现废品, 这是i +1个独立事件的交(1次发生i 次不发生, 因此有

P (ξ=i )=p (1-p )i , (i =0,1,2,…)

9. 已知随机变量ξ只能取-1,0,1,2四个值, 相应概率依次为c

c c c 167,85,43,21, 确定常数c 并计算

P {ξ<1|ξ≠0}.

解: 根据概率函数的性质有 1}2{}1{}0{}1{==+=+=+-=ξξξξP P P P 即

1167854321=+++c

c c c

2.312516

3716710128167854321==+++=+++=

c

设事件A 为ξ<1, B 为ξ≠0, (注: 如果熟练也可以不这样设)则

32

.025816

7852121}2{}1{}1{}1{)

0{}

01{)()(}0|1{==++==+=+-=-==≠≠?<==

≠<ξξξξξξξξξP P P P P P B P AB P P

10. 写出第4题及第9题中各随机变量的分布函数. 解: 第4题:

????

??

?≥<≤<≤<=31

327/6217/410

)(x x x x x F

第9题:

当x <-1时: F (x )=P (ξ≤x )=0 当-1≤x <0时: F (x )=P (ξ≤x )=P (ξ=-1)=2162.03125.22121=?=c 当

0≤x <1

:

F (x )=P (

ξ

≤x )=P (ξ=-1)+P (ξ=0)=5405

.03125.24

3214321=?

?

? ?

?+=+c c

当1≤x <2时: F (x )=P (ξ

≤x )=P (ξ=-1)+P (ξ=0)+P (ξ=1)=

8108.03125.2854321854321=??

? ??++=++c c c

当x ≥2时: F (x )=P (ξ≤x )=1 综上所述, 最后得:

?????

????≥<≤<≤<≤--<=2

1

218108.0105405

.0012162.01

)(x x x x x x F

11. 已知ξ~

???

??<<=其它

1021)(x x

x ?, 求ξ的分布函数

F (x ), 画出F (x )的图形. 解: 当x <0时: F (x )=0; 当0≤x <1时:

x

x x

t x t dt t dt t dt dt t x F x

x

x

=-==+-?==+==+--∞-∞-????00

012

11

212121

0)()(12

1

02100

?

当x ≥1时: F (x )=1 综上所述, 最后得

??

?

??≥<≤<=1

11000)(x x x

x x F 图形为

1

0 x

F (x )

1

12. 已知ξ~

??

?<<=其它

0102)(x x x ?, 求P {ξ≤0.5};

P (ξ=0.5);F (x ). 解:

25

.005.020)(}5.0{225

.00

25

.00

5

,0|

=-==+==≤???∞

-∞

-x

xdx dx dx x P ?ξ,

因ξ为连续型随机变量, 因此取任何点的概率均为零, 所以P {ξ=0.5}=0, 求F (x ): 当x <0时, F (x )=0 当0≤x <1时,

2

20

|20)()(x t tdt dt dt t x F x

x

x

==+==???∞

-∞

-?

当x ≥1时, F (x )=1 综上所述, 最后得:

??

?

??≥<≤<=1

11000)(2

x x x x x F

13. 某型号电子管, 其寿命(以小时计)为一随机变量, 概率密度

?????≥=其它0

100100)(2

x x x ?, 某一个电子设备

内配有3个这样的电子管, 求电子管使用150小时都不需要更换的概率.

解: 先求一个电子管使用150小时以上的概率P (ξ≥150)为:

32

15010012100100)()150(|15012150

2150=

=+-===≥∞++-+∞

+∞

??x dx x dx x P ?ξ

则3个这样的电子管构成贝努里独立试验概型,

试验三次发生三次的概率为

2963

.027832)3(3

3==??

?

??=p

14. 设连续型随机变量ξ的分布函数为:

??

?

??≥<≤<=1

11000)(2

x x Ax x x F

求系数A ; P (0.3<ξ<0.7); 概率密度φ(x ). 解: 因ξ是连续型随机变量, 因此F (x )也必是连续曲线, 则其在第二段(0,1)区间的曲线必能和第三段(1,+∞)的曲线接上, 则必有 A ×12=1, 即A =1. 则分布函数为

??

?

??≥<≤<=1

11000)(2

x x x x x F

P (0.3<

ξ

<0.7)=F (0.7)-F (0.3)=0.72-0.32=0.49-0.09=0.4 概率密度φ(x )为

??

?<≤='=其它

0102)()(x x x F x ?

15. 服从柯西分布的随机变量ξ的分布函数是F (x )=A +B arctg x , 求常数A ,B ;P {|ξ|<1}以及概率密度φ(x ). 解: 由F (-∞)=0,

得A +Barctg (-∞)=02=-πB A (1)

再由F (+∞)=1, 得12

)arctg(=+=+∞+πB A B A (2)

综和(1),(2)两式解得π

1,21==B A 即x x F arctg 121)(π

+= 5.02

1

44111

11

)1()1()11()1|(|==????????? ??--==

--

=

--=<<-=<ππππ

π

ξξarctg arctg F F P P

2

111

)()(x x F x +?

=

'=π?

16. 服从拉普拉斯分布的随机变量ξ的概率密度|

|)(x Ae x -=?, 求系数A 及分布函数F (x ).

解: 这实际上是一个分段函数, φ(x )可重新写为

???<≥=-0

0)(x Ae

x Ae x x

x

?

根据性质1)(=?+∞

-dx x ?, 又因φ(x )为偶函数, 因此有

1222)(|00==-==∞

+-+∞

-+∞∞

-?

?A Ae dx Ae dx x x

x ?, 则有A =1/2

因此

?????<≥==--0

2

10212

1

)(|

|x e x e e x x x x ?.

求分布函数F (x ). 当x <0时, 有

x

x

t

x

t x e e dt e dt t x F 2

121

21)()(=

===∞

-∞

-∞-???

当x ≥0时, 有

x x x

t

x

t t x

e e e dt e dt e dt t x F ----∞-∞--=+-=

-=+==???2

1

121212121

212121)()(0

?

综上所述, 最后得

????

?≥-<=-0

2

11021)(x e x e

x F x x

17. 已知

??

?<<+-=其它0

1

031212)(~2x x x x ?ξ, 计算P {ξ

≤0.2|0.1<ξ≤0.5}

解: 设事件A ={ξ≤0.2}, B ={0.1<ξ≤0.5}, 则要计算的是条件概率P (A |B ), 而

)

()

()|(B P AB P B A P =

, 而事件AB ={ξ

≤0.2}∩{0.1<ξ≤0.5}={0.1<ξ≤0.2}

因此有

148

.03.006.0004.06.024.0032.0)1.0301.06001.04()2.0304.06008.04()

364(d )31212()(}2.01.0{)(2.01

.0232

.01

.022

.01.0=-+-+-=?+?-?-?+?-?==

+-=+-==≤<=??x x x x

x x dx x P AB P ?ξ

256

.03.006.0004.05.15.15.0)1.0301.06001.04()5.0325.06125.04()

364(d )31212()(}5.01.0{)(5.01

.0235

.01

.025

.01

.0=-+-+-=?+?-?-?+?-?==

+-=+-===≤<=??x x x x

x x dx x P B P ?ξ

最后得

5781.0256

.0148

.0)()()|(}5.01.0|2.0{===

=≤<≤B P AB P B A P P ξξ

18. 已知x

x ce

x +-=2)(~?ξ, 确定常数c .

解: 首先证明普阿松广义积分π

=?+∞

--x e

x d 2

, 因为函

数2

x e -并不存在原函数, 因此需要一技巧. 令

?+∞

--=

x

e I x

d 2

, 则

???+∞∞-+∞

∞-+-+∞∞--=??

????=y

x e x e I y x x d d d )(2

2

2

22

作极坐标代换, 令θθsin ,cos r y r x ==, 则积分区间为全平面, 即θ从0积到2π, r 从0积到+∞, 且

θ

d d d d r r y x =, 因此有

π

ππθπ====∞+-+∞

-+∞

-???0

20

20

2

2

22

)d(212r r r

e

r e rdr e

d I , 所以I =π.

现确定常数c , 由性质1)(=?+∞

-dx x ?,

1d d 4

1

)21

(414

1

412122

22====???+∞∞

---+∞

-+

-??+-+∞∞

-+-πce

dx e

ce

x ce

x ce

x x x x

x

得4

2

1

π

e c =

19. 已知??

?>>=-其它

)0()(~λλ?ξλa x e c x x

, 求常数c 及

P {a -1<ξ≤a +1}. 解: 由性质1)(=?+∞

∞-dx x ?得

1

d d 0)(|

==-=+=-∞

+-+∞

-∞

-+∞

-???a a

x a

x

a

ce ce

x e

c x dx x λλλλ?

解得

a

e c λ=, 因此有

??

?>>=--其它

)0()()

(λλ?λa x e x a x

λ

λλλλλ?ξ---+---+--=-==+=

=+≤<-????e e du

e x e

x x x a a P u u a a

a x a

a a a 1d d 0d )()11(|1

1

1

)

(1

1

1

20. 二元离散型随机变量(ξ,η)有如下表所示的联合概率分布: η ξ 0 1 2 3 4 5 6

0.202 0.174 0.113 0.062 0.049 0.023 0.004 1

0.099 0.064 0.040 0.031 0.020 0.006

2

0 0

0.031 0.025 0.018 0.013 0.008

3

0 0 0

0.001 0.002 0.004 0.011

求边缘概率分布, ξ与η是否独立? 解: 按下表计算ξ与η的边缘分布:

ηξ0 1 2 3 4 5 6

p i(

1)

0 0.

20

2 0.

17

4

0.

11

3

0.

06

2

0.

04

9

0.

02

3

0.

00

4

0.

62

7

1 0 0.

09

9 0.

06

4

0.

04

0.

03

1

0.

02

0.

00

6

0.

26

2 0 0 0.

03

1 0.

02

5

0.

01

8

0.

01

3

0.

00

8

0.

09

5

3 0 0 0 0.

00

1 0.

00

2

0.

00

4

0.

01

1

0.

01

8

p j(2) 0.

20

2 0.

27

3

0.

20

8

0.

12

8

0.

10

0.

06

0.

02

9

得ξ的边缘分布如下表所示:

ξ0 1 2 3

P 0.627 0.260 0.095 0.018 以及η的边缘分布如下表所示:

η

0 1 2 3 4

5

6 P 0.202

0.273

0.208

0.128

0.1 0.06 0.029 当i =1及j =0时, 因202

.026.0}0{}1{0}0,1{)

2(0)1(110

?====≠====ηξηξP P p p P p

因此ξ与η相互间不独立.

21. 假设电子显示牌上有3个灯泡在第一排, 5个灯泡在第二排. 令ξ,η分别表示在某一规定时间内第一排和第二排烧坏的灯泡数. 若ξ与η的联合分布如下表所示: η ξ 0 1 2 3 4 5

0 0.01 0.01 0.03 0.05 0.07 0.09 1 0.01 0.02 0.04 0.05 0.06 0.08 2 0.01 0.03 0.05 0.05 0.05 0.06 3

0.0.0.0.0.0.

01 01 04 06 06 05

试计算在规定时间内下列事件的概率: (1) 第一排烧坏的灯泡数不超过一个; (2) 第一排与第二排烧坏的灯泡数相等; (3) 第一排烧坏的灯泡数不超过第二排烧坏的灯泡数.

解: 假设事件A 为第一排烧坏的灯泡数不超过一个, B 为第一排与第二排烧坏的灯泡数相等, C 为第一排烧坏的灯光数不超过第二排烧坏的灯泡数.

则事件A 发生的概率为上表中头两排概率之和

52

.008.006.005.004.002.001.009.007.005.003.001.001.0)(1

04

0=+++++++

+++++==∑∑==i j ij p A P

事件B 发生的概率为上表中从0行0列开始的斜对角线之和

14

.006.005.002.001.0)(3

0=+++==∑=i ii p B P

事件C 发生的概率为上表中斜对角线上右的各个数相加(包括斜对角线上的数), 但为减少运算量, 也可以考虑其逆事件C 的概率, 然后用1减去它. 而C 的概率为上表中斜对角线的左下角的所有概率之和(不包括斜对角线):

89

.011.01)04.001.003.001.001.001.0(1)(1)(=-=+++++-=-=C P C P

22. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以

ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).

解: 因为有两个2一个1, 因此第一次取到2号的概率为P (ξ=2)=2/3, 第一次取到1号的概率为P (ξ=1)=1/3. 第一次取到2号后还剩下一个2号一个1号, 则在此条件下第二次取到1号的概率P (η=1|ξ=2)=P (η=2|ξ=2)=1/2. 而第一次取到1号后还剩下两个2号, 因此这时P (η=1|ξ=1)=0, P (η=2|ξ=1)=1. 综上所述并用乘法法则可得

3

1

2132)2|2()2()2,2(31

2132)2|1()2()1,2(31

131)1|2()1()2,1(0

031

)1|1()1()1,1(22211211=

?=========

?=========

?=========?========ξηξηξξηξηξξηξηξξηξηξP P P p P P P p P P P p P P P p

(ξ,η)的分布律如下表所示: η ξ

1 2

1 0 1/

3 2

1/3 1/3

23. (ξ , η)只取下列数组中的值: )0,2()3

1,1()1,1()0,0(-- 且相应的概率依次为1/6, 1/3, 1/12, 5/12. 列出(ξ,η)的概率分布表, 写出关于η的边缘分布. 解: 从上面数组可知ξ只取-1,0,2这三个值, 而

η只取0,3

1,1这三个值, 因此总共可构成九个数对, 其中只有四个数对的概率不为零. 概率分布表及η的边缘分布计算如下 η ξ 0

1/3

1

-1 0 1/12 1/3 0 1/6 0 0

2

5/12

0 0

p j(2) 7/

12 1/

12

1/

3

即η的边缘分布率如下表所示

η0 1/3 1

P7/12 1/12 1/3

24. 袋中装有标上号码1,2,2,3的4个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同). 解: 第一次取到号码1,2,3的概率为

P{ξ=1}=P(ξ=3)=1/4

P{ξ=2}=1/2

在第一次取到号码i条件下,第二次取到号码j的概率各为

P{η=1|ξ=1}=P{η=3|ξ=3}=0

P{η=2|ξ=1}=P{η=2|ξ=3}=2/3

P{η=3|ξ=1}=P{η=1|ξ=3}=1/3

P{η=1|ξ=2}=P{η=3|ξ=2}=1/3

P{η=2|ξ=2}=1/3

p11=P{ξ=1,η=1}=P{ξ=1}P{η=1|ξ=1}=0

p12=P{ξ=1,η=2}=P{ξ=1}P{η=2|ξ=1}=1/6

《社会保障学》模拟试题1及参考答案

《社会保障学》模拟试题1及参考答案 一、不定项选择题(每小题2分,共20分) 1、工伤保险待遇主要包括。 A.医疗给付B.工伤津贴 C.残疾年金或补助金D.遗属津贴 2、率先建立现代失业保险制度的国家是,该国于1905年颁布了失业保险法。 A.日本B.法国 C.德国D.英国 3、下列关于医疗保险的表述中,正确的是。 A.医疗保险属于短期的、经常性保险 B.医疗保险是通过医疗服务和费用实偿来实现的 C.医疗保险是自愿执行的社会保障制度 D.医疗保险由政府、单位、个人三方面合理分担费用 4、社会保障基金可以由基金管理机构通过等方式运营。 A.购买股票B.开办企业 C.兴建公共设施D.融资借贷 5、社会救助的特点主要表现为。 A.最低保障性B.按需分配 C.权利义务单向性D.救助对象全民性 6、下列各项中,有“福利国家橱窗”之称的是。 A.英国B.瑞典 C.芬兰D.丹麦 7、下列各项中,有关美国“多元化医疗保险模式”描述正确的是。 A.医疗照顾制度的对象主要是65岁以上的老人 B.社会医疗保险计划在美国的医疗保险体系中占主要地位 C.HMO开办合同医院并直接为参保人员提供医疗服务 D.蓝十字和蓝盾是美国最大的两家营利性民间医疗保险公司 8、下列有关各国养老保险金覆盖范围的表述中,正确的是。 A.德国的养老保险制度覆盖范围是本国所有居民。 B.英国的养老保险制度覆盖范围是薪金劳动者和独立劳动者。 C.美国的老年、残疾、遗属保险的覆盖范围是从事有收益工作的人,包括独立劳动者。 D.我国省、自治区、直辖市地方政府可根据实际情况将城镇个体工商户纳入覆盖范围。 9、依据救助种类,社会救助包括。

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

《教育原理》模拟试题及参考答案1

《教育原理》模拟试题(一) 一、填空题(本大题共10个小题,共20分) 1.各国的学校教育系统基本形成于:_________ 。 2.现在世界上大多数国家的义务教育年限在:_________ 。 3.“教育是与种族需要、种族生活相应的、天性的,而不是获得的表现形式;教育既无须周密的考虑使它产生,也无需科学予以指导,它是扎根于本能的不可避免的行为。”这句话反映的教育起源观点是_________。 4.1965年,联合国教科文组织正式采纳了由法国人保罗·郎格朗提出的“_________”思想。随着《学会生存》的流行,这一思想成为许多国家教育改革的一种指导理论。 5. 经济发展水平制约着教育的发展_________、_________、水平。 6.教育制度可以还原成目标系统、_______、_______、工具系统四大系统要素。 7.国家实行_______、初等教育、______、高等教育的学校教育制度。 8.教师是_________的继承者和传播者,在社会的延续和发展中起着不可缺少的桥梁和纽带作用。 9.是构成教育活动的基本要素,是教育活动的最基本的对象。 10. 教育实践是教师在_________和文化制约下的能动活动。 二、名词解释(每小题4分,共20分) 1.教育事实与教育规律 2.终身教育 3.教育功能 4.人的发展 5.教育改革目标 三、简答题(每小题5分,共25分) 1.教育理论界一般认为教育的两条基本规律是什么? 2.教育的经济功能有哪些表现? 3.教学目标与教育目的、培养目标之间的关系如何? 4. 教师职业的专业性应当体现在哪些方面? 5.教育实践的性质。 四、论述题(本题共1小题,共15分) 关于教育学研究对象的提法不统一、不明确。你认为出现这种现象的原因是什么?并结合本章的学习谈谈你对教育学研究对象的认识。 五、材料分析(本题共1小题,共20分) 深圳特区投资于人力资本 【案例】 特区创业之初,深圳主要得益于优惠政策的扶持。随着特区经济的纵深发展,各类人才和技术的稀缺现象日益凸显。特区的决策者们很快意识到,要使深圳保持可持续发展,在建立完善社会主义市场经济体系框架的基础上,必须加快人才培养,大力推进科技创新。 1997年,深圳市委二届八次全会提出了加快实施“科教兴市”战略。特区选择不断加大教育投入的方式推进“科教兴市”战略。自1979年至2001年,深圳特区累计教育投入283.31亿元,其中财政性教育投入239.23亿元,年均递增40﹪。1997年至2001年,深圳累计教育投入197.51亿元,其中财政性教育投入142.68亿元,是特区建立以来前17年财政性教育投入70.30亿元的两倍。 深圳特区在教育上的高投入孕育了教育和科技的快步发展。截止2002年,深圳已有各级各类学校1117所,是特区建立之初的4倍多;学生64万人,比1980年增加近40万人。

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

《计算机导论》模拟试题及参考答案1

计算机导论模拟试题 一、单项选择题(每题2分,共30分) 1.采用晶体管作为电子元器件的计算机属于()。 A. 第一代计算机 B. 第二代计算机 C. 第三代计算机 D. 第四代计算机 2.冯诺伊曼的主要贡献是( )。 A. 发明了微型计算机 B. 提出了存储程序概念 C. 设计了第一台计算机 D. 设计了高级程序设计语言 3.计算机中,运算器的主要功能是进行()。 A.逻辑运算 B.算术运算 C.算术运算和逻辑运算 D.复杂方程的求解 4.计算机病毒是一种()。 A.特殊的计算机部件 B.特殊的生物病毒 C.游戏软件 D.人为编制的特殊的计算机程序 5.随机存储器简称为( )。 A.CMOS B. RAM C. XMS D. ROM 6.计算机一旦断电后( )中的信息会丢失。 A. 硬盘 B. 软盘 C. RAM D. ROM 7.CPU指的是计算机的( )部分。 A. 运算器 B. 控制器 C. 运算器和控制器 D. 运算器、控制器和内存 8.系统软件中最重要的是( )。 A. 操作系统 B. 语言处理程序 C. 工具软件 D. 数据库管理系统 9.编译程序和解释程序都是( )。 A. 目标程序 B. 语言编辑程序 C. 语言连接程序 D. 语言处理程序 精品文档,欢迎下载

10.硬盘存储器的特点是()。 A.由于全封闭,耐震性好,不易损坏 B.耐震性差,搬运时注意保护 C.没有易碎件,在搬运时不像显示器那样要注意保护 D.不用时应套入纸套,防止灰尘进入 11.下列描述中正确的是()。 A.激光打印机是击打式打印机 B.击打式打印机价格最低 C.喷墨打印机不可以打印彩色效果 D.计算机的运算速度可用每秒执行指令的条数来表示 12.Windows2000是一个()操作系统。 A.单用户单任务 B.单用户多任务 C.多用户多任务 D.多用户单任务 13.WINDOWS 2000的“回收站”是( ) A.内存中的一块区域 B.硬盘上的一块区域 C.软盘上的一块区域 D.高速缓存上的一块区域 14.计算机网络的特点是( )。 A.运算速度快 B.精度高 C.资源共享 D.内存容量大 15.下列选项中( )是调制解调器的作用 A.将计算机信号转变为音频信号 B.将音频信号转变为计算机信号 C.预防病毒进入系统 D.计算机信号与音频信号相互转换 二、简答题(每小题5分,共15分) 1.从计算机的发展过程来看,大致可分为那几个阶段,各阶段的主要特征是什么? 2. 显示器的分辨率与视频卡的关系是什么? 3.简述OSI模型中网络层、数据链路层、物理层各起什么作用。 精品文档,欢迎下载

概率论与数理统计练习题1

《概率论与数理统计》练习题一一、判断正误,在括号内打√或× 1.是取自总体的样本,则服从分布; 2.设随机向量的联合分布函数为,其边缘分布函数是; 3.设,,,则表示; 4.若事件与互斥,则与一定相互独立; 5.对于任意两个事件,必有; 6.设表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为“甲种产品滞销或乙种产品畅销”; 7.为两个事件,则; 8.已知随机变量与相互独立,,则; 9.设总体, ,,是来自于总体的样本,则是的无偏估计量; 10.回归分析可以帮助我们判断一个随机变量和另一个普通变量之间是否存在某种相关关系。 二、填空题 1.设是3个随机事件,则事件“和都发生而不发生”用表示为;2.设随机变量服从二项分布,则; 3.是分布的密度函数; 4.若事件相互独立,且,,,则= ; 5.设随机变量的概率分布为 -4-1024 则; 6.设随机变量的概率分布为 012 0.50.30.2

则的概率分布为 7.若随机变量与相互独立,,则; 8.设与是未知参数的两个估计,且对任意的满足,则称比有效;9.设是从正态总体抽得的简单随机样本,已知,现检验假设,则当时,服从; 10.在对总体参数的假设检验中,若给定显著性水平(),则犯第一类错误的概率是。 三、计算题 1.已知随机事件的概率,事件的概率,条件概率,试求事件的概率。 2.设随机变量,且,试求,。 3.已知连续型随机变量,试求它的密度函数。 4.已知一元线性回归直线方程为,且,,试求。 5.设总体的概率密度为 式中>-1是未知参数,是来自总体的一个容量为的简单随机样本,用最大似然估计法求的估计量。 6.设是取自正态总体的一个样本,其中未知。已知估计量是的无偏估计量,试求常数。 7.设有10个零件,其中2个是次品,任取2个,试求至少有1个是正品的概率。 四、证明题 1.设二维连续型随机向量的联合密度函数为 证明:与相互独立。 2. 1.若事件与相互独立,则与也相互独立。 2.若事件,则。

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

考研概率论与数理统计题库-题目

概率论与数理统计 第一章 概率论的基本概念 1. 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(以百分制记分) (2)生产产品直到得到10件正品,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生 (2)A ,B 都发生,而C 不发生 (3)A ,B ,C 中至少有一个发生 (4)A ,B ,C 都发生 (5)A ,B ,C 都不发生 (6)A ,B ,C 中不多于一个发生 (7)A ,B ,C 中不多于二个发生 (8)A ,B ,C 中至少有二个发生。 3. 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最 大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 4. 设A ,B ,C 是三事件,且0)()(,4/1)()()(=====BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 5. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数 中的每一个数都是等可能性地取自0,1,2……9)

6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的 号码。 (1)求最小的号码为5的概率。 (2)求最大的号码为5的概率。 7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺 脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少? 8. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 (2)至少有2个次品的概率。 9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 10. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概 率各为多少? 11. 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。 12. )(,2 1 )|(,31)|(,41)(B A P B A P A B P A P ?=== 求。 13. 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球, 今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少? (2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。 14. 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人 群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 15. 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次及格则第 二次及格的概率也为P ;若第一次不及格则第二次及格的概率为2/P

概率论(计算)习题

概率论计算: 1.已知在10只晶体管中有2只次品,在其中取两次,作不施加抽样,求下列事件的概率。(1)两只都是正品?(2)两只都是次品?(3)一只是正品,一只是次品?(4)第二次取出的是次品? 解:设A1、A2表示第一、二次取到正品的事件,由等可能概型有:(1) 45 2897108)1|2()1()21(=?==A A P A P A A P (2) 45 191102)1|2()1()2,1(=?= =A A P A P A A P (3) 45 169810292108)1|2()1()1|2()1() 21()21(=???=+=+A A P A P A A P A P A A P A A P (4) 5 19110292108)1|2()1()1|2()1() 2(=???=+=A A P A P A A P A P A P 2.某电子设备制造厂所用的晶体管是由三家元件厂提供的,根据以往记录有如下数据~~~设三家工厂的产品在仓库中是均匀混合的,且无区别的标志。(1)在仓库中随机地取一只晶体管,求它是次品的概率。(2)在仓库中随机地取一只晶体管,发现是次品,问此次品是一厂产品的概率? 解:设Bi (I=1,2,3)表示任取一只是第I 厂产品的事件,A 表示任取一只是次品的事件。 (1)由全概率公式 0125 .003.005.001.080.002.05.0)3|()3()2|() 2()1|()1()(=?+?+?=++=B A P B P B A P B P B A P B P A P (2)由贝叶斯公式 24 .00125.002.015.0) () 1|()1()|1(=?== A P B A P B P A B P 3.房间里有10个人,分别佩戴从1号到10叼的纪念章,任选三人记录其纪念章的号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率。 解:由等可能概型有: (1)12110 25== C C P ; (2) 1 10 24 ==C C P 4.6件产品中有4件正品和2件次品,从中任取3件,求3件中恰为1件次品的概率。 解:设6件产品编号为1,2……6,由等可能概型 5336 1224== C C C P 5.设随机变量X 具有概率密度???? ?≤>-=0, 00 , 3)(x x x ke x f 。(1)确定常数k ;(2)求P (X>0.1) 解:(1)由1)(=∞ -+∞ ?dx x f 有33 3303301==-+∞ =-+∞-??k k x d x e k dx x ke 所以(2) 7408 .0331 .0)1.0(=-+∞=>? dx x e x P 6.一大楼装有5个同类型的供水设备,调查表明,在任一时刻t ,每个设备被使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?(2)至多有3个设备被使用的概率是多少?(3)至少有1个设备被使用的概率是多少? 解:由题意,以X 表示任一时刻被使用的设备的台数,则X~b(5,0.1),于是 (1) 0729.039.021.025 )2(===C X P (2) 9995 .051.0559.041.045[1)]5()4([1) 3(1)3()2()1()0()3(=+-==+=-=>-==+=+=+==≤C C X P X P X P X P X P X P X P X P

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,

(完整版)《市场营销》模拟试题1参考答案

《市场营销》模拟试题1参考答案 班级:姓名:学号: 一、案例分析题 一、美国钟表公司通过市场营销研究发现,可把市场上的购买者分为三类: 第一类消费者希望能以尽量低的价格购买能计时的手表,他们追求的是低价位的实用品,这类消费者占23%。第二类消费者希望能以较高的价格购买计时准确、更耐用或式样好的手表,他们既重实用,又重美观,这类消费者占46%。第三类消费者想买名贵的手表,主要是把它作为礼物,他们占整个市场的31%。 于是,根据第一、二类消费者的需要,避开日本精工和西铁城名表,制造了一种叫做“天美时”的物美价廉的手表,一年内保修,而且利用新的销售渠道,广泛通过商店、超级市场、廉价商店、药房等各种类型的商店大力推销,结果很快提高了市场占有率,成为世界上最大的钟表公司之一。 单项选择:(每小题2分,共6分) 1.天美时公司采用什么样的市场细分标准将市场分为三种类型?(C ) A.地理环境细分B.心理细分C.购买行为细分D.人口因素细分2.天美时公司选择了哪种目标市场策略?(B) A.差异性营销策略B.集中性营销策略C.无差异营销策略 3.天美时公司采用的是哪一种市场定位策略?( A ) A.避强定位B.迎头定位C.重新定位 (8分) 比了下去?试用市场营销环境理论分析之。 答:(1)20世纪初期,汽车供不应求,竞争对手很少,福特公司凭借创建汽车生产流水线,以高效率、低成本赢得市场。20世纪20年代,汽车市场发生变化,竞争对手增多,汽车供应量增加,人们变得挑剔起来,不再是“企业生产什么,我就买什么了”。 (2)任何企业的活动都离不开营销环境。福特公司后来比通用公司比了下去的根本原因是忽视市场营销环境的变化,尤其是忽视顾客需求的变化,一意孤行地认为“不管顾客需要什么,我的车就是黑色的”。还有就是忽视对竞争对手的分析。而通用公司则针对福特公司的营销策略及“挑剔的顾客”推出“汽车形式多样化”,最大限度地满足顾客的需求,从而在市场上远远超过了福特公司。 三、有四家公司,其经营决策是:(8分) A公司生产手表,认为只要生产走时精确、造型优美、价格适中的名牌产品,即能获得 经营成功。

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论套练习题及答案

《概率论与数理统计》 同步练习册 学号________ 姓名________ 专业________ 班级________

省电子技术学校继续教育部二O一O年四月

练习一 一、选择题 1.设A,B,C表示三个随机事件,则A B C表示 (A)A,B,C中至少有一个发生;(B)A,B,C都同时发生;(C)A,B,C中至少有两个发生;(D)A,B,C都不发生。2.已知事件A,B相互独立,且P(A)=0.5,P(B)=0.8,则P(A B)= (A) 0.65 ; (B) 1.3; (C)0.9; (D)0.3。3.设X~B(n,p),则有 (A)E(2X-1)=2np;(B)E(2X+1)=4np+1;(C)D(2X+1)=4np(1-p)+1;(D)D(2X-1)=4np(1-p)。4.X的概率函数表(分布律)是 xi -1 0 1 pi 1/ 4 a 5/12 则a=() (A)1/3;(B)0;(C)5/12;(D)1/4。5.常见随机变量的分布中,数学期望和差一定相等的分布是 (A)二项分布;(B)标准正态分布;(C)指数分布;(D)泊松分布。 二、填空题 6.已知:A={x|x<3} ,B={x|2

7. 已知电路由电池A 与两个并联电池B 和C 串联而成,各电池工作与否相互独立。设电池A ,B ,C 损坏的概率均为0.2。则整个电路断电的概率是______________________. 三、证明题 8. 设随机变数ξ具有对称的分布密度函数)(x p ,即),()(x p x p -=证明:对任意的,0>a 有(1)-= -=-2 1)(1)(a F a F ? a dx x p 0 )(; (2)P (1 )(2)-=ξ。

《概率论与数理统计》期末考试试题及解答(DOC)

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(的概率密 度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤==- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

考试模拟题1及参考答案

考试模拟题1及参考答案 考试模拟题1 一、单项选择题(共20题,每题1分,共20分。) 1. 以下叙述不正确的是()。 A. 一个C源程序可由一个或多个函数组成 B. 在C程序中注释说明只能位于一条语句的后面 C. C程序的基本组成单位是函数 D. 一个C源程序必须包含一个main函数 2. 若变量已正确定义并赋值,表达式()不符合C语言语法。 A. 3%2.0 B. a*b/c C. 2, b D. a/b/c 3. 六种基本数据类型的长度排列正确的是()。 A. bool=char

long=float7) if(b>8) if(c>9) x=2;else x=3;后x的值是()。 A. 2 B. 1 C. 0 D. 3 6. 对以下程序,当输入数据的形式为12a345b789↙,正确的输出结果为()。 int main() {char c1,c2;int a1,a2; c1=getchar(); scanf("%2d",&a1); c2=getchar(); scanf("%3d",&a2);

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

北京邮电大学概率论期末考试试卷及答案

北京邮电大学概率论期末考试试卷及答案

第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于2,则B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关 系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A 与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .

2. 设}4 B =x ≤ x ≤ A S:则 x x = x < 3 1: }, { 2: { }, ≤ = {≤< 5 0: (1)= A,(2) ?B = AB,(3)=B A, (4)B A?= ,(5)B A= 。 §1 .3 概率的定义和性质 1.已知6.0 A P ?B = P A B P,则 ( ,5.0 ( ) ) ,8.0 (= ) = (1) =) (AB P, (2)() P)= , (B A (3)) P?= . (B A 2. 已知, 3.0 P A P则 =AB ( (= ) ,7.0 ) P= . A ) (B §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。 2. 已知,2/1 A P =B A P则 = A P B | ( | ) ,3/1 ) ) ,4/1 ( (=

相关主题