搜档网
当前位置:搜档网 › 液压挖掘机回转机构_毕业设计论文

液压挖掘机回转机构_毕业设计论文

液压挖掘机回转机构_毕业设计论文
液压挖掘机回转机构_毕业设计论文

液压挖掘机回转机构

1绪论

1.1课题背景及目的

挖掘机在国民经济建设的许多行业被广泛地采用,如工业与民用建筑、交通运输、水利电气工程、农田改造、矿山采掘以及现代化军事工程等等行业的机械化施工中。据统计,一般工程施工中约有60%的土方量、露天矿山中80%的剥离量和采掘量是用挖掘机完成的。

随着我国基础设施建设的深入和在建设中挖掘机的广泛应用,挖掘机市场有着广阔的发展空间,因此发展满足我国国情所需要的挖掘机是十分必要的。而工作装置和回转机构作为挖掘机的重要组成部分,对其研究和控制是对整机开发的基础。

反铲式单斗液压挖掘机工作装置是一个较复杂的空间机构,国内外对其运动分析、机构和结构参数优化设计方面都作了较深入的研究,具体的设计特别是中型挖掘机的设计已经趋于成熟。而关于反铲式单斗液压挖掘机的相关文献也很多,这些文献从不同侧面对工作装置的设计进行了论述。而笔者的设计知识和水平还只是一个学步的孩子,进行本课题的设计是为对挖掘机的工作装置设计有一些大体的认识,巩固所学的知识和提高设计能力。

1.2国内外研究状况

当前,国际上挖掘机的生产正向大型化、微型化、多能化和专用化的方向发展。国外挖掘机行业重视采用新技术、新工艺、新结构和新材料,加快了向标准化、系列化、通用化发展的步伐。我国己经形成了挖掘机的系列化生产,近年来还开发了许多新产品,引进了国外的一些先进的生产率较高的挖掘机型号[1]。

由于使用性能、技术指标和经济指标上的优越,世界上许多国家,特别是工业发达国家,都在大力发展单斗液压挖掘机。目前,单斗液压挖掘机的发展着眼于动力和传动系统的改进以达到高效节能;应用范围不断扩大,成本不断降低,向标准化、模块化发展,以提高零部件、配件的可靠性,从而保证整机的可靠性;电子计算机监测与控制,实现机电一体化;提高机械作业性能,降低噪音,减少停机维修时间,提高适应能力,消除公害,纵观未来,单斗液压挖掘机有以下的趋势:

(1)向大型化发展的同时向微型化发展。

(2)更为普遍地采用节能技术。

(3)不断提高可靠性和使用寿命。

(4)工作装置结构不断改进,工作范围不断扩大。

(5)由内燃机驱动向电力驱动发展。

(6)液压系统不断改进,液压元件不断更新。

(7)应用微电子、气、液等机电一体化综合技术。

(8)增大铲斗容量,加大功率,提高生产效率。

(9)人机工程学在设计中的充分利用。

1.3 论文构成及研究内容

本论文主要对液压回转机构设计和由动臂、斗杆、铲斗组成挖掘机工作装置进行计算,运动分析。具体内容包括以下五部分:

(1) 液压挖掘机工作装置的总体设计。

(2) 液压挖掘机挖掘机的工作装置的机构运动学分析。

(3) 液压挖掘机工作装置各部分的基本尺寸的计算。

(4) 回转机构的设计

(5) 液压系统原理的设计。

2工作装置总体设计

2.1 工作装置构成

1-斗杆油缸;2- 动臂; 3-油管; 4-动臂油缸; 5-铲斗; 6-斗齿; 7-侧板;

8-连杆; 9-曲柄: 10-铲斗油缸; 11-斗杆.

图2-1 工作装置组成图

图2-1为液压挖掘机工作装置基本组成及传动示意图,如图所示反铲工作装置由铲斗5、连杆9、斗杆11、动臂2、相应的三组液压缸1, 4,10等组成。动臂下铰点铰接在转台上,通过动臂缸的伸缩,使动臂连同整个工作装置绕动臂下铰点转动。依靠斗杆缸使斗杆绕动臂的上铰点转动,而铲斗铰接于斗杆前端,通过铲斗缸和连杆则使铲斗绕斗杆前铰点转动。

挖掘作业时,接通回转马达、转动转台,使工作装置转到挖掘位置,同时操纵动臂缸小腔进油使液压缸回缩,动臂下降至铲斗触地后再操纵斗杆缸或铲斗缸,液压缸大腔进油而伸长,使铲斗进行挖掘和装载工作。铲斗装满后,铲斗缸和斗杆缸停动并操纵动臂缸大腔进油,使动臂抬起,随即接通回转马达,使工作装置转到卸载位置,再操纵铲斗缸或斗杆缸回缩,使铲斗翻转进行卸土。卸完后,工作装置再转至挖掘位置进行第二次挖掘循环。

在实际挖掘作业中,由于土质情况、挖掘面条件以及挖掘机液压系统的不同,反铲装置三种液压缸在挖掘循环中的动作配合可以是多样的、随机的。上述过程仅为一般的理想过程。

挖掘机工作装置的大臂与斗杆是变截面的箱梁结构,铲斗是由厚度很薄的钢板焊接而成。各油缸可看作是只承受拉压载荷的杆。根据以上特征,可以对工作装置进行适当简化处理[3]。则可知单斗液压挖掘机的工作装置可以看成是由动

臂、斗杆、铲斗、动臂油缸、斗杆油缸、铲斗油缸及连杆机构组成的具有三自由度的六杆机构,处理的具体简图如2-2所示。进一步简化得图如2-3所示。

图2-2 工作装置结构简图

1-铲斗;2-连杆;3-斗杆;4-动臂;5-铲斗油缸;6-斗杆油缸

图2-3 工作装置结构简化图

挖掘机的工作装置经上面的简化后实质是一组平面连杆机构,自由度是3,即工作装置的几何位置由动臂油缸长度L1、斗杆油缸长度L2、铲斗油缸长度L3决定,当L1、L2、L3为某一确定的值时,工作装置的位置也就能够确定。

2.2 动臂及斗杆的结构形式

动臂采用整体式弯动臂,这种结构形式在中型挖掘机中应用较为广泛。其结

构简单、价廉,刚度相同时结构重量较组合式动臂轻,且有利于得到较大的挖掘

深度。

斗杆也有整体式和组合式两种,大多数挖掘机采用整体式斗杆。在本设计中

由于不需要调节斗杆的长度,故也采用整体式斗杆。

2.3 动臂油缸与铲斗油缸的布置

动臂油缸装在动臂的前下方,动臂的下支承点(即动臂与转台的铰点)设在

转台回转中心之前并稍高于转台平面,这样的布置有利于反铲的挖掘深度。油缸

活塞杆端部与动臂的铰点设在动臂箱体的中间,这样虽然削弱了动臂的结构强

度,但不影响动臂的下降幅度。并且布置中,动臂油缸在动臂的两侧各装一只,

这样的双动臂在结构上起到加强筋的作用,以弥补前面的不足。具体结构如图

2-4所示。

1-动臂; 2=动臂油缸 图2-4 动臂油缸铰接示意图

2.4 铲斗与铲斗油缸的连接方式

本方案中采用六连杆的布置方式,相比四连杆布置方式而言在相同的铲斗油

缸行程下能得到较大的铲斗转角,改善了机构的传动特性。该布置中1杆与2杆

的铰接位置虽然使铲斗的转角减少但保证能得到足够大的铲斗平均挖掘力。如图

2-5所示。

1-斗杆; 2-连杆机构; 3-铲斗 图2-5 铲斗连接布置示意图

1 2

3

2 3

2.5 铲斗的结构选择

铲斗结构形状和参数的合理选择对挖掘机的作业效果影响很大,其应满足以下的要求[1]:

(1)有利于物料的自由流动。铲斗内壁不宜设置横向凸缘、棱角等。斗底的纵向剖面形状要适合于各种物料的运动规律。

(2)要使物料易于卸尽。

(3)为使装进铲斗的物料不易于卸出,铲斗的宽度与物料的粒径之比应大于4,大于50时,颗粒尺寸不考虑,视物料为均质。

综上考虑,选用中型挖掘机常用的铲斗结构,基本结构如图2-6所示。

图2-6 铲斗

斗齿的安装连接采用橡胶卡销式,结构示意图如2-7所示。

1-卡销;2 –橡胶卡销;3 –齿座; 4–斗齿

图2-7 卡销式斗齿结构示意图

2.6 原始几何参数的确定

(1)动臂与斗杆的长度比K

1

由于所设计的挖机适用性较强,一般不替换工作装置,故取中间比例方案,K1取在1.5~2.0之间,初步选取K1=1.8,即l1/l2=1.8。

(2)铲斗斗容与主参数的选择

斗容在任务书中已经给出:q =2m3

按经验公式和比拟法初选:斗宽b=1.8m

3 工作装置运动学分析

3.1 动臂运动分析

:min 1L 动臂油缸的最短长度;:max 1L 动臂油缸的伸出的最大长度;

A :动臂油缸的下铰点;

B :动臂油缸的上铰点;

C :动臂的下铰点.

图3-1 动臂摆角范围计算简图

φ1是L1的函数。动臂上任意一点在任一时刻也都是L 1的函数。如图3-1

所示,图中:min 1L 动臂油缸的最短长度;:max 1L 动臂油缸的伸出的最大长度;

:min 1θ动臂油缸两铰点分别与动臂下铰点连线夹角的最小值;:max 1θ动臂油缸两铰点分

别与动臂下铰点连线夹角的最大值;A :动臂油缸的下铰点;B :动臂油缸的上铰

点;C :动臂的下铰点。

则有:

在三角形ABC 中:

L 12 = l 72+l 52-2l 7l 5 COSθ1

θ1 = COS -1[(l 72+l 52- L 12)/2×l 7×l 5] (3-1)

在三角形BCF 中:

L 222 = l 72+l 12-2×COSα20×l 7×l 1

α20 = COS-1[(l72+ l12- L222)/2×l7×l1] (3-2) 由图3-3所示的几何关系,可得到α21的表达式:

α21=α20+α11-θ1 (3-3) 当F点在水平线CU之下时α21为负,否则为正。

F点的坐标为

X F = l30+l1×cosα21

Y F=l30+l1×Sinα21

(3-4) C点的坐标为

X C = X A+l5×COSα11 = l30

Y C=Y A+l5×Sinα11 (3-5) 动臂油缸的力臂e1

e1=l5×Sin∠CAB (3-6) 显然动臂油缸的最大作用力臂e1max= l5,又令ρ = l1min/ l5,δ = l7/ l5。这时

L1 = Sqr(l72-l52)= l5 × Sqr(δ2-1)

θ1=cos-11/δ (3-7) 3.2 斗杆的运动分析

如下图3-2所示,D点为斗杆油缸与动臂的铰点点,F点为动臂与斗杆的铰点,E点为斗杆油缸与斗杆的铰点。斗杆的位置参数是l2,这里只讨论斗杆相对于动臂的运动,即只考虑L2的影响。

D-斗杆油缸与动臂的铰点点;F-动臂与斗杆的铰点;

E-斗杆油缸与斗杆的铰点;θ斗杆摆角.

图3-2 斗杆机构摆角计算简图

在三角形DEF中

L22 = l82+ l92-2×COSθ2×l8×l9

θ2 = COS-1[(L22- l82-l92)/2×l8×l9] (3-8)

由上图的几何关系知

φ2max=θ2 max-θ2min (3-9)

则斗杆的作用力臂

e2=l9∠DEF (3-10)

显然斗杆的最大作用力臂e2max = l9,此时θ2 = COS-1(l9/l8),L2 =sqr(l82-l92)3. 3 铲斗的运动分析

铲斗相对于XOY坐标系的运动是L1、L2、L3的函数,现讨论铲斗相对于斗杆的运动,如图3-5所示,G点为铲斗油缸与斗杆的铰点,F点为斗杆与动臂的铰点Q点为铲斗与斗杆的铰点,v点为铲斗的斗齿尖点,K点为连杆与铲斗的饺点,N点为曲柄与斗杆的铰点,M点为铲斗油缸与曲柄的铰点,H点为曲柄与连杆的铰点[1]。

(1)铲斗连杆机构传动比i

利用图3-3,可以知道求得以下的参数:

在三角形HGN中

α22 = ∠HNG = COS-1[(l152+l142-L32)/2×l15×l14]

α30 = ∠HGN = COS-1[(L32+ l152- l142)/2×L3×l14]

α32=∠HNG = π - ∠MNG - ∠MGN =π -α22-α30 (3-11)在三角形HNQ中

L272 = l132 + l212 + 2×COSα23×l13×l21

∠NHQ = COS-1[(l212+l142- L272)/2×l21×l14] (3-12) 在三角形QHK中

α27 = ∠QHK= COS-1[(l292+l272-L242)/2×l29×l27] (3-13) 在四边形KHQN中

∠NHK=∠NHQ+∠QHK (3-14) 铲斗油缸对N点的作用力臂r1

r1=l13×Sinα32 (3-15)连杆HK对N点的作用力臂r2

r2=l13×Sin∠NHK

(3-16)

而由r3 = l24,r4 = l3有[3]

连杆机构的总传动比

i = (r1×r3)/(r2×r4) (3-17)

显然3-17式中可知,i是铲斗油缸长度L2的函数,用L2min代入可得初传动比i0,L2max代入可得终传动比i z。

(2)铲斗相对于斗杆的摆角φ3

铲斗的瞬时位置转角为

φ3=α7+α24+α26+α10 (3-18)其中,在三角形NFQ中

α7 = ∠NQF= COS-1[(l212+l22- l162)/2×l21×l2] (3-19) α10暂时未定,其在后面的设计中可以得到。

当铲斗油缸长度L3分别取L3max和L3min时,可分别求得铲斗的最大和最小转角θ3max和θ3min,于是得铲斗的瞬间转角:

υ3 = θ3-θ3min (3-20) 铲斗的摆角范围: υ3 = θ3max-θ3min (3-21)

图3-3 铲斗连杆机构传动比计算简图

(3)斗齿尖运动分析

见图3-4所示,斗齿尖V点的坐标值X V和Y V,是L1、L2、L3的函数只要推导出X V和Y V的函数表达式,那么整机作业范围就可以确定,现推导如下:

由F点知:

α32=∠CFQ= π –α3-α4-α6-θ2 (3-22)

在三角形CDF中:∠DCF由后面的设计确定,在∠DCF确定后则有:

l82 = l62 + l12 - 2×COS∠DCF×l1×l6(3-23) l62 = l82 + l12 - 2×COSα3×l1×l8

α3 = COS-1(l82+l12–l62)/2×l1×l8(3-24) 在三角形DEF中

L22 = l82 + l92 - 2×COSθ2×l8×l9

图3-4 齿尖坐标方程推导简图1

则可以得斗杆瞬间转角θ2

θ2 = COS-1[(l82+l92- L22)/2×l8×l9] (3-25) α4、α6在设计中确定。

由三角形CFN知:

l28 = Sqr(l162 + l12 - 2×COSα32×l16×l1) (3-26) 由三角形CFQ知:

l23 = Sqr(l22 + l12 - 2×COSα32×l2×l1) (3-27) 由Q点知:

α35=∠CQV= 2π–α33-α24-α10 (3-28) 在三角形CFQ中:

l12 = l232 + l32 - 2×COSα33×l23×l3

α33 = COS-1[(l232+l32- l12)/2×l23×l3] (3-29) 在三角形NHQ中:

l132 = l272 + l212 - 2×COSα24×l27×l21

α24 =∠NQH=COS-1[l272+l212 -l132)/2×l27×l21] (3-30) 在三角形HKQ中:

l292 = l272 + l242 - 2×COSα26×l27×l24

α26 =∠HQK=COS-1[l272+l242–l292)/2×l27×l24] (3-31) 在四边形HNQK:

NQH =α24+α26 (3-32) α20 = ∠KQV,其在后面的设计中确定。

在列出以上的各线段的长度和角度之间的关系后,利用矢量坐标我们就可以得到各坐标点的值。

3.4 特殊工作位置计算:

(1)最大挖掘深度H1max

NH-摇臂;HK-连杆;C-动臂下铰点;A -动臂油缸下铰点;B-动臂与动臂油缸铰点;F-动臂上铰点;D-斗杆油缸上铰点;E-斗杆下铰点;G-铲斗油缸下铰点;Q-铲斗下铰点;K-铲斗上铰点;V-铲斗斗齿尖.

图3-5 最大挖掘深度计算简图

如图3-5示,当动臂全缩时,F, Q, U三点共线且处于垂直位置时,得最大挖

掘深度为: H 1max = Y V = Y Fmin –l 2–l 3

= Y C +L 1Sinα21min –l 2–l 3

= Y C +l 1Sin

(θ1-α20-α11)–l 2–l 3 (3-33)

(2) 最大卸载高度H 3max

NH -摇臂;HK -连杆;C -动臂下铰点;A -动臂油缸下铰点;B -动臂与动臂油缸铰点;F -动臂上铰点;

D-斗杆油缸上铰点;E -斗杆下铰点;G -铲斗油缸下铰点;Q -铲斗下铰点;K -铲斗上铰点;V-铲斗斗齿尖

图3-6 最大卸载高度计算简图

如图3-6所示,当斗杆油缸全缩,动臂油缸全伸时,QV 连线处于垂直状态

时,得最大卸载高度为:

)

sin()sin(112132211211max 3πααθαααθ---++--+==MAX MAX MAX C QMAX

l l Y Y H (3-34)

(3) 水平面最大挖掘半径R 1max

NH -摇臂;HK -连杆;C -动臂下铰点;A -动臂油缸下铰点;B -动臂与动臂油缸铰点;F -动臂上铰点;

D-斗杆油缸上铰点;E -斗杆下铰点;G -铲斗油缸下铰点;Q -铲斗下铰点;K -铲斗上铰点;V-铲斗斗齿尖

图3-7 停机面最大挖掘半径计算简图

如图3-7所示,当斗杆油缸全缩时,F. Q. V三点共线,且斗齿尖v和铰点C 在同一水平线上,即Y C= Y V,得到最大挖掘半径R1max为:

R1max=X C+L40

(3-35)

式中:

L40 = Sqr[(L1+L2+L3)2-2×(L2+L3)×L1×COSα32max (3-36) (4)最大挖掘半径R

最大挖掘半径时的工况是水平面最大挖掘半径工况下C、V连线绕C点转到水平面而成的。通过两者的几何关系,我们可计算得到:l30 = 85mm ;l40 = 9800mm。

(5)最大挖掘高度H2max

最大挖掘高度工况是最大卸载高度工况中铲斗绕Q点旋转直到铲斗油缸全缩而形成的。具体分析方法和最大卸载高度工况的分析类似。

4工作装置基本尺寸的确定

4.1 斗形参数的确定

斗容量q:在设计任务书中已给出q = 2.0 m3

平均斗宽b:其可以由经验公式错误!未找到引用源。选择:

错误!未找到引用源。

再参考其它机型的平均斗宽预初定b = 1.75m = 1750mm

转斗挖掘满转角(2φ):

考虑到铲斗切削入土和出土的余量,一般取2φ<140°,同时考虑到在转斗速度一定时转斗角度太大会增加挖掘阻力,降低生产率,因此一般取2φ=90°~110°。初取2φ=100

挖掘半径R:

参考同斗容的其它型号的机械,初选R = 10420mm 。

铲斗两个铰点K、Q之间的间距l24和l3的比值k2的选取:

l24太大将影响机构的传动特性,太小则影响铲斗的结构刚度[3],初选特性参数k2 = 0.29。

由于铲斗的转角较大,而k2的取值较小,故初选α10 = ∠KQV =110。

4.2 动臂机构参数的选择

4.2.1 动臂转角的选取

初选动臂转角α1 = 120

由经验统计和参考其它同斗容机型,初选特性参数k3 = 1.4 (k3 = L42/L41)

4.2.2 l1与l2的选择

由统计分析,最大挖掘半径R

1

值与l1+l2+l3的值很接近,由已给定的最大挖掘

距离R

1

、已初步选定的l3和k1,结合经验公式有:

l2 = (R -l3)/(1+ k1)= (10420-1550)/(1+1.8)= 3167mm

则l1 = k1l2 = 1.8 × 3167 = 5700mm

4.2.3 l41与l42的计算

如图3-所示,在三角形CZF中:

mm

k k

l l 2728

cos

2

1

1

3

2

3

1 41

=

-+

l42 = k3l41 = 1.4×2728 = 3820 mm

α3 9= ∠ZFC = COS-1(l422+l12–l412)/2×l1×l42 = 24.5°

4.2.4 l5的计算

由经验和反铲工作装置对闭锁力的要求初取k4 = 0.4

α11的取值对特性参数k4、最大挖掘深度H1max和最大挖高H2max均有影响,增大α11会使k4减少或使H1max 增大,这符合反铲作业的要求,初选α11 = 62.5。

斗杆油缸全缩时,∠CFQ =α32–α8最大,依经验统计和便于计算,初选(α32–α8)max = 160 。

由于采用双动臂油缸,∠BCZ的取值较小,初取∠BCZ = 5

如上图4-1所示,在三角形CZF中:

∠ZCF= π-α1-α39

= 180-120-24.5 = 35.5

∠BCF=α3=∠ZCF-∠ZCB

=35.5-10 = 30.5

由3-34和3-35有

H3max= Y C+l1Sin(θ1-α20-α11)–l2–l3 (4-1) = Y A+ l5Sinα11+l1Sin(θ1max-α2-α11)+l2 Sin(θ1max+α32 max -α11-α8-α2-180)–l3

H 1max = l 2+l 3+l 1Sin (α11-θ1min +α2)- l 5 Sinα11- Y A ) (4-2)

由4-1、4-2式有:

H 1max + H 3max = l 1Sin (θ1max -α2-α11)+ l 2 Sin (θ1max +α32 max -α11-α8-α2-180)+ l 1Sin

(α11-θ1min +α2)+ l 2 (4-3)

令 A =α2+α11 = 30.5 + 62.5 = 93

B = A + (α32 –α8)max = 93 +(-160)=-67

将A 、B 的值代入4-3式中有

H 1max + H 3max - l 1[Sin (θ1max -93)+ Sin (93 -θ1min )] + l 2 Sin[(θ1max +67)+1]= 0

(4-4)

又特性参数k 4 = Sinθ1max / λ1Sinθ1min

则有 Sinθ1min = Sinθ1max / λ1 k 4

=Sinθ1max /0.65 (4-5)

2max 1min

12min 1)

65.0sin (1sin 1cos θθθ-=-= (4-6)

将4-5、4-6代入到4-4式中 6485+6630-5700×[Sin (θ1max -93)+ Sin (93 -θ1min )] + l 2 [Sin (θ1max +67)] =0

()

解之: θ1max = 152

θ1min = 46.1

而θ1min 与θ1max 需要满足以下条件

θ1min = COS -1[(σ2+1-ρ2)/2σ] (4-8)

θ1max = COS -1[(σ2+1-λ12ρ2)/2σ] (4-9)

将θ1max 、θ1min 的值代入4-8、4-9中得:

ρ = 2.51 σ = 3.1 1

而ρ+1=2.51 + 1 = 3.51 〉σ (4-10)

(1 + σ)/ρ = 4.1 1/2.51 = 1.64 〉λ (λ= 1.6) (4-11)

ρ、σ满足4-10、4-11两个经验条件,说明ρ、σ的取值是可行的。

l 7 = σl 5 =3.11 ×750 = 2370mm (4-12)

至此,动臂机构的各主要基本参数已初步确定。

4.3 斗杆机构基本参数的选择

D E 2Z

l 8 l 9 ψ2max E 20

F

D:斗杆油缸的下铰点;E:铲斗油缸的上铰点;

F动臂的上铰点;ψ2:斗杆的摆角;l9:斗杆油缸的最大作用力臂.

图4-1 斗杆机构基本参数计算简图

取整个斗杆为研究对象,可得斗杆油缸最大作用力臂的表达式:

e2max = l9 = P Gmax (l2 + l3 )/ P2

= 100×103 ×(3167+1550)×10-3/31.4×π×(70)2×10-6

= 975 mm

如图4-1所示图中,D:斗杆油缸的下铰点;E:铲斗油缸的上铰点;F动臂的上铰点;ψ2:斗杆的摆角;l8:斗杆油缸的最大作用力臂。斗杆油缸的初始位置力臂e20与最大力臂e2max有以下关系:

e20/e2max = l9COS(ψ2max/2)/l9= COS (ψ2max/2)

ψ2max越大,则e20越小,即平均挖掘阻力越小.要得到较大的平均挖掘力,就要尽量减少ψ2max,初取ψ2max = 90

由上图的几何关系有:

l82 = L22min + l29 +2×L2min×l9×COS[(π-ψ2max)/2]

l8 = 3820 mm

而∠EFQ取决于结构因素和工作范围,一般在130~170之间.初定∠EFQ=150,动臂上∠DFZ也是结构尺寸,按结构因素分析,可初选∠DFZ=10.

至此,工作装置的基本尺寸均已初步确定。

5 回转机构设计

5.1 回转支撑的选择

滚动轴承式回转支撑广泛用于全回转的挖掘机,起重机和其他机械上。它是在普通滚动轴承基础上发展起来的。结构上相当于放大了的滚动轴承。

本论文所设计的液压挖掘机为50吨级中型挖掘机,参考国内同型号的液压挖掘机选择单排四点接触球式回转支撑JB2300-84,型号: 012.40.800

该回转支撑外齿齿数Z=94 齿顶圆直径D=970mm 模数m=10

5.2 减速器输出小齿轮主要尺寸的计算

小齿轮与回转支撑大齿轮外啮合,传动比为5。

小齿轮齿数Z 2=94/5=18.8,根据回转机构对输出小齿轮齿数的一般选择,圆整Z=20

模数m=10

回转支撑大齿轮主要尺寸:

分度圆直径:错误!未找到引用源。

齿顶圆直径:错误!未找到引用源。

齿宽:错误!未找到引用源。

中心距错误!未找到引用源。

小齿轮主要尺寸:

分度圆直径:错误!未找到引用源。

齿宽:错误!未找到引用源。

齿根圆直径:170103200222=?-=-=f f h d d mm

顶圆直径:2251025.12200222=??+=+=f a h d d mm

5.3回转减速器设计

回转机构一般选用行星齿轮传动,行星齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点,这些已被我国越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器、和航空航天等工业部门均获得了广泛的应用。

5.3.1液压马达选型

液压挖掘机转台最大扭矩为m N ?=?1391642.1米吨,最大转速r/min 6.6=n 回转减速器输出齿轮与回转支撑外啮合 传动比取5

液压马达转速初定为min /1200r

则减速器总传动比3.365/6.6/1200==i

液压马达输出最小扭矩mm N T ?==67.765/3.36/13916

假设行星齿轮减速器效率为90%, 液压马达储备功率系数1.1

所需液压马达额定扭矩mm N T ?=÷?≥7.939.01.167.760 型号规格

MFBQA20 输出转矩 (m N ?)

100 工作转速 (r/min )

1200 减速器传动比i=1200/6.6/5=36.3,属二级NGW 型的传动比范围。拟用两级太阳轮输入、行星架输出的形式串联。

两级行星轮数都选np=3,高速级行星架不加支撑,与低速级太阳轮之间用浮动齿 轮联轴器联接,以实现高速级行星架与低速级太阳轮的浮动均载。

设计方案如图5-1

挖掘机液压系统毕业设计

中文题目:XE40小型挖掘机液压系统设计 外文题目:DESIGN HYDRAULIC SYSTEM OF XE40 SMALL CRAWLER EXCAVATOR 毕业设计(论文)共 76 页(其中:外文文献及译文 8 页)图纸共 11 张完成日期 2015年 6 月答辩日期2015 年 6 月

辽宁工程技术大学 本科毕业设计(论文)学生诚信承诺保证书 本人郑重承诺:《》毕业设计(论文)的内容真实、可靠,系本人在指导教师的指导下,独立完成。如果存在弄虚作假、抄袭的情况,本人承担全部责任。 学生签名: 年月日 辽宁工程技术大学 本科毕业设计(论文)指导教师诚信承诺保证书本人郑重承诺:我已按学校相关规定对同学的毕业设计(论文)的选题与内容进行了指导和审核,确认由该生独立完成。如果存在弄虚作假、抄袭的情况,本人承担指导教师相关责任。 指导教师签名: 年月日

摘要 XE40小型挖掘机是徐工生产的小型液压挖掘机,本次的毕业设计的课题就是对其进行液压系统的参数化设计。为了研究这个课题,我们的主要的思路就是要先根据已知的挖掘机的性能参数对工作速度和工作压力进行初步的确定,再根据这些数据,对铲斗缸进行参数计算。参考所选液压缸的连接方式和XE40小型挖掘机选用的液压缸的具体形状,绘制出液压缸的CAD图。依照铲斗缸的设计方式与计算流程同理也能设计出斗杆缸和动臂缸。同时根据所设计的挖掘机所选用的动臂缸的数量,就能大致确定出运作液压缸所需要的流量。通过已确定的流量,工作压力,还有工作速度,就能初步确定液压泵的型号和液压马达的型号。然后再参考徐工挖掘机XE40的液压系统,根据系统回路和对挖掘机工作方式的了解,初步设计出液压挖掘机系统的原理图,并用CAD绘制出来。经过审核之后,再来确定所要要用的液压油,发动机,以及对液压阀进行选型。 关键词:液压缸;参数化设计;徐工挖掘机;液压系统

轴自动钻孔机控制系统使用说明书

四轴表带自动钻孔机 一简介 四轴表带自动钻孔机控制系统是由海川数控自主研发的 控制系统。硬件组成包括海川自主研发的HC200A4控制器, 人机界面以及接近开关传感器组成。具有自动化程度高,加 工速度快,工作稳定等特点。目前已经多家厂商的机器中正 常应用。 应用背景 随着社会的发展,人们对手表产品的需求日益增多,特别是表带的精密度要求越来越高。鉴于此,海川数控自主研发“四轴表带自动钻孔机系统”。本系统可应用在各种表带钻孔机上。 系统原理及配置 本控制器支持最多6轴联动,24路输入输出。在本绑线系统中,使用了4轴控制机械.运动方式为4轴联动;四轴使用闭环控制,保证了钻孔的准确。 (1)HC200A4控制器 (2)人机界面 (3)接近开关传感器 (4)伺服电机 技术参数 ?

(1) 钻孔速度累计时间可达到1mm/s (2) 支持两种孔位排序模式 (3) 支持两种走到模式 (4) 支持自适应回原点功能及自定义原点功能 (5) 支持伺服报警显示功能 (6) 支持运行速度及回原点速度设定 (7) 支持手动气缸动作方便调机 (8) 支持手动伺服点动及回原点?方便调机 二人机界面使用说明 系统初始化: 设备上电,系统会有一个启动的过程。当这一过程结束后,系统处于初始状态。触摸屏显示首页如图(1-1)所示。 自动操作 首页在此页面上可以进行以下操作。 主界面按一下【主界面】按钮,系统切换到钻孔主界面如图(1-1)所示。 钻孔参数按一下【钻孔参数】按钮,系统切换到钻孔参数页面如图(2-3)所示。 孔位参数按一下【孔位参数】按钮,系统切换到孔位参数页面如图(2-4)所示。 公用参数按一下【公用参数】按钮,系统切换到公用参数页面如图(2-6)所示。 系统参数按一下【系统参数】按钮,系统切换到系统参数页面如图(2-7)所示。

控制测量论文控制工程论文

控制测量论文控制工程论文 菜园桥倒虹吸顶管井沉井测量控制 摘要:沉井测量控制包括井体本身尺寸控制和井体高程、轴线平面位置控制;井体尺寸控制作为钢筋混凝土工程的一部分技术十分成熟,在此不再过多赘述,现在针对沉井全过程结合我单位菜园桥倒虹吸顶管井沉井进行探讨。 关键词:沉井测量控制沉降控制轴线控制 1 工程概况 小清河菜园桥倒虹吸顶管的顶管井、接收井设计图纸要求进行沉井施工,两井之间管线长度为132.56m;位于小清河两侧,进水井、出水井沉井深度分别为12.458m、13.97m;分三节进行施工;进水井地质情况为0-9.2m为亚粘土、9.2-10.5为亚粘土混姜石,10.5-12.458为亚粘土;出水井地质情况为0-9.8m为亚粘土,9.8-10.7为亚粘土混姜石,10.7-13.97为亚粘土。 2 测量依据 ①《济南市小清河综合治理污水工程》图纸;②《工程测量规范》(GB50026-2007);③《给水排水构筑物施工及验收规范》(GB50141-2008)。 3坐标和高程控制点的设置 根据测绘院提供的坐标控制点以及向对应的高程控制点,我们对

坐标和高程控制点,进行了复测和加密,并在小清河两侧沉井位置各设置了8个坐标控制点网、3个高程控制点(在施工过程中至少要保证2个坐标控制点以及2个高程控制点),防止由于土方开挖或者其他原因导致控制点破坏或者是移动,根据以往经验,控制点无论在什么位置都有可能被破坏,所以要经常核对高程和坐标点进行复测,复测频率约为一周一次,如有破坏则进行补测。 4沉井基坑测量 根据图纸中的沉井中心坐标以及沉井尺寸,从AUTOCAD图中计算出沉井四个内角的坐标;根据沉井四个内角尺寸进行放样确定基坑开挖边线(内尺寸线以外1.5m),挖深5m,边坡坡度1:0.75。 5 测量控制内容 5.1 沉降测量在第一节井墙的浇筑完成模板拆除后,应进行刃脚高程测量和顶部混凝土面测量,同时在沉井的四个角外壁墙上用红漆做好测量基准点,以此点作为基准,进行高程测量: 5.1.1 在混凝土模板拆除后应先在四个外角的外侧用红漆做好标记,测量其高程记录测量原始数据计算下沉具体高度。 5.1.2 沉井在下沉时,应注意观测正常情况下刃角标高,每班至少观测一次,对轴线位移2~3天测量一次。当沉井每次下沉稳定后,应进行高差和中心位移测量。 5.1.3 沉井在初沉阶段,每2h至少观测一次(高程),如果沉井较快时,加大观测力度,必要时应连续进行观测,提供数据,以便及

国内外小型挖掘机发展综述外文文献翻译、中英文翻译、外文翻译

中国地质大学长城学院 本科毕业设计外文资料翻译 系别:工程技术系 专业:机械设计制造及其自动化 姓名:吴宝生 学号: 05211615 2015 年 1 月 22 日

国内外小型挖掘机发展综述 1液压挖掘机简介 液压挖掘机是由发动机、液压系统、工作装置、行走装置和电气控制等部分组成。液压系统由液压泵、控制阀、液压缸、液压马达、管路、油箱等组成。电气控制系统包括监控盘、发动机控制系统、泵控制系统、各类传感器、电磁阀等。液压挖掘机一般由工作装置、回转装置和行走装置三大部分组成。根据其构造和用途可以区分为:履带式、轮胎式、步履式、全液压、半液压、全回转、非全回转、通用型、专用型、铰接式、伸缩臂式等多种类型。 工作装置是直接完成挖掘任务的装置。它由动臂、斗杆、铲斗等三部分铰接而成。动臂起落、斗杆伸缩和铲斗转动都用往复式双作用液压缸控制。为了适应各种不同施工作业的需要,液压挖掘机可以配装多种工作装置,如挖掘、起重、装载、平整、夹钳、推土、冲击锤等多种作业机具。 回转与行走装置是液压挖掘机的机体,转台上部设有动力装置和传动系统。发动机是液压挖掘机的动力源,大多采用柴油要在方便的场地,也可改用电动机。 液压传动系统通过液压泵将发动机的动力传递给液压马达、液压缸等执行元件,推动工作装置动作,从而完成各种作业。以工地使用较多的PV-200型液压挖掘机为例。该机采用改进型的开式中心负荷传感系统(OLSS)。该系统用控制斜盘式变量柱塞泵斜盘角(输出流量)的方法,减少了发动机的功率输出,从而减少燃油消耗,是一种节能型系统。这种液压系统的特点是:定转矩控制,能维持液压泵驱动转矩不变,载断控制,可以减少作业时间的卸荷损失;油量控制,可减少空挡和小调控制时液压泵的输出流量,减少功率损失。 械到电力驱动和内燃机驱动回转挖掘机、应用机电液一体化技术的全自动液压挖掘机的逐步发展过程。由于液压技术的应用,20世纪40年代有了在拖拉机上配装液压反铲的悬挂式机械,20世纪50年代初期和中期相继研制出拖式全回转液压挖掘机和履带式全液压机械。初期试制的液压挖掘机是采用飞机和机床的液压技术,缺少适用于机械各种工况的液压元件,制造质量不够稳定,配套件也不齐全。从20世纪60年代起,液压挖掘机进入推广和蓬勃发展阶段,各国机械制造厂和品种增加很快,产量猛增。1968-1970年间,液压挖掘机产量已占机械总产量的83%,目前已接近100%。 2小型挖掘机的发展及其趋势 20 世纪80~90 年代小型挖掘机在市政工程、交通、管道等施工中发挥了较大优势并得以迅速发展。它在城市的土建施工工程中为节省人力、物力出了较大贡献 , 逐步成为城市施工中具有代表性的施工机械。 小型挖掘机的发展主要依赖于城市建设的发展,由于城市的改造、建设施工较多,要求施工时间短、施工机械对周围环境影响小、安全、低污染、回转半径小、便于运输以

木工横式自动钻孔机设计

摘要 本设计主要根据设计要求机床的工作特点、加工要求及技术要求对木工横式自动钻孔机的整体与局部,内部与外部结构的设计。 本篇论文从材质分析,工艺过程分析入手,来确定工艺方案。通过分析机床在加工孔的过程中的动作,按照传动系统的工作要求,逐步确定了传动方案。由以上的工艺方案、传动方案、设计任务要求以及参考现有同类设备和相关文献的查阅,初步设计出机床的局部和总体结构布局。再通过对加工参数计算来确定电动机,由电动机的各项技术性参数计算逐步选择气缸、电气元件,计算齿轮的各项参数,还有轴的设计以及其它主要零件的校核。最后,是其它结构的设计,如圆锥齿轮的设计,导轨的设计。另外,文章还有关于机床的维护和检修,以及机床的工作特点、加工要求及技术要求。 关键词:钻头;气缸;斜齿轮;夹紧装置;轮轴

Abstaract Designed primarily designed for machine work, processing claim and technology for automatic to a carpenter or a drill, the overall and local, internal and external structure of the design. This article from the material analysis, the process of analysis to determine the process, technique. By analyzing the machine tools made holes in the course of action, in accordance with the transmission of the job requirements and gradually be driven. the more craft solutions, the plan or design requirements and tasks of reference of the existing equipment and associated documents to the preliminary design of machine tools of local and the overall structure layout. To the parameter to determine if the processing, the motor of the technical parameters has chosen the cylinder and electrical components, most of the parameter, and the design and other major component of the nuclear. finally, are other structural design, such as a cone gear design. In addition, there is still on the machine maintenance and repair work, and machine tools, processing requirement and demand. Key word: Drill;Cylinder;Helical gear;Fixture;Axle

液压挖掘机开题报告

液压挖掘机开题报告 福州大学本科生毕业设计(论文)开题报告 机械设计制造及其自动姓名张玉辉学号 020800239 专业化题目小型液压挖掘机工作装置的设计 一、研究背景、概况及意义 这次的毕业设计是在我们学完了大学的全部基础课程、技术基础课程以及全部专业课程之后进行的。这是我们对所有课程的一次深入的综合性的总复习,也是一次理论结合实际的训练,因此,它在我们四年的大学生活中占有重要的地位。就我个人而言,这次毕业设计是熟悉和运用有关手册、图表等技术资料及编写技术文件等基本技能的一次实践机会,它能让我综合运用各科专业课程的基本理论,并结合生产实习和课程设计中学到的实践知识,独立地分析和解决问题,为未来从事的工作打下良好的基础。 挖掘机是用来开挖土嚷的施工机械。它是用铲斗上的斗齿切削土嚷并装入斗内,装满后提升铲斗并回转到卸土地点卸土,然后再使回转台回转、铲斗下降到挖掘面、进行下一次挖掘。挖掘机在工业与民用建筑、道路建设、农田水利、油田矿山、市政工程、机场港口等部门土石施工中占有重要位置。与发达国家相比,我国重矿机械行业还存在着不小的差距,主要表现为我们国家科技和新产品开发能力薄弱,缺乏市场竞争力,现代重要技术装备仍依靠进口,而从20世纪后期开始,国际上挖掘机的生产向大型化、微型化、多功能化、专用化和自动化的方向发展。因此开发新品种、多功能、高质量及高效率的挖掘机具有重要的现实意义。液压挖掘机的工作装置的性能是决定挖掘机能效高低的关键因素,它的设计好坏直接决定了挖掘机的性能水平。因此,研究小型液压挖掘机工作装置的设计具有十分重要的理论意义和现实意义。

1 二、研究主要内容 本次设计研究主要内容包含工作装置的整体方案拟定、对比、确定,对挖掘机工况分析,各主要零件的主要结构参数计算、结构分析和结构设计,并绘制出液压挖掘机工作装置的装配图及各主要零件的零件图,对动臂三维建模、强度分析、提出完善意见,查阅相关科技外文资料然后对其翻译,最后编写设计说明书。 三、研究步骤、方法及措施 1、查阅相关文献、搜集有关的资料。初步了解液压挖掘机的发展及应用。 2、通过对实物的参观及查阅相关书籍,对液压挖掘机的结构、工作原理、特点有进一步的了解。 3、对工况进行分析,根据有关书籍上提供的经验数据和有关公式,计算出主要件的结构参数。 4、根据计算结果和有关图册,进行工作装置的结构设计。 5、对动臂进行三维建模、利用相关软件进行强度分析、根据分析结果提出结构完善意见。 6、翻译相关科技外文资料。 7、编写设计说明书。 2 四、研究进度计划 设计是为2012年2月13日至2010年6月15日,期间约有15周。以下为大体计 划和进度。 毕业设计的主要内容和时间安排:

海底隧道钻机控制系统设计-西电模板

各专业完整优秀毕业论文设计图纸 海底隧道钻机控制系统设计 课程设计 时间:2014 .12 .22

一、海底隧道自动控制系统框图 由题已知条件,设N(s)=0,则系统在给定信号R(s)下的闭环传递函数()Φer s 为: 可求得系统在给定信号R(s)时的稳态误差为: K s s s R s s s sE e s s ssr +++==∞→→12)()1(lim )(lim )(2200 当R(s)=0时,在扰动信号N(s)作用下的系统闭环传递函数()Φen s 为: 到此可求得系统在扰动信号N(s)作用下的稳态误差为: () ()200()lim lim 12S ssn S s s sN e sE s s k →→-∞==++ 由(1),(2)两式可得在R(s)和N(s)作用下系统的输出为: 二、接下来根据不同的K 值MATLAB 绘制时域仿真曲线 在单位阶跃输入的N(s),R(s)时有: )1..(..........1211)()(2)(K s s K s s R s E s er +++==Φ)2.(..........121)()(2)(K s s s N s E s en ++-==Φ22111()()()1212K s C s R s N s s s K s s K +=-++++s s N s s R 1)(,1)(==

- 1 - 此时的输入稳态误差和扰动稳态误差为: 在这里我取K 值分别为1,20,60,100,120,150,单位阶跃输入以及单位阶跃扰动下的系统框图和响应分别为(Δ=2): (注:由系统的稳定性和闭环传递函数可知,极点必须位于s 左半平面,故K 值必须大于0) 下面的分析中将输入响应和扰动响应进行分开讨论。 (1)K=1系统的模拟框图为: 在N (s)=0时得到的单位阶跃响应曲线,如下图: K e e ssn ssr 1 )(,0)(-=∞=∞

材料成型及控制工程专业毕业设计(论文)外文翻译

中文2500字 本科毕业设计翻译 学生姓名:***** 班级:*****班 学号:***** 学院:材料科学与工程学院 专业:材料成型及控制工程 指导教师:***** 副教授 2011年3月25日

Section 4 – Die Design and Construction Guidelines for HSS Dies General Guidelines for Die Design and Construction Draw Dies Higher than normal binder pressure and press tonnage is necessary with H.S.S. in order to maintain process control and to minimize buckles on the binder. Dies must be designed for proper press type and size. In some cases, a double action press or hydraulic press cushion may be required toachieve the necessary binder forces and control. Air cushions or nitrogen cylinders may not provide the required force for setting of draw beads or maintaining binder closure if H.S.S. is of higher strength or thickness. Draw beads for H.S.S. should not extend around corners of the draw die. This will result in locking out the metal flow and cause splitting in corners of stamping. D raw beads should “run out” at the tangent of the corner radius to minimize metal compression in corners, as shown in figure 16 on page 47. Better grades of die material may be necessary depending on the characteristics of the HSS, the severity of the part geometry, and the production volume. A draw die surface treatment, such as chrome plating, may be recommended for outer panel applications. Form and Flange Dies Part setup in form and flange dies must allow for proper overbend on all flanges for springback compensation. Springback allowance must be increased as material strength increases; 3 degrees for mild steels, but 6 degrees or more

液压挖掘机设计开题报告

目录 目录 (1) 一、选题的目的和意义: (2) 二、国内外研究现状(文献综述) (2) 2.1挖掘机的机器人化 (2) 2.2遥控挖掘机的研究 (3) 2.3挖掘机节能技术的研究 (4) 2.4振动挖掘机理研究 (5) 三、市场发展状况(市场分析) (6) 3.1挖掘机的多功能化 (6) 3.2挖掘机的智能化 (7) 3.3挖掘机的实用型设计 (8) 四、选题研究的内容: (8) 五、选题研究的技术路线、研究方法和要解决的主要问题: (8) 六、研究工作进度: (9) 七、参考文献: (9) 1

一、选题的目的和意义: 挖掘机械是一种集土方挖掘、装载、平整、拆除、抢险等作业的工程机械,广泛应用于各类土石方工程施工、民用建筑、道路建设和市政工程场所。近年来伴随着我国经济的快速增长,大规模的基础设施建设对挖掘机提出了强劲的市场需求,我国挖掘机械的产销量每年均有15%~30%的爆炸式增长,2011年更是达到了70%,另一方面,挖掘机作为技术复杂的终端机械产品,其开发和制造涉及机械、液压传动、冶金、石油化工、电气等众多行业,已经形成了一个庞大的产业集群。因此,大力开展对液压挖掘机的研究和探索,对于提升国家整体工业水平和加速国民经济的发展具有重大的促进意义。 二、国内外研究现状(文献综述) 2.1挖掘机的机器人化 为延伸人类在复杂、恶劣、危险环境中的作业,世界各国对机器人化挖掘机的研发工作非常重视,国外在这方面研究比较早,较为典型的有: ①Carnegie Mellon大学的自主装载系统(Au—tonomous Loading System,ALS)t'Jt~ALS系统使用两个激光扫描测距仪,对车辆进行确认和准确定位、观测土壤表面情况、识别障碍物等。该系统还提出一种用于实时轨迹规划和执行复杂挖掘机器人运动的参数化控制方法。相同情况下,普通挖掘机熟练的操作手装满一卡车需要120S,而使用该系统也不超过150S,完成一个装载循环的时间小于1min,与熟练的操作手的操作速度基本相当。因此该系统能满足连续重复挖掘装载的工况要求。关于该系统的具体说明见于下面两篇论文:Peyret F,Jurasz J.The Compu~r Integrated Road Construction pmject[J].Automation in Construction,2000(9)Singh S,Cannon H_Multi-Resolution Planning for Earthmoving.Proceedings International Conference on Robotics and Automation[C].Leuven,Belgium,1998 ②国内机器人化挖掘机的研究国内在这方面研究相对较迟,浙江大学冯培恩教授从上世纪80年代开始率先着手研究挖掘机机电一体化技术,首先实现挖掘机器人作业过程的分级规划和局部自主控制圈。但是他们在任务 2

GCPS—20型工程钻机的设计

摘要 GCPS—20型钻机是一种复合式多功能钻机,为适应我国深基础工程和连续墙以及水利工程、桥梁工程的发展与需要,结合大口径钻机灌注桩和地下连续墙施工的特点,为解决在复杂地层、硬岩中成孔而研制,特别卵石层、基石、漂石层能大幅度提高施工效率,在各种成孔方法中是比较经济有效的方法。 钻机是集回转、冲击钻进工艺于一体的多功能复合型钻机,用转盘回转钻进时可用于第四世纪覆盖层,冲击钻进时可用于卵石、灰岩、花岗岩等硬岩地层。 本钻机的特点是结构简单,紧凑,而且各种操作手柄布置合理,操作简单,便于使用与维护。 关键词:冲击钻进变速箱减速器转盘 Abstract

The types GCPS-20 drill the machine is a kind of compound type multi-function drill the machine, in order to adapt the our country development and demands of the deep foundation and consecution wall and marine hydraulic engineering, the bridge engineering, combine the big caliber to drill the machine to infuse to note the stake and the characteristics of underground continuous wall construction, in order to solve to become the bore but research to manufacture in complicated geologic strata, hard rock, significant exaltation of ability of special egg stone layer, sill, the stone layer construction efficiency, is a more economic valid method in variously become the bore method. Drill the machine is to gather the turn-over and pound at to drill into the craft in the integral whole of multi-function and compound type drill the machine, can used for to overlay the layer the fourth century while using to turn the dish turn-over to drill into, can used for the hard rock geologic strata of egg stone, ash rock, granite...etc. while pounding at to drill into. Drill the characteristics of the machine originally is a structure simple, tightly packed, and various operation hand handle arrange reasonable, operate in brief, easy to usage and support.

液压挖掘机设计与研究毕业论文

液压挖掘机设计与研究毕业论文 1 绪论 1.1 设计背景及目的 液压挖掘机是一种广泛用于建筑、公路、铁路、水利、采矿等建设工程的土方机械。液压挖掘机利用液压元件(液压泵、液压马达、液压缸等)带动各种构件动作,具有非常多得优点,而且只要加装不同的辅助设备即可用来抓物,钻孔,推土,清沟,破碎等作业,是工程机械的一个重要品种,能适应各种恶劣环境状况,大大提高了工作效率,改善了人的劳动强度。为整个社会的快速发展作出了巨大的贡献。 随着技术日渐成熟,国外一些知名的工程机械制造企业发展均比较迅速。例如,国外的有日本小松、德国力士乐、OK公司等,国有徐工集团、中联重科、三一集团、广西柳工集团、龙工集团、山河智能等企业。工程机械制造业的迅速发展不仅在专业方面做出了卓越贡献,同时也为整个社会的建筑风貌、自然救灾等方面作出了伟大的贡献。如5.12汶川大地震发生后,三一重工派出数十台挖掘机日夜兼程赶往灾区用于道路疏通,伤员抢救,以及灾后重建工作等。 我国是一个发展中国家,在辽阔的国土上正在进行大规模的经济建设,这就需要大量的土石方施工机械为其服务,而液压挖掘机是最重要的一类土石方施工机械。因此,可以肯定液压挖掘机的发展空间很大。可以预见,随着国家经济建设的不断发展,对挖掘机的需求量将逐年大幅度增长。今后几年我国液压挖掘机行业将会有一个很大的发展,其年产量将会以高于20%的速度增长。 从1967年到1977年间,国通过数年坚持不懈的努力,克服了重重困难,终于有少量几种规格的液压挖掘机产品获得初步成功,当时有上海建筑机械厂的WY100;矿山机器厂的W4-60;矿山机器厂的WY60;长江挖掘机厂的WY160和重型机械厂的WY250等,到现在,短短的40多年,挖掘机的产量和销量有了飞跃式的提高。尤其是在十一五期间,我国品牌的液压挖掘机发展迅速,在国的市场占有率也快速提高,如表1。

海底隧道钻机控制系统设计

海底隧道钻机控制系统设计 (此文档为word格式,下载后你可任意修改编辑)一、海底隧道自动控制系统框图

由题已知条件,设N(s)=0,则系统在给定信号R(s)下的闭环传递函数()Φer s 为: 可求得系统在给定信号R(s)时的稳态误差为: K s s s R s s s sE e s s ssr +++==∞→→12) ()1(lim )(lim )(2 200 当R(s)=0时,在扰动信号N(s)作用下的系统闭环传递函数()Φen s 为: 到此可求得系统在扰动信号N(s)作用下的稳态误差为: () ()20 ()lim lim 12S ssn S s s sN e sE s s k →→-∞==++ 由(1),(2)两式可得在R(s)和N(s)作用下系统的输出为: 二、接下来根据不同的K 值MATLAB 绘制时域仿真曲线 在单位阶跃输入的N(s),R(s)时有: 此时的输入稳态误差和扰动稳态误差为: ) 1..(..........1211)()(2)(K s s K s s R s E s er +++==Φ) 2.( (121) )()(2)(K s s s N s E s en ++-==Φ22111 ()()() 1212K s C s R s N s s s K s s K +=-++++s s N s s R 1)(,1)(= =e e ssn ssr 1 )(,0)(- =∞=∞

在这里我取K值分别为1,20,60,100,120,150,单位阶跃输入以及单位阶跃扰动下的系统框图和响应分别为(Δ=2): (注:由系统的稳定性和闭环传递函数可知,极点必须位于s左半平面,故K值必须大于0) 下面的分析中将输入响应和扰动响应进行分开讨论。 (1)K=1系统的模拟框图为: 在N(s)=0时得到的单位阶跃响应曲线,如下图:

液压挖掘机底盘设计

目录 摘要 .....................................................................IV Abstract....................................................................V 前言 .................................................................... VI 第一章绪论 ............................................ 错误!未定义书签。 1.1 液压挖掘机在现代化建设中的作用................... 错误!未定义书签。 1.2 液压挖掘机的工作特点和基本类型 (1) 1.2.1 液压挖掘机的主要优缺点 (1) 1.2.2 液压挖掘机的基本类型及主要特点 ............. 错误!未定义书签。 1.3 国内外液压挖掘机研究现状及发展趋势 (4) 1.3.1 研究现状 (4) 1.3.2 发展趋势 ................................... 错误!未定义书签。 1.4 课题设计的目的和意义 (5) 1.5 本设计所要完成的主要任务 (5) 第二章总体方案设计 ..................................... 错误!未定义书签。 2.1 履带式液压挖掘机的组成........................... 错误!未定义书签。 2.2 设计依据 (7) 2.2.1 履带式行走装置的主要特点 (7) 2.2.2 设计参数 ................................... 错误!未定义书签。 2.3 总体设计原则..................................... 错误!未定义书签。 2.4 动力装置的比较与选型 (8) 2.5 工作装置的比较与选择 (9) 2.5.1 反铲工作装置 ............................... 错误!未定义书签。 2.5.2 正铲工作装置 ............................... 错误!未定义书签。 2.6 回转机构的选择................................... 错误!未定义书签。 2.7 传动方式的比较与选择............................. 错误!未定义书签。 2.7.1 机械传动 ................................... 错误!未定义书签。 2.7.2 液力机械传动 ............................... 错误!未定义书签。 2.7.3 电力传动 ................................... 错误!未定义书签。

液压挖掘机毕业设计开题报告

毕业设计(开题报告) 学院 专业 班级学号 学生 指导教师 题目基于SOLIDWORKS的液压挖掘机 工作装置设计 任务规定 进行日期自2013 年1月14日起,至2013 年6月25 日止 1 绪论 1.1 开题的目的和意义: 液压挖掘机是一种多功能机械,目前被广泛应用于水利工程,交通运输,电力工程和矿山采掘等机械施工中,它在减轻繁重的体力劳

动,保证工程质量。加快建设速度以及提高劳动生产率方面起着十分重要的作用。由于液压挖掘机具有多品种,多功能,高质量及高效率等特点,因此受到了广大施工作业单位的青睐。液压挖掘机的生产制造业也日益蓬勃发展。 挖掘机液压传动紧密地联系在一起,其发展主要以液压技术的应用为基础。其结构主要是由发动机、液压系统、工作装置、行走装置和电气控制等部分组成(如图1.1所示),由于挖掘机的工作条件恶劣,要求实现的动作很复杂,于是它对液压系统的设计提出了很高的要求,其液压系统也是工程机械液压系统中最为复杂的。因此,对挖掘机液压系统的分析设计已经成为推动挖掘机发展中的重要一环。 所以,液压挖掘机作为工程机械的一个重要品种,对于减轻工人繁重的体力劳动,提高施工机械化水平,加快施工进度,促进各项建设事业的发展,都起着很大的作用,因此,大力发展液压挖掘机,对于提高劳动生产率和加速国民经济的发展具有重要意义。

图1.1 液压挖掘机整体系统图 通过本次毕业设计,我能将所学的基础理论应用于实际,从而使知识 系统化、综合化。并结合本次毕业设计培养独立获取新知识的能力,提高其运用SOLIDWORKS完成总体装配结构图设计,并将三维图转换为二维CAD图纸的能力,学会一些机械绘图基本要求。使自己树立起具有符合国情和生产实际的正确的设计思想和观点;树立起严谨、负责、实事求是、刻苦钻研、勇于探索并 与建筑、高等级公路、桥梁,水坝和矿业的发展息息相关,使用也越来越广。 1.2液压挖掘机的类型 挖掘机械的类型与构造型式繁多,可按照挖掘工作原理与过程、用途、构造特征等进行划分。 (1)根据铲斗类型分为正铲和反铲。 (2)按照用途:单斗挖掘机分为 建筑型、采矿型和剥离型等。 建筑型挖掘机一般可装置各种不同的工作装置 进行多种作业 故又称通用式。 (3)按照动力装置 挖掘机有电驱动、内燃机驱动和复合驱动等 以一台发动机带支挖掘机全部机构者为单机驱动式 以若干发动机分别带动各个主要机构者为多机驱动式。 (4)按照传动方式 挖掘机分为机械传动式、液压传动式和混合

材料成型及控制工程毕业论文

化学沉积中磷含量Ni-W- P合金晶化 及耐蚀性研究 作者姓名安宁 专业材料成型及控制工程06-1 指导教师宏 专业技术职务教授

目录 摘要 (1) 第一章绪论 (3) 1.1化学镀技术的研究及发展趋势 (3) 1.1.1 化学镀的基本原理 (3) 1.1.2 化学镀镀液组成及作用 (4) 1.1.3 化学镀技术研究概述 (6) 1.1.4 化学镀技术在国的发展 (8) 1.1.5 化学镀技术的应用 (9) 1.1.6 化学镀的发展趋势 (10) 1.2化学沉积层晶化转变机理 (11) 1.3企业设备腐蚀的现状及危害 (11) 1.4本文的目的、意义及研究容 (12) 1.4.1 研究目的及意义 (12) 1.4.2 研究容 (12) 第二章混晶态Ni-W-P合金镀层的制备与实验方法 (14) 2.1实验材料与仪器 (14) 2.2化学镀镀液的组成及配制工艺 (14) 2.2.1 化学镀镀液的组成 (14) 2.2.2 化学镀镀液的配制工艺 (14) 2.3实验方法 (14) 2.3.1 镀前处理 (15) 2.3.2 化学沉积过程 (15) 2.4沉积层检测及性能测试 (15) 2.4.1 沉积层的结构测试 (15) 2.4.2 沉积层的形貌观察及成分测试 (16) 2.4.3 沉积层耐蚀性能测试 (17) 2.4.4 热处理后沉积层的性能测试 (17) 第三章实验结果与分析 (19) 3.1化学沉积中磷含量Ni-W-P合金镀层的微观分析 (19) 3.1.1 镀层的X射线(XRD)衍射分析 (19) 3.1.2 镀层热处理前后的表面形貌及成分分析 (23) 3.1.3 镀层的晶化过程及晶粒尺寸 (25) 3.2热处理前后镀层耐蚀性分析 (26) 第四章结论 (28)

挖掘机行走装置-开题报告

设计(论文) 题目 履带式挖掘机行走装置的设计 设计(论文)类型(划“√”)工程设计应用研究开发研究基础研究其它 √ 一、本课题的发展现状 履带式挖掘机属于工程机械,而工程机械是国民经济建设及国防工程施工中使用的重要技术装备,在国民经济建设中,尤其是城市建设、民用建筑、水利建设、道路构筑、机场修建、矿山开采、码头建造、农田改良中,工程机械起着越来越重要的作用。我国的工程机械行业目前进入了一个高速发展阶段,推、挖、装、起重、铲土运输、筑路、农用机械等各种品种齐全并形成了系列化,各种工程机械虽然品种很多但基本上可划分为动力装置、行走装置和工作装置。行走装置是全机的基础。 二、本课题的国内外发展趋势 由于传统履带式挖掘机具有很多的不足之处(如跨越障碍物的能力弱,摩擦阻力损失大,性价比高,稳定性差等),因此未来挖掘机的结构逐渐向着实用化的方向发展,从而呈现出新的发展趋势。 1)挖掘机的各个零部件趋于系列化,利于机械的维修。 2)新型的液压式挖掘机的稳定性得到进一步的改善。 三、本课题的主要研究内容(提纲) 1、履带式挖掘机的发展趋势 2、托链轮体及轮架的制造过程 3、传动方案的总体设计 4、履带张紧装置的设计 5、履带式行走装置的总体方案设计 6、驱动轮设计 7、导向轮设计 8、支重轮的设计

四、文献综述(国内外研究情况及其发展) 从国内情况来看,我国挖掘机行业整体发展水平较国外缓慢,在挖掘机液压系统方面的理论还比较薄弱。国内大部分挖掘机企业在挖掘机液压系统传统技术方面的研究具有一定基础,但由于采用传统液压系统的挖掘机产品在性能、质量、作业效率、可靠性等方面均较差,因此采用传统液压系统的挖掘机在国内市场上基本失去了竞争力,取而代之的是采用各种高新技术的国外挖掘机产品。先进的挖掘机液压系统都被国际上一流的生产企业垄断,国内企业在该领域的研究几乎是空白,这样国内的挖掘机生产厂家就无法独立制造出性能优异的挖掘机,绝大部分的市场份额都被国外各种品牌的挖掘机所占据。以20t级的中型液压挖掘机为例,国产20t级挖掘机大多数是欧洲80年代初的技术”,同90年代初以来在国内形成批量的日本小松、日立、神钢以及韩国大宇、现代等机型相比,其主要差距柴油机功率偏低,液压系统流量偏小,液压系统特性差,导致平台回转速度低,行走速度低,各种性能参数均偏小,整机性能和作业效率较国外偏低。研究挖掘机的节能控制处于非常关键的地位,决定了国内挖掘机今后的竞争力。尽管国外挖掘机节能控制已经发展到了非常成熟的地步,但并不意味着我们没有一点机会,混合动力汽车的发展为我们挖掘机等工程机械的的节能提供了很好的借鉴,说明挖掘机节能还有很大的潜力可挖,乐观估计的话应该还有50%的节能潜力。 中国工程机械行业从形成、发展到壮大,成为世界工程机械大国,经历了短短的40余年,特别是改革开放30年来,发展尤为迅速,以液压挖掘机为例,1993年我国液压挖掘机总销量为2349台,15年后的2008年我国液压挖掘机的总销量高达83000台,15年增长35倍。而2010年我国液压挖掘机的总销量已超过一万台,挖掘机行业在中国机械行业中占据了不可替代的地位。

回转式钻孔机的设计

目录 一、绪论 (2) 1.1打孔机简介与种类 (2) 1.2打孔机得发展情况 (3) 1.3.研究得背景与意义 (3) 二、总体设计方案确定及动力元件选择 (5) 2.1总体设计的要求 (5) 2.2机型与传动形式得选择 (6) 2.2.1机型得选择 (6) 2.2.2传动形式的选择 (6) 2.3 打孔机的整体布局 (6) 2.3.1打孔机得总体布局 (6) 2.3.2打孔机的驱动和动力输入方式 (7) 2.3.3打孔机整体参数确定 (7) 2.4钻机的功能单元及实现方法 (10) 2.4.1钻具 (10) 2.4.2回转机构 (10) 2.5 电动机的选型 (11) 三、减速装置设计 (12) 3.1传动比确定及各级传动比分配 (12) 3.2 运动参数及动力参数计算 (13) 3.2.1 计算各轴转速 (13) 3.2.2 计算各轴的功率 (13) 3.2.2 计算各轴的功率 (14) 3.3 齿轮传动的设计计算 (14) 3.3.1 第一级齿轮传动副的设计计算 (14) 3.3.2第二级齿轮传动副的设计计算 (17) 3.3.3 三级齿轮传动副的设计计算 (21) 3.4 传动轴的设计 (25) 3.4.1第一传动轴的设计及计算 (25) 3.4.2第二轴的结构设计及计算 (28) 3.4.3三轴的结构设计及计算 (34) 3.5减器箱体结构尺寸 (37) 3.5.1结构尺寸 (37) 3.5.2油标 (39) 3.5.3通气罩 (39) 3.5.4.螺塞 (40) 四、链传动设计 (40) 4.1链传动的特点 (40) 4.2链的类型 (41) 4.3链传动选择 (42) 五、支架的设计 (48) 5.1.机架设计准则 (48)

相关主题