搜档网
当前位置:搜档网 › 最优化理论与应用实验报告

最优化理论与应用实验报告

最优化理论与应用实验报告
最优化理论与应用实验报告

最优化理论与应用实验报告

季晓南

实验目的:

实践所学的最优化方法。

工程描述:

本工程使用编写,主要包括以下几个文件:

: 实现最优化方法的基本步骤

: 实现非精确一维搜索

: 实现基本函数操作

: 工程的基本配置

: 主要函数的声明

具体请参考每个函数的注释。

● 代码可读性高,模块化强,采用了一致的代码规范,尽管这在一定程度上牺牲了效率,

但本着实验的目的,作者坚持这样做了。

● 用户可以通过改变中的( )和( )来改变输入函数。

● 对于不同的标准,如非精确一维搜索和,校正以及共轭梯度法中的和公式,用户都可以

通过改变中的宏定义实现。

● 每次实验的结果和参数都会自动保存,这样有助于分析数据。

数据分析:

给定二次函数 ()x 22121f()=x +3x 2

(一)一维搜索

1. 非精确一维搜索参数对迭代次数的影响

由准则:

T k k k k k f(x +s f(x +g s ρ≤))

()1 (1)T k k k k k f(x +s f(x +g s ρ≥-)) ()2

可知:越大的ρ对应着越精确的搜索区间,取0.3ρ=使用再开始的共轭梯度法求解,得到迭代次数为,取0.4ρ=得到迭代次数为次,见同文件夹下的数据文件。

2. 准则与准则的比较

由准则

T T k+1k k k g d g d σ≥ ()'

2

σ=,打开宏,可以发现使用再开始共轭梯度法时,两次迭代就得到解。

在中修改0.5

见同文件夹下的数据文件。

3.非精确一维搜索参数对一维搜索速度的影响

对二次函数,参数的选择对一维搜索的参数选择是不敏感的。

(二)不同方法的比较

.最速下降法

最速下降法的效率是最低的,因为测试函数的等值线是一个椭球,搜索方向形成锯齿状曲线,故收敛速度慢。

2.共轭梯度法

若选择合适的参数,使用共轭梯度法,具有二次收敛性。在准则下,分别采用和公式生成共轭方向,发现要比的效果好。

3.拟牛顿方法

因拟牛顿法也是共轭方向法,故选择合适的参数,拟牛顿法也有二次收敛性。在准则下,分别采用和校正,发现要比要好。

最优化实验报告

最优化方法 课程设计报告班级:________________ 姓名: ______ 学号: __________ 成绩: 2017年 5月 21 日

目录 一、摘要 (1) 二、单纯形算法 (2) 1.1 单纯形算法的基本思路 (2) 1.2 算法流程图 (3) 1.3 用matlab编写源程序 (4) 二、黄金分割法 (7) 2.1 黄金分割法的基本思路 (7) 2.2 算法流程图 (8) 2.3 用matlab编写源程序 (9) 2.4 黄金分割法应用举例 (11) 三、最速下降法 (11) 3.1 最速下降法的基本思路 (11) 3.2 算法流程图 (13) 3.3 用matlab编写源程序 (13) 3.4 最速下降法应用举例 (13) 四、惩罚函数法 (17) 4.1 惩罚函数法的基本思路 (17) 4.2 算法流程图 (18) 4.3 用matlab编写源程序 (18) 4.4 惩罚函数法应用举例 (19) 五、自我总结 (20) 六、参考文献 (20)

一、摘要 运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。通过对数据的调查、收集和统计分析,以及具体模型的建立。收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各个部门及各个领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB软件已经成为最优化领域应用最广的软件之一。有了MATLAB 这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 关键词:优化、线性规划、黄金分割法、最速下降法、惩罚函数法

最优化方法实验报告(1)

最优化方法实验报告Numerical Linear Algebra And Its Applications 学生所在学院:理学院 学生所在班级:计算数学10-1 学生姓名:甘纯 指导教师:单锐 教务处 2013年5月

实验一 实验名称:熟悉matlab基本功能 实验时间: 2013年05月10日星期三实验成绩: 一、实验目的: 在本次实验中,通过亲临使用MATLAB,对该软件做一全面了解并掌握重点内容。 二、实验内容: 1. 全面了解MATLAB系统 2. 实验常用工具的具体操作和功能 实验二 实验名称:一维搜索方法的MATLAB实现 实验时间: 2013年05月10日星期三实验成绩: 一、实验目的: 通过上机利用Matlab数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: (一)0.618法(黄金分割法),它是一种基于区间收缩的极小点搜索

算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当()()k k f f λμ≤转步骤(4)。 (3)置 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

整数规划实验报告例文

整数规划实验报告例文 篇一:实验报告整数规划 一、实验名称:整数规划问题和动态规划问题 二、实验目的: 熟练使用Spreadsheet建立整数规划、动态规划模型,利用excel建立数学模型,掌握求解过程,并能对实验结果进行分析及评价 三、实验设备 计算机、Excel 四、实验内容 (一)整数规划 1、0-1整数规划 其中,D11=F2;D12=F3;D13=F4;D14=F5; B11=SUMPRODUCT($B$9:$E$9,B2:E2); B12=SUMPRODUCT($B$9:$E$9,B3:E3); B13=SUMPRODUCT($B$9:$E$9,B4:E4); B14=SUMPRODUCT($B$9:$E$9,B5:E5); H8==SUMPRODUCT($B$9:$E$9,B6:E6); 用规划求解工具求解:目标单元格为$H$8,求最大值,可变单元格为$B$9:$E$9,约束条件为 $B$11:$B$14<=$D$11:$D$14;$B$9:$E$9=二进制。在【选项】

果,实现最大利润为140. 2、整数规划 其中,D11=D2;D12=D3; B11=SUMPRODUCT($B$8:$C$8,B2:C2);B12=SUMPRODUCT($B$8:$ C$8,B3:C3); F7=SUMPRODUCT($B$8:$C$8,B4:C4); 用规划求解工具求解:设置目标单元格为F7,求最大值,可变单元格为$B$8:$C$8,约束条件为 $B$11:$B$12<=$D$11:$D$12;$B$8:$C$8=整数。在【选项】菜单中选择“采用线性模型”“假定非负”。即可进行求解得结果,实现最大利润为14. 3、指派问题 人数跟任务数相等: 其中, F11=SUM(B11:E11);F12=SUM(B12:E12);F13=SUM(B13:E13);F14=SU M(B14:E14); B15=SUM(B11:B14);C15=SUM(B11:B14);D15=SUM(B11:B14);E15=SU M(B11:B14); H11,H12,H13,H14,B17,C17,D17,E17单元格值均设为1. 用规划求解工具求解:设置目标单元格为$B$8,求最小值,可变单元格为$B$11:$E$14,约束条件为$B$11:$E$14=二进制; $B$15:$E$15=$B$17:$E$17;$F$11:$F$14=$H$11:$H$14. 在【选

最优化实验报告(单纯形法的matlab程序,lingo程序)

实验一:线性规划单纯形算法 一、实验目的 通过实验熟悉单纯形法的原理,掌握Matlab 循环语句的应用,提高编程的能力和技巧。 二、实验用仪器设备、器材或软件环境 Windows Xp 操作系统 ,Matlab6.5,计算机 三、算法 对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始 基本可行解。设初始基为B,然后执行如下步骤: (1).解B Bx b =,求得1 B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量 (2).计算单纯形乘子w , B wB C =,得到1 B w C B -=,对于非基变量,计算判别数 1i i i B i i z c c B p c σ-=-=-,令 max{}k i i i R z c σ∈=-,R 为非基变量集合 若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步 (3).解k k By p =,得到 1 k k y B p -=;若0k y ≤,即k y 的每个分量均非正数,则停止计算,问题不存在有限最优解,否则,进行步骤(4). (4).确定下标r,使 { } :0 min ,0 t r rk tk tk b b tk y y t y y >=>且r B x 为离基变量。 k x 为进基变量,用k p 替换r B p ,得到新的基矩阵B ,返回步骤(1)。 对于极大化问题,可以给出完全类似的步骤,只是确定进基变量的准则不同。对于极大化问题,应令 min{}k k j j z c z c -=-

四、计算框图 是 否 是 否 开始 初始可行解B 令1,0,B N B B x B b b x f c x -==== 计算单纯形乘子1 B w c B -=,计算判别数,i j j wp c j R σ=-∈(非基变量) 令max{,}k j j R σσ=∈ 0?k σ≤ 得到最优解 解方程k k By p =,得到1k k y B p -=。 0?k y ≤ 不存在有限最优解 确定下标r ,是 { }:0 min ,0 t r rk tk tk b b tk y y t y y >=>且 k x 为进基变量,用 k p 替换r B p ,得到新的基矩阵B

学生科学实验效果最优化的基石实验报告设计

学生科学实验效果最优化的基石实验报告设计 自然科学是以实验为基础的学科。实验是人们研究和认识自然的重要方法。因此,在自然科学的教学中,实验也是重要的教学方法之一。通过实验,不仅可以提供学生对科学现象的感性认识,更可以让学生获得初步的实验技能和观察分析问题的能力。 小学科学实验教学的设计是运用系统论的思想和方法,以学习理论、教学理论为基础,计划和安排实验教学的各个环节、要素,以实现教学效果最优化为目的的活动。通过多年来的实验教学实践与思考,我们可以让学生像科学家那样,亲历科学探究的过程,这有利于充分发挥学生的主体作用,让学生积极主动参与到观察、实验等学习活动中去,亲自感知实验所产生的各种现象和变化,提高自行获取知识的能力,而其中比较重要的一个环节就是学生实验报告的设计与记录。在学生实验的过程中,一份好的实验报告设计,就像是一盏明灯,能给学生指引实验的目标、方向,能提供给学生形成结论的分析数据,进而培养学生科学实验的基本素养,使学生的科学实验效果达到最优化。 一、观察实验报告的填写,有利于学生在实验中观察,进一步培养学生实验的责任心和有序观察能力。 教科版四下《油菜花开了》解剖花的实验中,我设计了如下实验报告,在教学中取得了很好的效果。 《解剖花》实验人

花的名称 实验方法:用镊子把花的各部分,从外向里一层层撕下,整齐排列并贴在相应的名称左边,数一数,填在相应的空格上。 个萼片 个花瓣 个雄蕊 个雌蕊 在班级(1)上课时我没有设计实验报告,就按照书本上的要求,先介绍解剖花的方法、花的结构,然后让学生按照书本要求独立解剖油菜花。在实验过程中,学生非常认真,且相当活跃,但检查结果时,学生雌雄蕊不分,萼片、花瓣不分,桌上、地上掉落的都是花瓣,实验效果之不佳显而易见。 后来,我根据班级(1)出现的情况,设计了如上实验报告,实验的效果就相当出色。在这个实验报告中,我并没有限制学生解剖何种花,但学生可以根据实验要求很清楚地完成解剖的任务。充分体现了以教师为主导、学生为主体的课堂教学思想;而且在实验的过程中,桌上有了这份实验报告,便时刻提醒着学生做实验究竟是何目的,做实验时必须仔细观察什么,做实验的观察步骤是什么。在解剖花的过程中,动作快的同学还可在老师的同意下,多取一两张实验报告单,多解剖几种花,因此既避免了学生在一旁闲着无所事事而打闹的局面,又进一步提高了这些学生的科学素质。至于个别有困难的学生,教师可在巡视的过程中

最优化方法课程实验报告

项目一 一维搜索算法(一) [实验目的] 编写加步探索法、对分法、Newton 法的程序。 [实验准备] 1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤; 3.掌握Newton 法的思想及迭代步骤。 [实验容及步骤] 编程解决以下问题: 1.用加步探索法确定一维最优化问题 1 2)(min 30 +-=≥t t t t ? 的搜索区间,要求选取2,1,000===αh t . 加步探索法算法的计算步骤: (1)选取初始点 ]) 0[)(0[max 00t t t ,或,∈?∞+∈,计算 )(00t ??=.给出初始步长0 >h , 加步系数1α>,令0=k 。 (2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ??,若k k ??<+1,转(3),否则转(4)。 (3) 加大探索步长.令 k k h h α=+1,同时,令,k t t =,1+=k k t t 1k k =+,转(2)。 (4) 反向探索.若0=k ,转换探索方向,令,k k h h -=1+=k t t ,转(2)。否则,停止迭代,令 11min{}max{}k k a t t b t t ++==,,,。 加步探索法算法的计算框图

程序清单 加步探索法算法程序见附录1 实验结果 运行结果为: 2.用对分法求解 )2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算. 对分法迭代的计算步骤: (1)确定初始搜索区间],[b a ,要求'()0'()0a b ??<>,。 (2) 计算],[b a 的中点)(2 1 b a c +=. (3) 若0)(<'c ?,则c a = ,转(4);若0)(='c ?,则c t =* ,转(5);若0)(>'c ?,则c b = ,转(4). (4) 若ε<-||b a ,则)(2 1* b a t +=,转(5);否则转(2). (5) 打印* t ,结束 对分法的计算框图

最优化方法(黄金分割与进退法)实验报告

一维搜索方法的MATLAB 实现 姓名: 班级:信息与计算科学 学号: 实验时间: 2014/6/21 一、实验目的: 通过上机利用Matlab 数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab 软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: 黄金分割法 它是一种基于区间收缩的极小点搜索算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断 的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当 ()()k k f f λμ≤转步骤(4)。 (3) 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

(4) 转步骤(5) (5)令1k k =+,转步骤(2)。 算法的MATLAB 实现 function xmin=golden(f,a,b,e) k=0; x1=a+0.382*(b-a); x2=a+0.618*(b-a); while b-a>e f1=subs(f,x1); f2=subs(f,x2); if f1>f2 a=x1; x1=x2; f1=f2; x2=a+0.618*(b-a); else b=x2; x2=x1; f2=f1; x1=a+0.382*(b-a); end k=k+1; end xmin=(a+b)/2; fmin=subs(f,xmin)

最优化方法课程实验报告

. . 项目一 一维搜索算法(一) [实验目的] 编写加步探索法、对分法、Newton 法的程序。 [实验准备] 1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤; 3.掌握Newton 法的思想及迭代步骤。 [实验容及步骤] 编程解决以下问题: 1.用加步探索法确定一维最优化问题 1 2)(min 30 +-=≥t t t t ? 的搜索区间,要求选取2,1,000===αh t . 加步探索法算法的计算步骤: (1)选取初始点])0[)(0[max 00t t t ,或,∈?∞+∈,计算)(00 t ??=.给出初始步长0 >h , 加步系数1α>,令0=k 。 (2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ??,若k k ??<+1,转(3),否则转(4)。 (3) 加大探索步长.令k k h h α=+1,同时,令,k t t =,1+=k k t t 1k k =+,转(2)。 (4) 反向探索.若0=k ,转换探索方向,令,k k h h -=1+=k t t ,转(2)。否则,停止迭代, 令 11min{}max{}k k a t t b t t ++==,,,。 加步探索法算法的计算框图

. . 程序清单 加步探索法算法程序见附录1 实验结果 运行结果为: 2.用对分法求解 )2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算. 对分法迭代的计算步骤: (1)确定初始搜索区间],[b a ,要求'()0'()0a b ??<>,。 (2) 计算],[b a 的中点)(2 1 b a c += . (3) 若0)(<'c ?,则c a = ,转(4);若0)(='c ?,则c t =* ,转(5);若0)(>'c ?,则c b = ,转(4). (4) 若ε<-||b a ,则)(2 1* b a t +=,转(5);否则转(2).

最优化实验报告

最优化方法 课程设计报告 班级:________________ 姓名: ______ 学号: __________ 成绩: 2017年 5月 21 日 目录 一、摘要 (1)

二、单纯形算法 (2) 1.1 单纯形算法的基本思路 (2) 1.2 算法流程图 (3) 1.3 用matlab编写源程序 (3) 二、黄金分割法 (7) 2.1 黄金分割法的基本思路 (7) 2.2 算法流程图 (8) 2.3 用matlab编写源程序 (9) 2.4 黄金分割法应用举例 (10) 三、最速下降法 (10) 3.1 最速下降法的基本思路 (10) 3.2 算法流程图 (12) 3.3 用matlab编写源程序 (12) 3.4 最速下降法应用举例 (13) 四、惩罚函数法 (16) 4.1 惩罚函数法的基本思路 (16) 4.2 算法流程图 (17) 4.3 用matlab编写源程序 (17) 4.4 惩罚函数法应用举例 (19) 五、自我总结 (19) 六、参考文献 (19)

一、摘要 运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。通过对数据的调查、收集和统计分析,以及具体模型的建立。收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各个部门及各个领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB软件已经成为最优化领域应用最广的软件之一。有了MATLAB这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 关键词:优化、线性规划、黄金分割法、最速下降法、惩罚函数 法

遗传算法实验报告

遗传算法实验报告 专业:自动化姓名:张俊峰学号:13351067 摘要:遗传算法,是基于达尔文进化理论发展起来的一种应用广泛、高效的随机搜索与优化方法。本实验利用遗传算法来实现求函数最大值的优化问题,其中的步骤包括初始化群体、个体评价、选择运算、交叉运算、变异运算、终止条件判断。该算法具有覆盖面大、减少进入局部最优解的风险、自主性等特点。此外,遗传算法不是采用确定性原则而是采用概率的变迁规则来指导搜索方向,具有动态自适应的优点。 关键词:串集最优化评估迭代变异 一:实验目的 熟悉和掌握遗传算法的运行机制和求解的基本方法。 遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异等操作以及达尔文的适者生存的理论,模拟自然进化过程来寻找所求问题的答案。其求解过程是个最优化的过程。一般遗传算法的主要步骤如下: (1)随机产生一个确定长度的特征字符串组成的初始种群。。 (2)对该字符春种群迭代地执行下面的步骤a和步骤b,直到满足停止准则为止: a计算种群中每个个体字符串的适应值; b应用复制、交叉和变异等遗传算子产生下一代种群。 (3)把在后代中表现的最好的个体字符串指定为遗传算法的执行结果,即为问题的一 个解。 二:实验要求 已知函数y=f(x 1,x 2 ,x 3 ,x 4 )=1/(x 1 2+x 2 2+x 3 2+x 4 2+1),其中-5≤x 1 ,x 2 ,x 3 ,x 4 ≤5, 用遗传算法求y的最大值。三:实验环境

操作系统:Microsoft Windows 7 软件:Microsoft Visual studio 2010 四:实验原理与步骤 1、遗传算法的思想 生物的进化是以集团为主体的。与此相对应,遗传算法的运算对象是由M个个体所组成的集合,称为群体。与生物一代一代的自然进化过程相类似,遗传算法的运算过程也是一个反复迭代过程,第t代群体极为P(t),进过一代遗传和进化后,得到第t+1代群体,他们也是由多个个体组成的集合,记做P(t+1)。这个群体不断地经过遗传和进化操作,并且每次都按照有优胜劣汰的规则将适应度较高的个体更多地遗传到下一代,这样最终在群体中将会得到一个优良的个体X,它所对应的表现性X将达到或接近于问题的最优解。 2、算法实现步骤 ①、产生初始种群:产生初始种群的方法通常有两种:一种是完全随机的方法产生的,适合于对问题的解无任何先验知识的情况;另一种是将某些先验知识转变为必须满足的一组要求,然后在满足这些要求的解中再随机地选择样本,t=0,随机产生n个个体形成一个初始群体P(t),该群体代表优化问题的一些可能解的集合; ②适应度评价函数:按编码规则,将群体P(t)中的每一个个体的基因码所对应的自变量取值代入目标函数,算出其函数值f,i=1,2,…,n,f越大,表示该个体有较高的适应度,更适合于f所定义的生存环境,适应度f为群体进化提供了依据; ③选择:按一定概率从群体P(t)中选出m个个体,作为双亲用于繁殖后代,产生新的个体加入下一个群体P(t+1)中。此处选用轮盘算法,也就是比例选择算法,个体被选择的概率与其适应度成正比。 ④交叉(重组):对于选中的用于繁殖的每一个个体,选择一种交叉方法,产生新的个体;此处采取生成随机数决定交叉的个体与交叉的位置。 ⑤变异:以一定的概率Pm从群体P(t+1)中随机选择若干个个体,对于选中的个体随机选择某个位置,进行变异; ⑥对产生新一代的群体返回步骤③再进行评价,交叉、变异如此循环往复,使群体中个体的适应度和平均适应度不断提高,直至最优个体的适应度达到某一限值或最优个体的适应度和群体的平均适应度不再提高,则迭代过程收敛,算法结束。 五:实验结果 实验结果的显示取决于判断算法终止的条件,这里可以有两种选择:1、在程序中设定迭代的次数;2在程序中设定适应值。本实验是在程序中实验者输入需要迭代的次数来判断程序终结的。

最优化理论与应用实验报告

最优化理论与应用实验报告 季晓南 实验目的: 实践所学的最优化方法。 工程描述: 本工程使用编写,主要包括以下几个文件: : 实现最优化方法的基本步骤 : 实现非精确一维搜索 : 实现基本函数操作 : 工程的基本配置 : 主要函数的声明 具体请参考每个函数的注释。 ● 代码可读性高,模块化强,采用了一致的代码规范,尽管这在一定程度上牺牲了效率, 但本着实验的目的,作者坚持这样做了。 ● 用户可以通过改变中的( )和( )来改变输入函数。 ● 对于不同的标准,如非精确一维搜索和,校正以及共轭梯度法中的和公式,用户都可以 通过改变中的宏定义实现。 ● 每次实验的结果和参数都会自动保存,这样有助于分析数据。 数据分析: 给定二次函数 ()x 22121f()=x +3x 2 (一)一维搜索 1. 非精确一维搜索参数对迭代次数的影响 由准则: T k k k k k f(x +s f(x +g s ρ≤)) ()1 (1)T k k k k k f(x +s f(x +g s ρ≥-)) ()2 可知:越大的ρ对应着越精确的搜索区间,取0.3ρ=使用再开始的共轭梯度法求解,得到迭代次数为,取0.4ρ=得到迭代次数为次,见同文件夹下的数据文件。 2. 准则与准则的比较 由准则 T T k+1k k k g d g d σ≥ ()' 2

σ=,打开宏,可以发现使用再开始共轭梯度法时,两次迭代就得到解。 在中修改0.5 见同文件夹下的数据文件。 3.非精确一维搜索参数对一维搜索速度的影响 对二次函数,参数的选择对一维搜索的参数选择是不敏感的。 (二)不同方法的比较 .最速下降法 最速下降法的效率是最低的,因为测试函数的等值线是一个椭球,搜索方向形成锯齿状曲线,故收敛速度慢。 2.共轭梯度法 若选择合适的参数,使用共轭梯度法,具有二次收敛性。在准则下,分别采用和公式生成共轭方向,发现要比的效果好。 3.拟牛顿方法 因拟牛顿法也是共轭方向法,故选择合适的参数,拟牛顿法也有二次收敛性。在准则下,分别采用和校正,发现要比要好。

最优化算法实验报告(附Matlab程序)

最优化方法(Matlab)实验报告 ——Fibonacci 法 一、实验目的: 用MATLAB 程序实现一维搜索中用Fibonacc 法求解一元单峰函数的极小值问题。二、实验原理: (一)、构造Fibonacci 数列:设数列{}k F ,满足条件: 1、011F F == 2、11 k k k F F F +-=+则称数列{}k F 为Fibonacci 数列。(二)、迭代过程: 首先由下面的迭代公式确定出迭代点: 1 1 1 (),1,...,1(),1,...,1n k k k k k n k n k k k k k n k F a b a k n F F u a b a k n F λ---+--+=+ -=-=+ -=-易验证,用上述迭代公式进行迭代时,第k 次迭代的区间长度缩短比率恰好为 1 n k n k F F --+。故可设迭代次数为n ,因此有11121211221111223231 ()()......()()n n n n n n n n n F F F F F F b a b a b a b a b a F F F F F F F ------= -=?-==?-=-若设精度为L ,则有第n 次迭代得区间长度111 ()n n n b a L b a L F -≤-≤,即 就是 111 ()n b a L F -≤,由此便可确定出迭代次数n 。

假设第k 次迭代时已确定出区间[,]k k a b 以及试探点,[,]k k k k u a b λ∈并且k k u λ<。计算试探点处的函数值,有以下两种可能:(1)若()()k k f f u λ>,则令 111111111,,()() () k k k k k k k k n k k k k k n k a b b f f F a b a F λλμλμμ++++--++++-=====+-计算1()k f μ+的值。(2)()()k k f f u λ≤,则令 111121111,,()() () k k k k k k k k n k k k k k n k a a b f f F a b a F μμλμλλ++++--++++-=====+-计算1()k f λ+的值。 又因为第一次迭代确定出了两个迭代点,以后每迭代一次,新增加一个迭代点,这样在迭代n-1后便计算完了n 个迭代点。因此第n 次迭代中,选用第n-1次的迭代点以及辨别常数δ构造n λ和n μ: 1 1n n n n λλμλδ --==+再用同样的方法进行判断:(1)、若()n f λ>()n f μ则令 1 n n n n a b b λ-==(2)、若()n f λ<=()n f μ则令 1n n n n a a b μ-==这样便可确定出最优解的存在区间[,]n n a b 。

全国首届优化理论与应用暑期学校

全国首届“优化理论与应用”暑期学校 在山东日照成功举办 在国家自然科学基金委员会及曲阜师范大学的大力支持下,(2007年)全国首届“优化理论与应用”暑期学校于2007年7月29日在曲阜师范大学日照校区开学,历经20天于8月18日成功结束。来自中国科学院、清华大学、复旦大学、武汉大学、西安交通大学、大连理工大学、北京交通大学、天津大学、北京工业大学、上海大学、华中科技大学、湖南大学、广西大学、上海师范大学、哈尔滨师范大学、贵州大学、山东科技大学、及台湾交通大学等近70所高校和科研院所的126名学员(其中有来自台湾的5名博士生学员)参加了本期暑期学校的学习。 本次暑期学校的开办是源于许多学校师生的建议,并按照数学规划分会常务理事会通过的以学员为主、注重效果的实施方案进行组织实施,举办得非常成功,达到了预期的教学效果。 本期暑期学校共开设了四门课程:《优化计算与程序设计》,《组合最优化问题的计算复杂性》,《锥优化理论基础》,《整数规划基础》,分别由南京航空航天大学的倪勤教授、曲阜师范大学的张玉忠教授、大连理工大学的张立卫教授、复旦大学的孙小玲教授担任主讲教师。每门课程在授完后,都对学员进行了考核。 为配合本次暑期学校,在暑期学校的第一天,还举办了小型研讨会。包括来自美国和中国香港在内的12 位专家参加了研讨会, 其中6位专家―越民义研究员、方述诚教授、陈光亚研究员、张树中教授、戴彧虹研究员、徐大川教授―为学员们做了六个不同方向的学术报告。在暑期学校课程中间,邀请了来自英国的运筹学专家陈礴教授为学员做了专题报告,配合正在进行的《整数规划》课程的教学。 暑期学校是在日照天气最热的时候开学的,尽管教室与宿舍没有空调,气温较高,但学员们学习热情高涨,遵守纪律,认真学习,不怕艰辛,其精神令人感动。本期暑期学校申请报名人数超过200人,由于条件所限,仅能满足半数的需求,仍有一些申请者不断询问是否能够旁听。由此看出,国内从事优化研究的研究生和青年教师表现出很强的求知欲望。暑期学校期间,一百二十多名正式学员中,提前离开的不超过5人,坚持到课程结束的学员比例达到96%。本次暑期学

学生科学实验效果最优化的基石实验报告设计

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-054067 学生科学实验效果最优化的基The design of cornerstone experiment report for optimizing the

学生科学实验效果最优化的基石实 验报告设计 自然科学是以实验为基础的学科。实验是人们研究和认识自然的重要方法。因此,在自然科学的教学中,实验也是重要的教学方法之一。通过实验,不仅可以提供学生对科学现象的感性认识,更可以让学生获得初步的实验技能和观察分析问题的能力。 小学科学实验教学的设计是运用系统论的思想和方法,以学习理论、教学理论为基础,计划和安排实验教学的各个环节、要素,以实现教学效果最优化为目的的活动。通过多年来的实验教学实践与思考,我们可以让学生像科学家那样,亲历科学探究的过程,这有利于充分发挥学生的主体作用,让学生积极主动参与到观察、实验等学习活动中去,亲自感知实验所产生的各种现象和变化,提高自行获取知识的能力,而其中比较重要的一个环节就是学生实验报告的设计与记录。在学生实验的过程中,一份好的实验报告设计,就像是一盏明灯,能给学生指引实验的目标、方向,能提供给学生形成结论的分析数据,进而培养学生科学实验的基本素养,使学生的科学实验效果达到最优化。 一、观察实验报告的填写,有利于学生在实验中观察,进一步培养学生实验的责任心和有序观察能力。

教科版四下《油菜花开了》解剖花的实验中,我设计了如下实验报告,在教学中取得了很好的效果。 《解剖花》实验人 花的名称 实验方法:用镊子把花的各部分,从外向里一层层撕下,整齐排列并贴在相应的名称左边,数一数,填在相应的空格上。 个萼片 个花瓣 个雄蕊 个雌蕊 在班级(1)上课时我没有设计实验报告,就按照书本上的要求,先介绍解剖花的方法、花的结构,然后让学生按照书本要求独立解剖油菜花。在实验过程中,学生非常认真,且相当活跃,但检查结果时,学生雌雄蕊不分,萼片、花瓣不分,桌上、地上掉落的都是花瓣,实验效果之不佳显而易见。 后来,我根据班级(1)出现的情况,设计了如上实验报告,实验的效果就相当出色。在这个实验报告中,我并没有限制学生解剖何种花,但学生可以根据实验要求很清楚地完成解剖的任务。充分体现了以教师为主导、学生为主体的课堂教学思想;而且在实验的过程中,桌上有了这份实验报告,便时刻提醒着学生做实验究竟是何目的,做实验时必须仔细观察什么,做实验的观察步骤是什么。在解剖花的过程中,动作快的同学还可在老师的同意下,多取一两张实验报告单,多解剖几种花,因此既避免了学生在一旁闲着无所事事而打闹的局面,又进一步提高了这些学生的科学素质。至于个别有困难的学生,教师可在巡视的过程中随

计算方法实验报告习题1

计算方法实验报告 实验名称: 实验1 从函数表出发进行插值 1 引言 某个实际问题中,函数f (x)在区间[a,b]上存在且连续,但难以找到其表达式,只能通过实验和观测得到有限点上的函数表。有些情况虽然可以写出表达式,但结构复杂,使用不方便。所以希望构造简单函数P (x)作为f (x)的近似值。插值法是解决此类问题的一种方法。 设函数y=在插值区间[a,b]上连续,且在n+1个不同的插值节点a≤x 0,x 1,…,x n ≤b 上分别取值y 0,y 1,…,y n 。目的是要在一个性质优良、便于计算的插值函数类Φ中,求一简单函数P (x),满足插值条件P (x i )=y i (i=0,1,…,n),而在其他点x≠x i 上,作为f (x)近似值。求插值函数P (x)的方法称为插值法[1]。 2 实验目的和要求 运用Matlab 编写m 文件,定义三种插值函数,要求一次性输入整张函数表,并利用计算机选择在插值计算中所需的节点。分别通过分段线性插值、分段二次插值和全区间上拉格朗日插值计算f ,f ,f 的近似值。 3 算法原理与流程图 (1)原理 1.线性插值 当给定了n+1个点x 0

最优化理论与方法论文

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

智能优化算法实验报告

智能优化算法实验报告 用遗传算法求解函数优化问题 SC07010062 晏晓辉

目录 1.实验目的 (3) 1.1了解并掌握遗传算法的原理,流程和编码策略; (3) 1.2利用遗传算法goat工具箱测进行30维的多变量函数寻优; (3) 1.3自编遗传算法程序对2维变量函数进行寻优并测试主要参数对结果的影响。 (3) 2.实验条件 (3) 2.1硬件环境: (3) 2.2软件环境: (3) 3.实验原理 (3) 3.1遗传算法简介: (3) 3.2遗传算法流程: (4) (1) 编码 (4) (2) 生成初始种群 (4) (3) 适应度评估 (4) (4) 选择 (4) (5) 交叉 (4) (6) 变异 (4) 4.实验步骤和结果分析 (5) 4.1实验一:利用遗传算法goat工具箱测进行30维的多变量函数寻优。 (5) 4.1.1 goat工具箱说明 (5) 4.1.2优化函数的选择 (6) 4.1.3 实验结果分析 (6) 4.2实验二:自编遗传算法程序对2维变量函数进行寻优并测试主要参数对结果的影响。 (7) 4.2.1编码策略 (7) 4.2.2结果分析 (8) 5.附件 (9) 5.1 利用gaot工具箱对10() f x 寻优执行9次结果轨迹收敛图。 (9) 5.2 自编遗传算法代码: (14)

1.实验目的 1.1了解并掌握遗传算法的原理,流程和编码策略; 1.2利用遗传算法goat工具箱进行30维的多变量函数寻优; 1.3自编遗传算法程序对2维变量函数进行寻优并测试主要参数对结果的影响。 2.实验条件 2.1硬件环境: AMD Sempron(tm) Processor 3600+ 1.99GHz ,1.5G内存 2.2软件环境: Microsoft Windows XP , MATLAB7.0 , goat工具箱 3.实验原理 3.1遗传算法简介: 遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。 遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初始种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化

关于遗传算法的实验报告

关于遗传算法的实验报告 一、实验目的: 理解和掌握遗传算法的应用及意义,能用一门自己擅长的语言实现遗传算法的基本功能,在此基础上进一步理解和巩固对遗传算法的重要,以便在今后的学习和工作中能有效的运用和借鉴!需要指出的是遗传算法并不是能保证所得到的就是最佳的答案但通过一定的方法可以将误差控制在一定的范围内! 二、实验原理和题目: 1.遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异等操作以及达尔文的适者生存的理论,模拟自然进化过程来寻找所求问题的答案。其求解过程是个最优化的过程。一般遗传算法的主要步骤如下: (1)随机产生一个确定长度的特征字符串组成的初始种群。 (2)对该字符串种群迭代地执行下面的步骤a和步骤b,直到满足停止准则为止:a计算种群中每个个体字符串的适应值; b应用复制、交叉和变异等遗传算子产生下一代种群。 (3)把在后代中表现的最好的个体字符串指定为遗传算法的执行结果,即为问题的一个解。 2.通过编码、设置种群、设置适应度函数、遗传操作、解码产生需要的解。 f(x)=x*sin(x)+1,x∈[0,2π],求解f(x)的最大值和最小值。 三、实验条件 硬件:微型计算机。 语言:本实验选用的为C++语言。 四、实验内容: 建造针对f(x)的遗传算法程序,然后进行运行求解。 五、实验步骤: 1. 确定基本功能:本实验是实现f(x)的最大值和最小值的求解。 2. 对f(x)进行编码:用一个二进制矢量表示一个染色体,由染色体来代表变量x的实数值,这里精度取小数点后6位数,变量x的域长为2π,整个区间被分为2π*1000000个等长的区间。由于2π*1000000在23位二进制数的表示范围呢,所以,编码长度为23位。 3. 设计适应度函数:由于要求f(x)的最值,所以适应度函数可根据f(x)做适当的改变。最大值:f(x)=x*sin(x)+5;最小值:f(x)=1/(x*sin(x)+5 ); 4. 针对f(x)的设计并且实现遗传算法程序:遗传操作主要包括复制、交叉和变异。复制是直接将父代遗传给子代,即根据个体的适应度函数值所度量的优劣程度决定它在下一代是被淘汰还是被遗传。交叉从能进入下一代的个体中选出两个,将两者的部分码值进行交换。变异是根据变异概率选出一个个体,随机对其某位编码进行改变。复制由void Selection_operation(bool flag);实现;交叉由void Crossover_operation();实现;变异由void Mution-operation();实现。 5. 设计初始种群:默认设置为50个随机产生的23位字节的染色体。 6. 调试交叉和变异概率:在常用的交叉和变异概率范围内,结果随交叉和变异的概率的改变而改变,之间差异相对来说不太明显 7. 实验参数:实验中主要的参数有遗传代数、群体规模、交叉概率、变异概率。 实验结果: 求最大值:

相关主题