搜档网
当前位置:搜档网 › 粉末冶金铁基结构材料力学性能

粉末冶金铁基结构材料力学性能

粉末冶金铁基结构材料力学性能
粉末冶金铁基结构材料力学性能

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一> GB/T14667.1-93 <二> MPIF-35

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊

粉末冶金材料标准表完整版本

公司制造的铁基粉末冶金零件执行标准与成分性能 <一> GB/T14667.1-93 <二> MPIF-35 编辑版word

烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊 编辑版word

编织复合材料的细观结构与力学性能

3D编织复合材料的细观结构与力学性能 摘要归纳、梳理三维编织复合材料细观结构表征方面较有代表性的单胞模型,分析、比较各结构模型的优缺点,从理论分析与试验测试两方面总结三维编织复合材料刚度和强度性能的研究成果与进展,探讨细观结构表征与力学性能预报中存在的主要问题,并展望今后的研究重点与发展方向。 关键词三维编织复合材料;细观结构;力学性能 Microstructure and Mechanical Properties of 3D Braided Composites ABSTRACT Typical unit cell models on microstructure of 3D braided composites were summarized. Advantages and disadvantages of various models were compared. Developments of research on mechanical properties of 3D braided composites were introduced from theoretical analysis and experimental test perspectives. Finally, problems in the present study were discussed and further development trend is prospected KEYWORDS 3D braided composites; Microstructure; Mechanical properties 1 引言 三维编织复合材料是20世纪80年代为满足航空航天部门对高性能材料的需求而研发出的先进结构材料,具有高度整体化的空间互锁网状结构,可有效避免传统层合复合材料的分层破坏,冲击韧性、损伤容限与抗疲劳特性优异,结构可设计性强,能够实现异形件的净尺寸整体成型,因此在结构材料领域倍受关注。 力学性能是三维编织复合材料结构设计的核心,直接关系应用安全性与可靠性,细观结构是影响力学性能的关键,正确描述细观结构是准确预测宏观力学性能的必要前提。细观结构表征与力学性能预报一直是三维编织复合材料的研究重点,具有重要的理论价值与实践意义。 2 三维编织复合材料的细观结构单胞模型 Ko[1]首次提出“纤维构造”术语,定义出图1所示的立方体单胞模型,单胞由四根不计细度的直纱线组成,纱线沿体对角线方向取向并相交于立方体中心,模型大致描述出了编织体内部的纱线分布情况。

粉末冶金工艺及材料基础知识介绍

粉末冶金工艺及材料基础知识介绍 粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。粉末冶金材料和工艺与传统材料工艺相比,具有以下特点: 1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。 2.提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。 3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。 粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。

1 粉末冶金基础知识 ⒈1 粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴粒度及粒度分布

粉末冶金零件的切削加工

粉末冶金零件的切削加工 内容摘要:粉末冶金是一种以金属粉末为原料,用于烧结成形,制造金属摩擦材料和制品的工艺技术。目前,粉末冶金工业中主导性产品为粉末冶金机械零件和铁氧磁性材料。粉末冶金的机械零件生产主要集中在结构零件、滑动轴承、摩擦零件以及过滤元件、过孔性材料等几方面。 粉末冶金是一种以金属粉末(包括有非金属粉末混入状况)为原料,用于烧结成形,制造金属摩擦材料和制品的工艺技术。粉末冶金生产的材料、零件具有质优、价廉、节能和省材等特点,被广泛应用于汽车、电子、仪器仪表、机械制造、原子反应堆、特种高性能合金制造等工业领域,用途愈来愈广泛。粉末冶金材料的产品结构大体分为粉末冶金机械零件;铁氧体磁性材料。包括永生磁铁磁性材料和软磁铁磁性材料;硬质合金材料和制品;高熔点金属材料和难熔性金属材料;精细陶瓷材料和制品。 目前,粉末冶金工业中主导性产品为粉末冶金机械零件和铁氧磁性材料。粉末冶金的机械零件生产主要集中在结构零件、滑动轴承、摩擦零件以及过滤元件、过孔性材料等几方面。磁性材料则主要分为硬磁材料、软磁材料及磁介质材料3大类。软磁磁性材料生产主要为纯铁、铁铜磷相合金、铁镍合金、铁铝合金材料和制品。硬磁材料生产的主体则为铝镍铁合金、铝镍钻铁合金、钐钻合金、钕铁硼合金材料和制品的生产。而磁介质的生产主要集中在软磁材料和制品的生产。而磁介质的生产主要集中在软磁材料和电介质组合物制成的制品生产方面。随着需求的增加和产品范围的扩大,在该领域新技术的开发和利用愈来愈收到人们的关注。 粉末冶金工艺制造有许多重要独特的优点,如实现净成形,消除切削加工,还有采用粉末冶金工艺制造的零件,可以在零件中有意识留下残余的多空结构,提高零件自润滑和隔音效果,另外使用粉末冶金制造工艺能够生产用传统铸造工艺很难或者不可能制造的复杂合金零件。正由于这些优点,使用粉末冶金工艺制造的初衷之一是消除所有的加工,但是这个目标还没有达到。大多数的零件只是“接近最终形状”,还需要某种精加工。然而和铸件和锻件相比,粉末冶金零件很耐磨,难以加工,这也制约了冶金粉末工艺制造的推广应用。 性能 粉末冶金零件的性能,包括可加工性能,不仅和合金化学成分相关,而且和多孔结构的水平相关。许多粉末冶金制造的结构零件含孔率多大15~20%,用作过滤装置的零件的含孔率可能高达50%。而采用锻造或热离子压铸的粉末冶金的零件含孔率较低,只有1%或更少。后者在汽车和飞机制造应用中正变得特别重要,因为这种材料的零件具有更高的强度。

金属粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能一、GB/T14667.1-93 二、MPIF-35

烧结铁和烧结碳钢的化学成分 (%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲ 注: 用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。烧结铁-铜合金和烧结铜钢的化学 成分(%). 材料牌 号 Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-0208 93.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成 分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为 了特殊目的而添加的其它元素)总量 的最大值为2.0%

粉末冶金常识

粉末冶金常识 1、粉末冶金常识之什么是粉末冶金? 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形 和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称“金属粉末“)。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为“粉末冶金材料“)或制品(称为“粉末冶金制品“)。 2、粉末冶金常识之粉末冶金最突岀的优点是什么? 粉末冶金最突岀的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和 制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造岀合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高 达95%X上,它还能在一些制品中以铁代铜,做到了“省材、节能“。 粉末冶金件 3、粉末冶金常识之什么是"铁基"?什么是铁基粉末冶金? 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类? 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事? 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂? 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么? 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3 )消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项? 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物 理性能主要包括那几项? 用于粉末冶金的粉末物理性能主要包括以下三项:( 1)粉末的颗粒形状;( 2)粉末的粒度和粒度组成;(3)粉末的比表面。

粉末冶金材料学

1.粉末冶金技术的特点(优越性) 能制造熔铸法无法获得的材料和制品 1、难熔金属及其碳化物、硼化物和硅化物; 2、孔隙可控的多孔材料 3、假合金 4、复合材料;5 微、细晶(准晶)和过饱和固溶的块体金属和制品; 能制造性能优于同成分熔铸金属的粉末冶金材料 1、制造细晶粒、均匀组织和加工性能好的稀有金属坯锭; 2、制造成分偏析小、细晶、过饱和固熔的高性能合金; 具有高的经济效益 1、少无切削; 2、工序短,效率高; 3、设备通用性好,适合于大批量生产; 2.粉末冶金材料的分类 1、机械材料和零件; 2、多孔材料及制品; 3、硬质工具材料 4、电接触材料; 5、粉末磁性材料; 6、耐热材料; 7、原子能工程材料; 3.粉末冶金材料的孔隙产生过程及其存在形态 产生过程:颗粒间隙(松装粉末聚集体或粉末成形素坯)烧结形成孔隙。存在形态:开孔:与外表面连通的孔隙,半开孔:孔隙只有一端与外表面连通的孔隙,闭孔:与外表面不连通的孔隙,连通孔:互相连通的孔隙 4. 孔隙对材料性能影响的基本理论; 减小承载面积;应力集中剂(减小孔隙尺寸、孔隙球化、孔隙内表面圆滑处理能有效降低应力集中,从而提高强度和韧性)应力松弛剂:裂纹遇到孔隙后被磨钝,提高断裂水平 5.哪些力学性能对孔隙形状敏感:强度、弹性模量、延伸率、断裂韧性、冲击韧性、硬度 6. 提高粉末冶金材料密度的方法:复压复烧,溶浸、粉末冶金热锻 7.固溶强化机理:晶体中有合金元素,固溶原子与晶体中缺陷的交互作用,溶质元素使基体(溶剂)金属的塑性变形抗力、强度、硬度增大,延性和韧性降低 8.影响固溶度(合金溶解度)的因素:晶格因素,相对尺寸因素,化学亲和力,电子浓度因素 9.什么是金属材料热处理?将固态金属或合金采用适当的方式进行加热、保温和冷却,以改变金属或合金的内部组织结构,使材料满足使用性能要求。 10.加热奥氏体化时影响粒度的因素:加热温度和保温时间,加热速度,合金元素,原始组织 11.刚冷却时等温转变的基本类型及对应组织结构的名称 共析钢等温转变:珠光体,贝氏体,马氏体;亚共析钢等温转变:奥氏体,铁素体,珠光体;过共析钢等温转变:奥氏体,渗碳体,珠光体 12.烧结钢热处理的工艺特点及注意事项 工艺特点:奥氏体化温度高:致密钢为AC+30~50℃,烧结钢为AC+100~200℃,密度的要求:烧结钢密度过低(<6.0g/cm3)淬火无任何效果,淬透性比致密钢差 注意事项:(1)孔隙率>10%易腐蚀,不能在盐浴中加热(2)表面热处理前应进行封孔处理:滚压、精整、或氮化、硫化处理 (3)加热时应气氛保护或添加保护性填料 (4)淬火介质不能用水。 13.烧结钢淬透性的影响因素:孔隙度,合金元素,氧、碳含量 14.身高结钢合金化的特点:1、孔隙的影响:密度低于6.5g/cm3,合金的强化作用很弱;2、某些强化效果好合金元素,如Cr、Mn易氧化,常以中间合金粉或预合金粉引入;3、铜和磷常用,4、烧结钢中常用的合金元素除碳外,主要有Cu、Ni、Mo、Cr、P等 15. C含量对烧结Fe-C系结构与性能的影响 珠光体随C含量而增大而增大,渗碳体随C含量而增大而增大强度有极大值,塑性(延伸率、断面收缩率)单调下降;由于碳分布不均匀,一般烧结钢显微组织为:珠光体+铁素体+少量渗碳体+孔隙+夹杂 16.常见烧结碳钢显微组织:铁素体,珠光体,渗碳体 17.影响烧结碳钢化合碳含量的因素:1、石墨加入量,2、烧结气氛3、烧结温度4、烧结时间5、氧含量

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能<一>G B/T14667.1-9 3

-35 240 390 260 1.0 25070 7.0 F-0008-50HT -65HT -75HT -85HT 380 450<0.5S 480 22HRC 60HRC 6.3 450520 <0.5 55028 60 6.6 520 590 <0.5 620 32 60 6.9 590 660 <0.5 690 35 60 7.1 烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注:用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大值为2.0%。▲ 注:用差减法求出的其它元素(包括为了特殊目的而添加的其它元素)总量的最大烧结铁-铜合金和烧结铜钢的化学成分(%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌 号 Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注:用差减法求出的其它元素(包括为了特殊目 的而添加的其它元素)总量的最大值为2.0% ⊙铁-铜合金和铜钢粉末冶金材料性能(MPIF-35) 材料编号最小强度(A)(E) 拉伸性能 横向 断裂 压缩 屈服 强度 (0.1%) 硬度 密度屈服极限极限强度 屈服强度 (0.2%) 伸长率 (25.4mm ) 宏观 (表 现) 微观 (换算 的) MPa MPa MPa % MPa MPa 络氏g/cm3 FC-0200-15 -18 -21 -24 100 170 140 1.0 310 120 11HR B N/A 6.0 120 190 160 1.5 350140 18 6.3 140 210 180 1.5 390 160 26 6.6 170 230 200 2.0 430 180 36 6.9 FC-0205-30 -35 -40 -45 210 240 240 <1.0 410 340 37HR B N/A 6.0 240 280 280 <1.0 520 370 48 6.3 280 340 310 <1.0 660 390 60 6.7

铁基粉末冶金零件热处理

铁基粉末冶金零件热处理 摘要:热处理是一种成熟的,经常使用的工艺性技术。这篇文章评述了人们不大注意的铁基粉末冶金零件整体淬火时,孔隙度与合金含量对其淬透性的影响。 关键词:铁基粉末冶金零件;热处理;淬透性 在铁基粉末冶金零件生产中,零件材料必须具有的许多性能与组织结构都是在烧结过程中形成的,但其中一些性能只有通过后续热处理,才能得到改进与完善。因此,热处理对于铁基粉末冶金零件产业是极其重要的一项技术。 铁基粉末冶金零件的热处理原理,虽然和成分相同的铸锻零件相同,但由于粉末冶金零件具有一定量孔隙度与合金化元素的微观分布可能不均一,因此,粉末冶金零件的热处理工艺可能有所不同。关于孔隙度对铁基粉末冶金零件材料热处理性能的影响,经几十年的探索与实践,已有较清楚地认识,摘要介绍如下。 1 孔隙度对铁基粉末冶金零件整体淬火的影响 大部分铁基粉末冶金零件,为了增高强度、硬度及耐磨性,都需要进行整体淬火,即淬火与回火。需要进行整体淬火的铁基粉末冶金零件,其化合碳含量应≥0.3%(质量分数),并且在图1中的A3温度以上呈奥氏体状态。 图1 碳钢的热处理相图 铁基粉末冶金零件的整体淬火由以下3道工序组成: 奥氏体化。在具有和化合碳含量相当碳势的保护性气氛下,将零件加热到高于A3温度,通常为850℃,并保温一定时间,其长短视零件形状及尺寸而定。诸如30min,使之奥氏体化。 淬火。从奥氏体化温度或稍低,但仍高于A3的温度,将零件淬于油或水中,使奥氏体转变成硬且脆的马氏体或贝氏体。对于铁基粉末冶金零件,最好是淬于温油(50℃)中,这是因为粉末冶金零件具有孔隙度,淬火冷却速度太快时,零件可能开裂。另外,采用盐水淬火时,淬火后,存留于孔隙中的盐水会导致零件严重腐蚀。 回火。依据GB/T19076-2003“烧结金属材料-规范”铁基粉末冶金零件通常是在180℃(烧结镍钢为260℃)下回火,回火时间通常是依据零件断面厚度,按每25.4mm回火1h。其目的是消除奥氏体转变为马氏体与贝氏体时产生的内应力。回火可减小马氏体与贝氏体的脆性,提升零件材料的韧性。 1.1 孔隙度对粉末冶金Fe-C材料淬透性的影响 淬透性的定义是,快速冷却时,在一给定深度,材料试样从奥氏体转变为马氏体的能力。淬透性通常是用顶端淬火法测定的。为测定烧结碳钢的淬透性,由水雾化铁粉与0.9%(质量分数)石墨粉的混合粉,用压制-烧结制成Φ80mm×高30mm,密度为6.0~7.1g/cm3的坯料[化合碳0.8%(质量分数)]。再由坯料切削加工成顶端淬火试样,于870℃,在中性气氛中,奥氏体化30min后水淬。从淬火端每隔2.5mm测定一次表观硬度HRA。同时,还和由C-1080锻钢切削加工的顶端淬火试样进行了对比。试验结果示于图2。 从图2可看出,材料试样的密度(即孔隙度)对淬透性有若干影响。首先,孔隙度减低材料的热导率,这是因为孔隙中充满空气,而空气的热导率比钢小。另外,由于硬度压痕和材料基体中的孔隙度相关,从而也影响测定的硬度值。图2还表明,淬透性差不多随着烧结钢材料密度增大呈直线性增高。因此,在设计-具有给定材料密度的粉末冶金碳钢零件时,对于选择使零件横截面能全部转变成马氏体的合适材料组成,图2是有用的。 1.2 铁基粉末冶金材料的淬透性标准 在设计-铁基粉末冶金零件时,要想使粉末金零件的横截面经过淬火-回火转变成马氏体,就必须依据材料的淬透性来选择适当的材料。

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

粉末冶金零件的金相制样

粉末冶金零件的金相制样 除铸造、机械成形与机械加工等技术外,粉末冶金(P/M)技术也是制造金属零件的重要方法之一。该技术可极大减少钢锭金属的不良性能,通过混合不同金属粉末、或金属与非金属粉末,可以达到预期理想的金属性能,而采用其它方法,这些金属通常不易熔成合金。 粉末加工、将其压制为有用形状、以及烧结的过程费用很高,但与锻件或铸件相比,采用这种方法最终制成的零件具有某些无可比拟的优点。 主要优点包括: - 可生成精细均质晶粒结构 - 可形成复杂形状,尺寸公差精密 - 制成品表面光洁度性能优良 与其它成形方法相比,花费很高的机械加工过程可得以缩减或直接除去,于是减小了碎屑损失。因此,对于小型、形状复杂,和精密零件(如齿轮、链环等)的大批量生产而言,粉末冶金技术是最经济有效的方法。 而且,通过该加工技术,可制造大量特种合金,这些合金具有完全不同材料性能,如高温刚度与硬度。由碳化钨粉末烧结而成的高速切割刀具正是这样一个实例:采用粉末冶金加工技术获得许多独特的金属性能。烧结压制零件的密度影响强度、韧性、硬度等重要性能,因此,达到特定的孔隙度至关重要。为了进行工艺流程控制,需应用金相学知识以检验孔隙度、非金属杂质、以及交叉污染等。在研究与失效分析中,金相学也是一个主要工具,用于开发新产品,改进加工工艺。除化学分析外,质量控制还包括一些物理方法,以检验密度、尺寸变化、流率等。 金相制样困难之处 研磨与抛光下图表示正确、典型孔隙度。

解决方案:足够长时间抛光 粉末冶金零件制备 制造 为了达到粉末金属零件的理想构造与近净成形,需对以下生产程序进行严格工艺流程控制: - 制备粉末 - 将粉末与添加剂(如:润滑剂、碳、和合金元素)混合 - 在硬质合金模具中压制粉末 - 在保护性气体环境下高温烧结(1100℃-1200℃) 化学方法与雾化法是粉末制备中两种最常用的方法。化学方法将金属在低于熔点的温度下从矿石氧化物直接转变为金属粉末。例如,铁粉末制备如下:首先,直接从铁矿中提炼出海绵铁,然后,通过机械加工,将海绵铁压碎为粉末,再通过降低温度退火进一步精炼得到纯铁粉末。这种方法适宜于合金与低密度金属应用场合,如轴承。

粉末冶金材料的分类及应用

粉末冶金材料的分类及应用 粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。这种工艺过程称为粉末冶金法,是一种不同于熔炼和铸造的方法。其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。 粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切屑或少切屑的加工方法。它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。 粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性材料、耐热材料等。 粉末冶金的生产过程 (1)生产粉末。粉末的生产过程包括粉末的制取、粉料的混合等步骤。为改善粉末的成型性和可塑性通常加入汽油、橡胶或石蜡等增塑剂。 (2)压制成型。粉末在500~600MPa压力下,压成所需形状。 (3)烧结。在保护气氛的高温炉或真空炉中进行。烧结不同于金属熔化,烧结时至少有一种元素仍处于固态。烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等一系列的物理化学过程,成为具有一定孔隙度的冶金产品。 (4)后处理。一般情况下,烧结好的制件可直接使用。但对于某些尺寸要求精度高并且有高的硬度、耐磨性的制件还要进行烧结后处理。后处理包括精压、滚压、挤压、淬火、表面淬火、浸油、及熔渗等。 粉末冶金材料的主要类型 1 硬质合金 硬质合金是以一种或几种难熔碳化物的粉末为主要成分,加入起粘结作用的钴粉末,用粉末冶金法制得的材料。 常用硬质合金按成分和性能特点分为:钨钴类、钨钴钛类、钨钛钽(铌)类。常用硬质合金的牌号、成分和性能见表1。 表1 常用硬质合金的牌号、成分和性能

粉末冶金日本工业标准 JIS Z2550-1983

日本工业标准 JIS Z 2550-1983 机械结构零件用烧结材料 Sinted Materials for Structural Parts 1. 适用标准本标准规定了机械结构零件用烧结金属材料。但是,这种材料都是烧结态材料。 备考作为参考,在本标准中一并记入了国际单位制(SI)的单位与数值,它们都附加有{}。 2.种类与记号材料的种类与记号是根据材料的化学成分与机械性能来划分的,如表1所示。 3. 质量材料的机械性能、密度及化学成分如表2所示。

① 1N/mm2=1MPa。 ②化学成分中,SMS1种相当SUS 316和SUS 304,SMS2种相当410。 ③所谓其它,是磷、硫、锰、硅等。 备考:表2也适用于烧结后进行尺寸整形者。 参考:(1)关于SMF种材料的硬度与热处理,各种烧结材料的表面处理,含油处理后的各项性能,作为参考值,在解说中给出。 再者,关于含碳量与适用的热处理可参照解说。 (2)用高纯氢中烧结或真空烧结制造的不锈钢系的质量,例如解说中所示。 4. 试验

4.1 机械性能试验 4.1.1 拉伸试验 (1)试件试件是用下列方法制造的: (a)压制压坯用阴模内部的形状与尺寸 (b)压坯压坯高度为4.00~5.00mm,压坯中不得有肉眼可见的分层及其它缺陷。 (c)润滑方法用油布拭擦阴模内表面,或用将60g硬脂酸锌溶于1L四氯化碳中制成的溶液涂覆阴模内表面。另外,将硬脂酸锌之类的润滑剂添加于使用的粉末中,充分进行混合也可以。 (d)成形成形压坯所需之粉末量依据测定质量,测定充填体积,或将粉末充满阴模后将上表面刮平来决定。 成形方面,有规定成形压力和规定压坯密度二种情况。在规定压制压力的场合,一组压坯对于规定的压力变化不得大于±3%,质量方面,对于平均值的变化不得大于±2%。在规定压坯密度的场合,一组压坯对于规定的高度变化不得大于±2%,和质量方面,对于规定的值变化不得大于±1%。 另外,关于压制速度,保压时间,脱模方法及一组压坯的数量,皆由当事者间协商决定。 (e)烧结烧结条件根据当事者间的协定进行。但是,对于烧结温度范围,保温时间,加热—冷却条件及烧结气氛的各项条件都必须进行记录。 (2)试验方法试验方法按照JIS Z 2241(金属材料拉伸试验方法)进行。 4.1.2 冲击试验 (1)试件试件是用下列方法制造的: (a)压制压坯用阴模内部的形状及尺寸图2示阴模内部的形状及尺寸。

力学性能是材料最重要的性能树脂基复合材料具有比强度.

力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,

粉末冶金材料标准表

公司制造的铁基粉末冶金零件执行标准与成分性能

-15 -20 100 170 120 2.5 120 60 6.7 140 260 170 7.0 130 80 7.3 F-0005-10 -20 -25 100 170 120 < 1 125 25HRB N/A 6.1 140 220 160 1.0 160 40 6.6 170 260 190 1.5 190 55 6.9 F-0005-50HT -60HT -70HT 340 410 (D) < 0.5 300 20HRC 58HRC 6.6 410 480 < 0.5 360 22 58 6.8 480 550< 0.5 420 25 58 7.0 F-0008-20 -25 -30 -35 140 200 170 < 0.5 190 35HRB N/A 5.8 170 240 210 < 0.5 210 50 6.2 210 290 240 < 1.0 210 60 6.6 240 390 260 1.0 25070 7.0 F-0008-50HT -65HT -75HT -85HT 380 450< 0.5 S 480 22HRC 60HRC 6.3 450520 < 0.5 55028 60 6.6 520 590 < 0.5 620 32 60 6.9 590 660 < 0.5 690 35 60 7.1 烧结铁和烧结碳钢的化学成分(%). 材料牌号Fe C F-0000 97.7-100 0.0-0.3 F-0005 97.4-99.7 0.3-0.6 F-0008 97.1-99.4 0.6-0.9 注: 用差减法求出的其它元素(包括为了 特殊目的而添加的其它元素)总量的 最大值为2.0%。▲ 注: 用差减法求出的其它元素(包括为了 特殊目的而添加的其它元素)总量 烧结铁-铜合金和烧结铜钢的化学成分 (%). 材料牌号Fe Cu C FC-0200 83.8-98.5 1.5-3.9 0.0-0.3 FC-0205 93.5-98.2 1.5-3.9 0.3-0.6 FC-020893.2-97.9 1.5-3.9 0.6-0.9 FC-0505 91.4-95.7 4.0-6.0 0.3-0.6 FC-0508 91.1-95.4 4.0-6.0 0.6-0.9 FC-0808 88.1-92.4 7.0-9.0 0.6-0.9 FC-1000 87.2-90.5 9.5-10.5 0.0-0.3 烧结铁-镍合金和烧结镍钢的化学成分(%). 材料牌号Fe Ni Cu C FN-0200 92.2-99.0 1.0-3.0 0.0-2.5 0.0-0.3 FN-0205 91.9-98.7 1.0-3.0 0.0-2.5 0.3-0.6 FN-0208 91.6-98.4 1.0-3.0 0.0-2.5 0.6-0.9 FN-0405 89.9-96.7 3.0-5.5 0.2-2.0 0.3-0.6 FN-0408 89.6-96.4 3.0-5.5 0.0-2.0 0.6-0.9 注: 用差减法求出的其它元素(包括为了特殊目的 而添加的其它元素)总量的最大值为2.0% ⊙ 铁-铜合金和铜钢粉末冶金材料性能(MPIF-35) 材料编号 最小强度(A)(E) 拉伸性能横向 断裂 压缩 屈服 硬度 密度 屈服极限极限强度屈服强度伸长率宏观微观

粉末冶金材料的分类和牌号表示方法

粉末冶金材料的分类和牌号表示方法标准简析 张宪铭张江峰 (全国有色粉末冶金分标准化技术委员会,北京,100814) 摘要对国家标准《粉末冶金材料分类和牌号表示方法》的修订情况及标准内容作了介绍和分析,该标准的实施提出了措施和建议。 关键词粉末冶金材料;分类;牌号表示方法;国家标准 1 引言 GB/T 4309-200X《粉末冶金材料分类和牌号表示方法》已正式报批。本文就粉末冶金材料的分类和牌号表示方法做一个简单的介绍和宣传,旨在今后的粉末冶金材料标准制(修)订工作中,大家能自觉地使用这个基础标准。通过对相关标准的整顿和规范,使我国粉末冶金材料的分类和牌号不断完善,形成一个层次分明,覆盖面广,无交叉重叠,简明实用的牌号体系。 2 该标准的修订原因 2.1 GB/T 4309-1984《粉末冶金材料分类和牌号表示方法》标准已发布有二十多年,该标准主要适用于粉末冶金材料的分类和牌号的表示方法。该标准在制定之初对粉末冶金材料作了全面的调研和考虑。在当时的情况下,起草单位(钢铁研究总院)提出的标准框架起点是较高的。既考虑到了多年来的传统材料,又考虑到了新材料的发展。可惜的是该标准发布后,在相当长一段时间内,并未得到真正的实施。其原因:一是相关人员对该标准的重视不够。在相关标准的制(修)订时,没有硬性措施(例如:牌号注册程序)。二是标准本身的内容较繁杂,加之新材料的不断出现,不便于使用。这就造成了粉末冶金材料的分类和牌号表示五花八门,起草单位随意的为其在标准中列入的材料或产品命名牌号。既不能通用,也无法系列化,牌号反映出的信息可比性差。近几年,全国有色粉末冶金分标委秘书处遇到这类的问题较多,我们希望通过对GB/T 4309-1984《粉末冶金材料分类和牌号表示方法》的修订,能逐步的解决粉末冶金材料的分类和牌号表示方法混乱的状况,使其有据可依,规范化。 3 本次修订时的几点考虑 材料多、品种多、产量和用量相对少是粉末冶金行业的特点。确定粉末冶金材料的分类原则,对其进行科学合理的分类;确定适用的粉末冶金材料牌号表示方法,对其进行简明实用的表示,是本次修订的基本原则。 粉末冶金材料牌号表示方法与材料的分类两者有着密切关系。材料牌号的表示方法是在材料分类的基础上制定出来的。材料的分类只能将有共同特征的材料划分为同一类,它不能将每一种材料的特征全面地反映出来,所以还必须采用材料的牌号将材料的特征比较全面地反映出来,材料的牌号可作为人们了解材料的一种共同语言,它广泛地联接着生产、设计、供销、科研、教学、以及外贸等各个方面。目前世界各国的金属材料牌号的表示方法是各种各样的,但是,综合起来,大体上可概括为以下三种表示方法: 1)用表示化学元素或材料名称的字母(本国文字或国际化学元素符号)和表示出主要元素的平均含量的阿拉伯数字表示牌号,例如中国、俄罗斯等国家。 2)用拉丁字母(表示用途、种类或主要化学成分)及顺序号(用阿拉伯数字或罗马数字)表示牌号,例如日本、英国等国家。 3)用固定位数的阿拉伯数字(或中间和前缀带有一个表示类型的字母)表示牌号,例如美国、德国、捷克、瑞典等国家。 上述几种表示方法,各有其优缺点。第一种表示方法,优点是具体牌号易于识别,并能

中国粉末冶金结构件行业发展趋势

中国粉末冶金结构件行业发展趋势 冶金064班李磊20061379一回忆1 二、机遇1 三、趋势3 四、摸索4 我国粉末冶金制品行业自上世纪五十年代中期起步以来,经历了曲折和磨练,由于该工艺是一个节约型的行业,目前差不多进入高速进展期。尽管与国际同行相比还处在进展时期,但增长速度惊人。专门加入WTO后,使本行业融入国际产业链,给行业的进展带来了庞大的空间。然而就行业的内部结构而言,存在着种种制约因素,通过对行业内部进展的回忆和分析,提出进展的趋势和值得研究摸索的咨询题,与同仁们共同研讨。 一回忆 1991年至2004年粉末冶金零件产量的增长形势 要紧粉末冶金结构件生产厂家(34)前5年进展情形 要紧粉末冶金结构件生产厂家(34)要紧经济指标情形 指标名称单位2000 年2001 年2002 年2003 年2004 年年均增长 工业产值万元110742 144911 178587 203062 207687 17.02% 销售收入万元93883.3 132614 164988 189531 192189 19.20% 利润万元7670.8 8101 15522 19036 23117 31.76% 制品重量吨29835 31207 39025 48597 62668 23.40% 其中:1亿以上:5家5000万以上:15家2000万以上:50家,这些厂家的显现使我国粉末冶金制品总量增加10%左右 新企业的加入使我国粉末冶金销售总量每年增长达30%以上 二、机遇

目前形成的三个市场,国内汽车配套市场、出口市场、其他国内市场。全世界轿车年产4000万辆,汽车工业进展给行业带来机遇。 而我国轿车2004年达230万辆以上,占6%,粉末冶金零件用于汽车内与国外比相差甚远,在轿车内的距离更远。国外:70%,国内:24%。 汽车工业的进展,给粉末冶金行业带来了施展才能的空间 闻名整机厂期望粉末冶金结构件本土化 国内轿车整机 国产化比例 (含二次配套厂) 大众90% 飞亚特50% 现代45% 丰田35% 通用30% 本田30% 福特10% 闻名汽车企业已大部分进入中国,而粉末冶金结构件本土化在5 0%左右。出口市场是本行业的第二大市场(含间接出口)。 国际汽车零部件采购系统瞄准大陆市场,价格是国际市场的35%~50%,随着品质的提升,此市场会持续扩大,会带来我国粉末冶金零件产品大量出口,同时可能引发国际价格体系被打破。 其他市场将稳步增长 国内摩托车年需求量稳固1200万辆左右 家用电器稳固在4000万台左右 电动工具稳固在8000万套,

相关主题