搜档网
当前位置:搜档网 › 氢键相互作用

氢键相互作用

氢键相互作用
氢键相互作用

分子间氢键相互作用

氢键:氢键是种弱作用力形成特殊类型的偶极-偶极吸引力,当氢原子键合到一个强电负性原子中存在的另一个具有孤对电子的电负性原子附近时发生。这些键通常比普通的偶极-偶极和色散力强,但比真正的共价键和离子键弱。

氢键存在的证据:许多元素形成与氢的化合物。如果绘制4族元素与氢的化合物的沸点,你发现的沸点随着族元素向下而升高。如下图

沸点增大的发生由于分子具有越来越多的电子放大,因此范德华色散力变得更大。如果你重复上述在5、6和7族氢元素化合物的沸点图,奇特的现象发生了。

虽然大多数情况下的趋势与4族中的一样,氢与各族中的第一个元素的化合物的沸点异常高。在NH 3,H 2 O和HF的情况下,必存在一些额外吸引的分子间作用力,需要更多的热能来破坏。这些相对强大的分子间力被描述为氢键。

形成氢键的起源:分子具有这种额外的键的是:

(注:实线表示在屏幕或纸张平面内的键。虚线键表示远离你的屏幕或纸张的背面,楔形键是指向你的)

在每一个这些分子中注意:

1.氢原子直接结合到最负电元素之一,导致氢原子获得显著量的正

电荷。

2.每个连接氢原子的元素不仅显著的负电性,而且还具有至少一个

“有效的”孤对。

2-级的孤对有电子被包含在一个相对小的体积的空间,因此具有高密度的负电荷。

考虑两个的水分子的接近结合:

δ+氢原子强烈吸引着孤对以致它几乎像形成配位共价键一样。它不会走那么远,但吸引力显著比普通的偶极-偶极相互作用强。

氢键有大约平均共价键强度的十分之一,并正在液态水中不断被打破和重新形成。如果你把氧原子和氢原子间的共价键比喻成稳定的婚姻,氢键具有“只是好朋友”的状态。

水是氢键的一个“完美”例子。注意每个水分子有可能与周围的水分子形成四个氢键。这也确是δ+氢原子和孤对的数目,所以他们中每一个都参与氢键。

这就是为什么水的沸点比氨或氟化氢更高。在氨的情况下,形成氢键的数目由每个氮上只有一个孤对的事实所限制。在氨分子的基团中,没有足够孤对满足周围所有氢原子。在氟化氢中,问题是缺少氢原子。在水中,孤对和氢原子的数目正好合适。水可以被认为是“完美”的氢键系统。

形成氢键的更复杂的例子:

负离子的水合:当离子性物质溶解在水中,水分子簇围绕在分离离子。这个过程称为水合。水经常以配位共价键与正离子结合,以氢键与负离子结合。

该图显示了与Cl-可能形成的氢键。虽然氯离子的孤对是3-级的,通常不会有足够的活性以形成氢键,但在此情况下,它们通过在氯的全部负电荷更具吸引力。

然而复杂的负离子,总会有孤对让水分子中氢原子结合形成氢键。醇中的氢键:醇是含有-OH基团的有机分子。具有直接连接到氧或氮上的氢原子的任何分子能够形成氢键。此类分子始终具有沸点高于其不具有-OH或-NH基团同样大小的分子。氢键使分子“粘性”,分离它们就需要更多的热能。

乙醇,CH3CH2-O-H,和甲氧基甲烷,CH3-O-CH3,具有相同的分子式

C2H6O。

它们具有相同数目的电子和类似长度的分子。每个的范德华吸引力(包括色散力和偶极-偶极吸引力)大致相同。然而,乙醇具有直接连接到一个氧的氢原子以及氧像水分子中一样具有两个孤对。乙醇的分子之间可以形成氢键,虽然不像水一样有效。氢键受限于每个乙醇分子只有一个氢具有有效电荷δ+。在甲氧基甲烷中,氧的孤对仍然存在,但氢原子没有足够的有效电荷δ+形成氢键。除了在一些不寻常的情况下,氢原子具有直接连接到电负性很强的元素形成氢键。乙醇和甲氧基甲烷的沸点表明氢键在乙醇分子的粘性上有戏剧性的效果:乙醇(含氢键)78.5°C;甲氧基甲烷(无氢键)-24.8°C。乙醇中的氢键提高了沸点约100℃。

要认识到,氢键的存在除了范德华吸引力外是很重要的。例如,所有以下的分子都具有相同数目的电子,并且前两个的长度大致相同。丁-1 - 醇由于额外的氢键沸点较高。

比较这两种醇(含-OH基团),两者的沸点高是因为氢直接连接氧原子而产生的额外氢键,但它们不一样。

2 - 甲基丙-1 - 醇的沸点和丁-1 - 醇不一样高,因为在分子中支化使得范德华吸引力比在更长的丁-1 - 醇不太有效。

氢键在含氮的有机分子:氢键也发生在含有NH基团的有机分子–和在氨中的排序方式相同。种类繁多,从简单的分子,如CH3NH2(甲胺),及大分子如蛋白质和DNA。在DNA中的著名的双螺旋的两条链通过连接到氮上的一条链的氢原子,以及在另一彼此氮或氧孤对之间的氢键连接在一起。

供体和受体:为了是氢键发生,必须同时存在氢供体和受体。在一个氢键供体是氢原子参与氢键的共价结合,并且通常是一种强电负性原子如N,O或F。氢受体是相邻的负电离子或分子,而且必须拥有一种孤电子对以形成氢键。

为什么氢键发生:由于供氢体是强电负性,它拉的价电子对接近它的核,并远离氢原子。氢原子剩余部分正电荷,在键合到供体的氢原子和受体上的孤电子对之间产生偶极-偶极吸引力。结果形成氢键。(见分子间永久偶极相互作用)

氢键类型:

氢键可出现在单一的分子内,两相似分子之间或两不同分子之间。分子内氢键:分子内氢键是指一个单一的分子内发生。发生这种情况时,一个分子中的两个官能团能相互之间形成氢键。为了让这种情况发生,同时具有氢供体的受体必须存在一个分子内,并且它们必须是在彼此紧靠在分子中。例如,分子内氢键发生于乙二醇(C 2 H 4(OH)2)分子两个羟基的几何结构之间。

分子间氢键:物质单独分子之间形成分子间氢键。它们可以发生在任意数目的相似或不相似分子之间,只要氢供体和受体存在于一个位置,使他们能够发生相互作用。例如,分子间氢键可以在NH 3分子间单独发生,单独水分子之间,或NH 3和H 2 O分子之间。

氢键的性质和作用:

沸点作用:当我们考虑分子的沸点,我们通常想到的摩尔质量较大的分子比摩尔质量小的分子有更高的正常沸点。不考虑氢键,这一点是因于较大的色散力(见非极性分子间的相互作用)。较大的分子电子分布有更大的空间,因此更多可能产生瞬时的偶极矩。然而,当我们考虑下面的表中,我们看到,这是情况并非总是如此。

我们看到,H 2 O,HF,和NH 3分别具有沸点高于氢和相应的族向下

的元素之间所形成的相同的化合物,这表明前者具有较大的分子间力。这是因为H2O,HF和NH3都表现出氢键,而其它的都没有。此外,H 2 O具有比HF小的摩尔质量但每个分子中参与的氢键多,因此,它的沸点因此较高。

粘度作用:氢键作用于沸点的结果,可以在确定物质的粘度中观察到相似的作用。那些能够形成氢键的物质往往比那些无氢键的物质具有更高的粘度。这有可能对多个氢键的物质表现出更高的粘度。

影响氢键的因素:

电负性:氢和它被结合到原子之间无显著电负性的差异氢键就不能发生。于是,我们看到分子如磷化氢,它无氢键参与。PH3表现出像铵一样的三角锥体分子的几何形状,但不像NH3它不能形成氢键。这是由于磷和氢相似的电负性。两个原子的电负性是2.1,因此无偶极矩。这防止了氢键获取氢键所需的部分正电荷及另一分子的孤电子对。

原子尺寸:供体和受体的大小也可以影响氢键。这可以解释为氯形成氢键的相对低的能力。当两个原子半径相差很大或者是大的,它们的原子核它们相互作用时无法达到接近,从而导致弱的相互作用。

自然界中氢键:氢键在很多生物过程中起关键作用,并能解释许多自然现象,例如水的不寻常性质。除了存在于水中,氢键在植物的水路运输系统,蛋白质的二级和三级结构和DNA碱基配对有很重要作用。

植物:运输维管束植物的凝聚力-附着力理论用氢键来解释水运动穿过植物的木质部和维管束很多关键部分。在一个管束中,水分子氢键不仅给对方,也给予纤维素链(包含植物细胞的壁)。这产生了一种毛细管其允许发生毛细作用,因为该管束是相对小的。这种机制可以让植物把水拉进了自己的根。此外,氢键可以产生一个长的水分子链,其可以克服重力的作用而运输到更高的叶子。

蛋白质:蛋白质的二级结构中存在丰富的氢键,并且三级构象中也有节制。

蛋白质的二级结构,包括含有氮- 氢结合对与氧原子相邻的多肽主链之间的相互作用(主要为氢键)。因为N和O的强负电性,氢原子键合至氮在一个多肽主链可以与另一条链中的氧原子形成氢键,反之亦然。虽然它们相对较弱,这些键为蛋白质二级结构提供极大稳定性因为它们重复大量次。

在蛋白质三级结构中,相互作用主要是在功能R基的多肽链之间;一个这样的相互作用被称为疏水性相互作用。这些相互作用发生,因为周围的疏水基的水分子之间的氢键和进一步加强构象。

水分子簇中氢键作用

水分子簇中氢键作用 张建平 赵 林 王林双 (天津大学化工学院天津 300072) 摘要概述了近年来为揭示水分子簇存在形态的成因所做的理论和实验研究,指出除范德华力外,氢键和似共价键是水分子间的主要作用力。总结了水分子簇中氢键的四种作用方式,包括协同效 应、氢键的转动、氢键的振动以及氢键变换;分别讨论了这四种作用方式以及似共价键对水分子簇存 在状态的影响,最后对该领域的研究前景作了展望。 关键词水分子簇氢键似共价键 Hydrogen Bonds in Water Clusters Zhang Jianping, Zhao Lin, Wang Linshuang (School of Chemical Engineering,Tianjin University, Tianjin 300072) Abstract Theoretical and experimental studies that reveal the formation of water clusters have been summarized. Besides van der Waals force, hydrogen bonds and quasi-covalent bonds between water molecules are major forces. Four kinds of kinetic motions of hydrogen bonds in water clusters are outlined, including cooperative effect, rotation, vibration and inter conversion, and the effects on the structure of water clusters caused by quasi-covalent bonds and H-bond kinetic motions are explained in detail. Finally, the perspective in this research field is also discussed. Key words Water clusters, Hydrogen bond, Quasi-covalent bond 水是大自然赋予我们的宝贵资源,也是人类赖以生存的必要条件,关于水分子簇结构与功能的研究已成为当今科研前沿的热点之一,其深层研究可望为揭示物理化学、生命科学等领域的本质问题提供有力工具[1~3]。 近年来,随着光谱科学和微观测试技术的发展以及分子轨道理论的介入,水分子簇的研究进入了量子时期,从而为揭示水分子簇存在形态的成因提供了实验和理论依据。基于蒙特卡罗模拟的极化-解离多体经验势能函数(PD-PEF)[4]在计算(H2O)n(n=2~8)的水分子簇的结构特征和分子尺度过程中,将氢原子视为单一的裸露质子,由于其充分考虑到分子间氢键及分子内部作用力的影响,适于计算水分子簇的结构特征参数。在六元水分子簇稳定性的研究中[5,6],应用从头计算法的独立分子模型,通过平动矢量和欧拉角将簇中每个分子的位置和取向逐一标定,总结出六水分子簇的五种结构形式,并通过计算氢键强度及自由能的大小,得出环状六水分子簇具有最稳定结构的结论。进入上世纪90年代以来,美国加州大学Berkeley实验室设计的远红外振转隧道光谱仪能够清晰观测到分子间的振转谱线,为深层次研究氢键作用下水分子簇的微观结构开辟了一条崭新的途径[7]。 张建平 男,28岁,博士生,现从事废弃物处理和水的功能化研究。E-mail: jianpingzhang@https://www.sodocs.net/doc/6716551309.html, 国家自然科学基金资助项目(20376054) 2005-03-04收稿,2005-08-30接受

检测两种蛋白质之间相互作用

检测两种蛋白质之间相互作用得实验方法比较 1、生化方法 ●免疫共沉淀免疫共沉淀就是以抗体与抗原之间得专一性作用为基础得用于研究蛋白质相互作用得经典方法.改法得优点就是蛋白处于天然状态,蛋白得相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用得蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀得蛋白复合物时候为直接相互作用得两种蛋白。另外灵敏度不如亲与色谱高。 ●Far—Western 又叫做亲与印记。将PAGE胶上分离好得凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素得诱饵蛋白发生作用,最后显影。缺点就是转膜前需要将蛋白复性。2?、等离子表面共振技术(Surfaceplasmonresonance)该技术就是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚得技术膜表面。当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者得结合将使金属膜表面得折射率上升,从而导致共振角度得改变。而共振角度得改变与该处得蛋白质浓度成线性关系,由此可以检测蛋白质之间得相互作用。该技术不需要标记物与染料,安全灵敏快速,还可定量分析。缺点:需要专门得等离子表面共振检测仪器。 3、双杂交技术原理基于真核细胞转录因子得结构特殊性,这些转录因子通常需要两个或以上相互独立得结构域组成.分别使结合

域与激活域同诱饵蛋白与猎物蛋白形成融合蛋白,在真核细胞中表达,如果两种蛋白可以发生相互作用,则可使结合域与激活域在空间上充分接近,从而激活报告基因.缺点:自身有转录功能得蛋白会造成假阳性.融合蛋白会影响蛋白得真实结构与功能。不利于核外蛋白研究,会导致假隐性. 5、荧光共振能量转移技术指两个荧光法色基团在足够近(〈100埃)时,它们之间可发生能量转移得现象。荧光共振能量转移技术可以研究分子内部对某些刺激发生得构象变化,也能研究分子间得相互作用。它可以在活体中检测,非常灵敏,分辩率高,能够检测大分子得构象变化,能够定性定量得检测相互作用得强度。缺点此项技术要求发色基团得距离小于100埃。另外设备昂贵,还需要融合GFP给蛋白标记。?此外还有交联技术(cross-linKing),蛋白质探针技术,噬菌体展示技术(Phage display)以及生物信息学得方法来检测蛋白质之间相互作用。 1,酵母双杂交 1-5 酵母双杂交系统就是将待研究得两种蛋白质得基因分别克隆到酵 体,从表达产物分析两种蛋白质相互作用得系统 酵母双杂交得原理就是,把报告基因HIS3与l a c Z 整合到酵母细胞基因组中,并受转录因子

氢键在现代化学中的作用

氢键在现代化学中的作用 随着科学的不断发展,现在化学的研究对象,已经远远超出了常规的、以共价键为基础的分子,它包括从原子、分子片、结构单元、分子、高分子、生物大分子、超分子、分子和原子的各种不同维数、不同尺度和不同复杂程度的聚集体、组装体、分子材料、分子器件和分子机器。化学已从分子化学发展为超分子化学,超分子化学是分子以上层次的化学,是化学、生物学、物理学、材料科学、信息科学、环境科学等学科相互交叉融合的产物。超分子化合物因其在光、电、磁化学和分离、吸附、催化等领域所具有的应用前景而备受青睐。而分子之间以及分子以上层次的超分子及有序高级结构的组装体,则是依靠分子间的相互作用如氢键、范德华力、偶极-偶极相互作用、亲水-疏水相互作用、π-π堆积力等将分子结合在一起。在各种分子间相互作用中,氢键占有很特殊的地位,被称作为“超分子化学中的万能相互作用”。 氢键有别于其他分子间相互作用之处在于: (1)氢键在类型、长度、强度和几何构型上是变化多样的,每个分子中的一个强氢键足以决定固态结构,并且在很大程度上影响其液态和气态的存在。弱氢键在稳定结构中也起到一定的作用,当有很多氢键协同作用时效果可以变得很显著; (2)氢键具有方向性、饱和性和可预见性,能够设计和合成出含有特征质子给体和特征质子受体的分子,可以按照所希望的方式将一定的结构单元或功能单元通过氢键组装成具有优异的光、电、磁、催化、生物活性等特性的材料; (3)氢键强度介于化学键和范德华力之间,形成和破坏都比较容易,其动态可逆的特点,使其对外部环境的刺激能产生独特的响应,在决定材料的性质和新型材料的设计中至关重要。因此,氢键在现代化学、材料科学以及生命科学中所起的作用越来越重要。 通过氢键形成超分子 超分子是指由2种或2种以上分子依靠分子间相互作用结合在一起,组装成复杂的、有组织的聚集体,并保持一定的完整性,具有明确的微观结构和宏观特性。超分子不是分子的简单聚集,它的结构和特性与它们的纯分子组分的聚集性质不同。 通过氢键进行分子识别 超分子体系主要有识别、转换和传输功能。而分子识别是超分子化学的核心。分子识别

检测两种蛋白质之间相互作用

检测两种蛋白质之间相互作用的实验方法比较 1. 生化方法 ●免疫共沉淀免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响;可以分离得到天然状态下相互作用的蛋白复合体。缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高。 ●Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。缺点是转膜前需要将蛋白复性。 2. 等离子表面共振技术(Surface plasmon resonance)该技术是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚的技术膜表面。当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者的结合将使金属膜表面的折射率上升,从而导致共振角度的改变。而共振角度的改变与该处的蛋白质浓度成线性关系,由此可以检测蛋白质之间的相互作用。该技术不需要标记物和染料,安全灵敏快速,还可定量分析。缺点:需要专门的等离子表面共振检测仪器。 3. 双杂交技术原理基于真核细胞转录因子的结构特殊性,这些转录因子通常需要两个或以上相互独立的结构域组成。分别使结合域和

激活域同诱饵蛋白和猎物蛋白形成融合蛋白,在真核细胞中表达,如果两种蛋白可以发生相互作用,则可使结合域和激活域在空间上充分接近,从而激活报告基因。缺点:自身有转录功能的蛋白会造成假阳性。融合蛋白会影响蛋白的真实结构和功能。不利于核外蛋白研究,会导致假隐性。 5. 荧光共振能量转移技术指两个荧光法色基团在足够近(<100埃)时,它们之间可发生能量转移的现象。荧光共振能量转移技术可以研究分子内部对某些刺激发生的构象变化,也能研究分子间的相互作用。它可以在活体中检测,非常灵敏,分辩率高,能够检测大分子的构象变化,能够定性定量的检测相互作用的强度。缺点此项技术要求发色基团的距离小于100埃。另外设备昂贵,还需要融合GFP给蛋白标记。 此外还有交联技术(cross-linKing),蛋白质探针技术,噬菌体展示技术(Phage display)以及生物信息学的方法来检测蛋白质之间相互作用。 1,酵母双杂交 1-5 酵母双杂交系统是将待研究的两种蛋白质的基因分别克隆到酵母表达质粒的转录激活因子(如GAL4等)的DNA结合结构域基因和转录激活因子(如GAL4等)激活结构域基因,构建成融合表达载体,从表达产物分析两种蛋白质相互作用的系统

氢键的形成以及对物质性质的影响

氢键的形成以及对物质性质的影响 090901135 姚瑶摘要:本文主要论述了氢键的本质,形成,种类以及对物质性质的影响,阐述了氢键形成的条件以及分子中存在氢键物理和化学性质的变化。 关键词:氢键,形成条件,影响 在高中化学课本必修2第二章中讲微粒之间的相互作用力涉及到氢键的内容,NH3,H2O,HF等分子之间存在一种比分子间作用力稍强的相互作用,这种相互作用叫氢键。氢键是已经以共价键与其他原子键合的氢原子与另一个原子间产生的分子间作用力。 原子半径较小,非金属性很强的原子X(N,O,F)与H原子形成强极性共价键,与另一个分子中半径较小,非金属性很强的原子Y(N,O,F)产生较强的静电吸引,形成氢键,通式X-H…Y-H(X,Y可同可不同,一般为N,O,F)。氢键可以分为分子间氢键和分子内氢键。根据氢键的形成条件,CHF3满足氢键形成条件,但CHF3能否形成分子间氢键?形成氢键必须满足俩个基本条件,第一:分子中必须有一个与电负性很强的元素形成强极性键的氢原子,第二:另一分子中必须有带孤对电子对,电负性大,且原子半径小的元素(如F,O,N等),因为氢原子的特点是原子半径小,结构简单,核外只有一个电子,无内层电子,它与电负性大的元素形成共价键后,电子强烈电负性大的元素一边,使氢几乎成为赤裸的质子,呈现相当强的正电负性,因此它易与另一分子中电负性大的元素接近,并产生静电吸引作用,从而形成氢键。但分析CHF3的结构,其中的H原子是不符合形成氢键条件的,因为H是和电负性不太大的C原子相连的。在CHF3分子中,三个F原子和C相连,F原子电负性很大,是否会由于三个F对C的作用从而诱导H有了较大的正电性而能够形成氢键呢?我们知道,若分子间形成氢键,则同类型化合物的熔沸点将出现异常现象。因为氢键的形成会使分子间有了较强的结合力,化合物的熔点和沸点会显著升高。如某些氢化物的沸点递变顺序:NH3>PH3>AsH3>SbH3结构和组成相似的分子型物质,沸点随分子量增大而升高,但这里却出现意外,原因是HF,H2O,NH3分子间形成了氢键。再考虑CHF3,若能形成分子间氢键,那么在CHX3的同类型化合物中也应出现沸点变化的异常现象,而通过实验数据却给出了否定答案 三卤甲烷CHF3CHCl3CHBr3CHI3 沸点-82.2 61.7 149.5 218 CHF3的气化热为16.7KJ/mol属于一般极性分子的范德华力的作用能范围,也不显现分子间氢键的存在。由此可知,无论从分子结构分析还是实验数据验证,都是不支持CHF3能形成分子间氢键的。 氨合物,无机酸和某些有机化合物,通常是物质在液态是形成氢键,但形成后有时也能继续存在于某些晶体甚至气态物质中。但能形成氢键的物质中一定存在氢键吗?氢键的存在也与物质的状态有关,如液态和固态水中存在氢键,但气态水分子之间由于距离太远无法形成氢键。 氢键作为化学键以及范德华力之外的一种作用力,是一种重要的次级键。氢键虽然是一种弱键,但由于它的存在,物质的性质出现了反常现象。我们知道分子间氢键对物质的熔沸

蛋白质相互作用

蛋白质相互作用的概述 一、为什么要研究蛋白质相互作用 二、蛋白质相互作用亲和力:K d=[A][B]/[AB] 三、蛋白质相互作用的应用 A、利用抗原和抗体的相互作用:Western blot,免疫共沉淀,染色质沉淀,抗体筛库 B、利用已知的相互作用建立tag:GST pull down,Biotin-Avidin结合, C、直接利用蛋白质的相互作用:蛋白质亲和层析,酵母双杂交,phage display,Bait蛋白质筛表达库,蛋白质组 四、相互作用的生物学意义:蛋白质间的相互作用是细胞生命活动的基础。 五、生物学功能的研究:获得功能或失去功能 I、一些常用蛋白质相互作用技术 ?Traditional co-purification (chromatography co-purification and co-sedimentation) ?Affinity chromatography:GST pull down,Epitope-tag ?(co-)Immunoprecipitation ?Western和Far-Western blot Surface Plasmon Resonance Two-Hybrid System Fluorescence Resonance Energy Transfer (FRET) (实验过程及原理,注意事项,优缺点) III、研究实例讨论 一、酵母双杂交系统 作用:发现新的相互作用蛋白质;鉴定和分析已有的蛋白质间的相互作用;确定蛋白质相互作用的功能基团 具体过程:见书本 优点:是酵母细胞的in vivo相互作用;只需要cDNA,简单;弱的相互作用也能检测到 缺点:都是融合蛋白,万一融合出新的相互作用;酵母的翻译后修饰不尽相同,尤其是蛋白质的调控性修饰;自身激活报告基因;基因库德要求比较高,单向1/3是in frame 蛋白质毒性;第三者Z插足介导的相互作用;假阳性 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂

【论文故事】科学家首次“看到”了氢键的相互作用

【论文故事】科学家首次“看到”了氢键的相互作用Jerrusalem发表于2014-07-25 14:40 ?愿氢键与你同在!?图片来源:https://www.sodocs.net/doc/6716551309.html, 近日,麻省理工学院和芝加哥大学的科学家使用新开发的超速飞秒红外光源,得以直接"看到"被氢键连接的分子之间的协调振动。这是人类第一次观察到这种在分子水平上随处可见的化学作用。果壳网就此对化学家、论文第一作者路易吉·德马尔科(Luigi De Marco)进行了采访。 氢键通常被视为一些中性电荷分子稍带负电的一端和稍带正电的一端之间的相互吸引力。在接受果壳网采访时,德马尔科教授对氢键的相互作用做出了解释:?氢键的连接是一个十分重要的化学反应,它支配着许多物理、化学和生物反应现象。?由于氢原子独特的极性性质,氢键能够发生在已经以共价键相连接的氢原子和另一个原子之间。通常,氢原子两边连接的原子电负性都较强。 ?在溶液体系中,将会形成溶剂与溶质之间的强力氢键连接。?德马尔科说道,?当我们要研究比如水合溶剂和配体蛋白的连接时,氢键的这种动态相互作用就尤为重要。?氢键在生物大分子反应中也起到了关键作用,而且往往是发现新药物的关键。但德马尔科同时表示:?一般来说,这种氢键连接的分子的相互作用很难被观测到,这是因为会有来自非相互作用的其他‘噪音’信号。不过,我们已经开发出了一项技术,可以直接探测这种相互作用的实时动态变化。? 德马尔科向果壳网解释了这项技术的发展:?实际上我们的研究小组在几年前已经开发了类似的技术。简单来说,我们发明了一种方法,来生成一种很短的红外脉冲,但具有难以置信的广谱性。这让我们能够在光谱上把氢键的振动和系统中的其他振动区别开来,这就是我们如何‘直接’观察到氢键的相互作用的。? 氢键连接的分子的振动。图片来源:https://www.sodocs.net/doc/6716551309.html,

氢键对物质结构和性质的影响及其应用前景

氢键对物质结构和性质的影响及其应用前景 夏菲 王宙 郭培培 陈俏 (西北大学化学系05级化学专业 西安 710069) 摘要:本文主要论述氢键在结构和性质两方面对物质的影响,并讨论了氢键的广泛地应用前景。 关键词:氢键物质结构性质影响 氢键(Hydrogen Bonding)是指与电负性极强的元素X相结合的氢原子和另一分子中电负性极强的原子Y之间形成的一种弱键。可以表示成X—H…Y。氢键虽然是一种弱键,但由于它的存在,物质的性质出现了反常现象,在形状结构等方面受到了很大的影响。下面将从氢键的形成、特征、对物质结构和性质的影响和应用前景等方面逐一论述。 氢键由于广泛存在与化合物中,因此在研究化合物的性能时,氢键起着重要的作用。氢键的键能介于共价键和范德华力之间,其键能小,形成或破坏所需的活化能也小,加上形成氢键的结构条件比较灵活,特别容易在常温下引起反应和变化,故氢键是影响化合物性质的一个重要因素。 1.对物质构型的影响 氢键对物质的结构和构型有着很大的影响,就蛋白质而言,蛋白质分子是由氨基酸组成的,有多个氨基酸通过肽键而形成的多肽称为多肽链,氨基酸在多肽链中按一定顺序排列构 成蛋白质的肽链骨架,称为蛋白质的一级结构。在多肽链中o c和N H 可形成大 量的氢键(N—H…O)使蛋白质按螺旋方式卷曲成立体构型,称为蛋白质的二级结构。近年来的研究指出,二级结构是合理的螺旋结构,可见氢键对蛋白质维持一定空间构型起着重要的作用。 2.对物质性质的影响 2.1对化合物的沸点和熔点影响 在有机物分子内形成氢键时,分子间的结合力降低,因而使化合物的熔点、沸点减低,如邻硝基苯酚的沸点是45℃,间位和对位分别是96℃和114℃,因为邻硝基苯酚中―OH与― NO 2相距较近,―NO 2 上的氧可以与―OH上的氢形成分子内氢键(螯环),这样就难能再形成分 子间氢键,减弱了邻位异构体分子间的引力;而在对硝基苯酚分子中,则由于―OH与―NO 2 相距较远,不能在分子内形成氢键,而分子间通过氢键缔合起来,所以前者熔沸点低、挥发性

自大会通过氢键和C - H键 p相互作用

自大会通过氢键和C - H键??? p相互作用 金属配合物中的N - functionalised甘氨酸 Nilotpal Barooah ,Anirban Karmakar , Rupam学者萨尔马,Jubaraj湾Baruah * 化学系印度理工学院,北高哈蒂,阿萨姆邦,阿萨姆邦781 039 ,印度 收到2006年7月16号;接受2006年7月30 网上提供2006年8月11 摘要 该物[ Ni (母语) 2 (坪)2 ] 。甲苯(母语为N - phthaloylglycinato 和芘是吡啶)制备固相反应,而 共同组成晶体具有2 [镍(母语) 2 (坪) 3 (水)] ? [镍(母语) 2 (坪)2 (水) 2 ] ? 2py ? 2H2O的解决方案,获得国家的反应。 ? 2006年埃尔塞维尔B.诉保留所有权利。 关键词:自组装;联合晶体;甘氨酸衍生物;金属配合物;的C - H ???p 相互作用 金属针对大会的分子不仅是管辖 通过协调模式的金属离子,而且还指示 通过各种非共价部队来自结构 功能配体/ s的选择[ 1 ] 。这些薄弱尚未 可逆性和方向性的相互作用,如hydrogenbonding 和首个互动广泛探讨设计 上层建筑与新颖性领域中的无机 晶体工程[ 2 ] 。然而,与hydrogenbonding , 的首个互动的方向,从而减少 的结构特点任何的P -堆叠系统较难预测 [ 3 ] 。此外的P -互动薄弱的解决方案 关联相对方向的P -堆叠物种

固态高度肯定[ 4 ] 。不同 金属有机框架金属羧酸 框架,具有重要的地位,其结构功能 和范围的研究作为多孔材料[ 5 ] 。印第安纳州 我们最近的研究已经表明,我们的重要性弱 相互作用的无机和有机衍生物Nphthaloylglycine 并在N - phthaloylglycylglycine [ 6-8 ] 。它 将是很有意思的,如果这些互动可以引导,使 这其中的每一个具有竞争力和超越每 其他指导的结构特点。从我们最近的 从现有的经验和文献邻苯二甲 相关系统有人认为的P - P和C - H键??? p相互作用 可引导结构的自组装[ 9 ] 。为了 研究相互相互作用氢键和pstacking 在金属的相互作用,我们针对议会 决定使用N phthaloylglycine (母语), 4 -羧基Nphthaloylglycine (二级)和N - phthaloylglycylglycine (三级) 作为配体的络合比较目的 其中的结构,配体三级[ 7 ]和L1 [ 10 ]有 据报道最近。 ? ? ? 俄亥俄州 ? ? ? ? 俄亥俄州 ? ? ? ? 环

氢键的形成以及对物质性质的影响教学内容

氢键的形成以及对物质性质的影响

精品文档 氢键的形成以及对物质性质的影响 090901135 姚瑶 摘要:本文主要论述了氢键的本质,形成,种类以及对物质性质的影响,阐述了氢键形成的条件以及分子中存在氢键物理和化学性质的变化。 关键词:氢键,形成条件,影响 在高中化学课本必修2第二章中讲微粒之间的相互作用力涉及到氢键的内容,NH3,H2O,HF等分子之间存在一种比分子间作用力稍强的相互作用,这种相互作用叫氢键。氢键是已经以共价键与其他原子键合的氢原子与另一个原子间产生的分子间作用力。 原子半径较小,非金属性很强的原子X(N,O,F)与H原子形成强极性共价键,与另一个分子中半径较小,非金属性很强的原子Y(N,O,F)产生较强的静电吸引,形成氢键,通式X-H…Y-H(X,Y可同可不同,一般为N,O,F)。氢键可以分为分子间氢键和分子内氢键。根据氢键的形成条件,CHF3满足氢键形成条件,但CHF3能否形成分子间氢键?形成氢键必须满足俩个基本条件,第一:分子中必须有一个与电负性很强的元素形成强极性键的氢原子,第二:另一分子中必须有带孤对电子对,电负性大,且原子半径小的元素(如F,O,N等),因为氢原子的特点是原子半径小,结构简单,核外只有一个电子,无内层电子,它与电负性大的元素形成共价键后,电子强烈电负性大的元素一边,使氢几乎成为赤裸的质子,呈现相当强的正电负性,因此它易与另一分子中电负性大的元素接近,并产生静电吸引作用,从而形成氢键。但分析CHF3的结构,其中的H原子是不符合形成氢键条件的,因为H是和电负性不太大的C原子相连的。在CHF3分子中,三个F原子和C相连,F原子电负性很大,是否会由于三个F对C的作用从而诱导H有了较大的正电性而能够形成氢键呢?我们知道,若分子间形成氢键,则同类型化合物的熔沸点将出现异常现象。因为氢键的形成会使分子间有了较强的结合力,化合物的熔点和沸点会显著升高。如某些氢化物的沸点递变顺序:NH3>PH3>AsH3>SbH3结构和组成相似的分子型物质,沸点随分子量增大而升高,但这里却出现意外,原因是HF,H2O,NH3分子间形成了氢键。再考虑CHF3,若能形成分子间氢键,那么在CHX3的同类型化合物中也应出现沸点变化的异常现象,而通过实验数据却给出了否定答案 三卤甲烷 CHF3 CHCl3 CHBr3 CHI3 沸点 -82.2 61.7 149.5 218 CHF3的气化热为16.7KJ/mol属于一般极性分子的范德华力的作用能范围,也不显现分子间氢键的存在。由此可知,无论从分子结构分析还是实验数据验证,都是不支持CHF3能形成分子间氢键的。 收集于网络,如有侵权请联系管理员删除

分子间作用力和氢键

分子间作用力和氢键 一、分子间作用力 NH3、Cl2、CO2等气体,在降低温度、增大压强时,能凝结成液态或固态。在这个过程中,气体分子间的距离不断缩短,最后由不规则运动的混乱状态转变为有规则排列的固态。这说明物质的分子之间必定存在着某种作用力,能把它们的分子聚集在一起。这种作用力叫做分子间作用力,又称范德华力。 我们知道,化学键是原子结合成分子时,相邻原子间强烈的相互作用,而分子间作用力与化学键比起来要弱得多。分子间作用力随着分子极性和相对分子质量的增大而增大。 分子间作用力的大小,对物质的熔点、沸点、溶解度等有影响。对于组成和结构相似的物质来说,相对分子质量越大,分子间作用力越大,物质的熔点、沸点也越高。例如,卤素单质,随着相对分子质量的增大,分子间作用力增大,它们的熔点、沸点也相应升高(见图1-8),四卤化碳也有类似的情形(见图1-9)。

二、氢键 前面已介绍过某些结构相似的物质随着相对分子质量的增大分子间作用力增大,以及它们的熔点和沸点也随着升高的事实。但是有些氢化物的熔点和沸点的递变与以上事实不完全符合。让我们来看一下图 1-10。从图上可以看出,NH3、H2O和HF的沸点反常。例如,HF的沸点按沸点曲线的下降趋势应该在-90℃以下,而实际上是20℃;H2O的沸点按沸点曲线下降趋势应该在-70℃以下,而实际上是100℃。 为什么HF、H2O和NH3的沸点会反常呢?这是因为它们的分子之间存在着一种比分子间作用力稍强的相互作用,使得它们只能在较高的温度下才能汽化。经科学研究证明,上述物质的分子之间存在着的这种相互作用,叫做氢键。 氢键是怎样形成的呢?现在以HF为例来说明。在HF分子中,由于F 原子吸引电子的能力很强,H——F键的极性很强,共用电子对强烈地偏

氢键相互作用

分子间氢键相互作用 氢键:氢键是种弱作用力形成特殊类型的偶极-偶极吸引力,当氢原子键合到一个强电负性原子中存在的另一个具有孤对电子的电负性原子附近时发生。这些键通常比普通的偶极-偶极和色散力强,但比真正的共价键和离子键弱。 氢键存在的证据:许多元素形成与氢的化合物。如果绘制4族元素与氢的化合物的沸点,你发现的沸点随着族元素向下而升高。如下图 沸点增大的发生由于分子具有越来越多的电子放大,因此范德华色散力变得更大。如果你重复上述在5、6和7族氢元素化合物的沸点图,奇特的现象发生了。

虽然大多数情况下的趋势与4族中的一样,氢与各族中的第一个元素的化合物的沸点异常高。在NH 3,H 2 O和HF的情况下,必存在一些额外吸引的分子间作用力,需要更多的热能来破坏。这些相对强大的分子间力被描述为氢键。 形成氢键的起源:分子具有这种额外的键的是: (注:实线表示在屏幕或纸张平面内的键。虚线键表示远离你的屏幕或纸张的背面,楔形键是指向你的) 在每一个这些分子中注意: 1.氢原子直接结合到最负电元素之一,导致氢原子获得显著量的正 电荷。 2.每个连接氢原子的元素不仅显著的负电性,而且还具有至少一个 “有效的”孤对。 2-级的孤对有电子被包含在一个相对小的体积的空间,因此具有高密度的负电荷。 考虑两个的水分子的接近结合:

δ+氢原子强烈吸引着孤对以致它几乎像形成配位共价键一样。它不会走那么远,但吸引力显著比普通的偶极-偶极相互作用强。 氢键有大约平均共价键强度的十分之一,并正在液态水中不断被打破和重新形成。如果你把氧原子和氢原子间的共价键比喻成稳定的婚姻,氢键具有“只是好朋友”的状态。 水是氢键的一个“完美”例子。注意每个水分子有可能与周围的水分子形成四个氢键。这也确是δ+氢原子和孤对的数目,所以他们中每一个都参与氢键。 这就是为什么水的沸点比氨或氟化氢更高。在氨的情况下,形成氢键的数目由每个氮上只有一个孤对的事实所限制。在氨分子的基团中,没有足够孤对满足周围所有氢原子。在氟化氢中,问题是缺少氢原子。在水中,孤对和氢原子的数目正好合适。水可以被认为是“完美”的氢键系统。

氢键高考题汇编

氢键高考题汇编 1.(2008·宁夏卷·26)用氢键表示式写出E(氟元素)的氢化物溶液中存在的所有氢键。 【分析】氟化氢水溶液中HF与HF、H2O与H2O、HF与H2O之间均存在氢键,氢键类型有如下4种:F-H…F F-H…O O-H…F O-H…O。 【答案】F-H…F F-H…O O-H…F O-H…O 2.(2009海南卷)F与H形成的化合物比Cl 与H形成的化合物沸点高,其原因是。 【答案】氟化氢分子间存在氢键,氯化氢分子间没有氢键 3.(2009·宁夏卷·38)比较As元素的氢化物与同族第二、第三周期元素所形成的氢化物稳定性、沸点高低并说明理由。 【分析】N、P、As的氢化物稳定性主要由元素的非金属性强弱决定,沸点的高低由分子间作用力大小决定,而NH3分子间存在氢键,氢键比分子间作用力强,对于组成和结构相似的物质,分子间作用力由相对分子质量大小决定。 【答案】稳定性:NH3>PH3>AsH3因为键长越短,键能越大,化合物越稳定沸点:NH3>AsH3>PH3NH3可形成分子间氢键,沸点最高,AsH3相对分子质量比PH3大,分子间作用力大,因而AsH3比PH3沸点高。 4.(2009江苏卷)甲醇的沸点比甲醛的高,其主要原因是;甲醛分子中碳原子轨道的杂化类型为。 【答案】甲醇分子之间形成氢键sp2杂化 5.(2011·山东卷·32)H2O分子内的O-H键、分子间的范德华力和氢键从强到弱依次 为。沸点比高,原因是。 【分析】氢键属于分子间作用力,比化学键弱,但比范德华力强。前者形成分子间氢键,而后者形成分子内氢键,因此前者的沸点比后者高。 【答案】(2)O-H键氢键范德华力形成分子间氢键,而 形成分子内氢键,分子间氢键使分子间作用力增大 6.(2011·福建卷·30)图1表示某种含氮有机化合物的结构,其分子内4个氮原子分别位于正四面体的4个顶点(见图2),分子内存在空腔,能嵌入某离子或分子并形成4个氢键予以识别。 下列分子或离子中,能被该有机化合物识别的是_________(填标号)。

高中化学氢键-分子间作用力

1.化学键:相邻的两个或多个原子(或离子)之间强烈的相互作用叫做化学键。 2.化学键的存在: (1)稀有气体单质中不存在; (2)多原子单质分子中存在共价键; (3)非金属化合物分子中存在共价键(包括酸); (4)离子化合物中一定存在离子键,可能有共价键的存在(Na2O2、NaOH、 NH4Cl),共价化合物中不存在离子 键; (5)离子化合物可由非金属构成,如:NH4NO3、NH4Cl 。 3.化学反应的本质:一个化学反应的的过程,本质上就是旧化学键断裂和新化学键形成的过程。 4.金属键:金属晶体中,金属阳离子与自由电子之间的强烈静电作用。 5.配位键:电子对由一个原子单方面提供而跟另一个原子共用而形成的共价键。 (1)孤对电子:原子最外层存在没有跟其它原子共用的电子对。 (2)虽然配位键和其它键的形成不同,但一旦形成后则与其它共价键无任何区别。 6.分子间作用力 定义:把分子聚集在一起的作用力叫做分子间作用力(也叫范德华力)。 (1)分子间作用力比化学键弱得多,是一种微弱的相互作用,它主要影响物质的熔、沸点等物理性质,而化学键主要影响物质的化学性质。 (2)分子间作用力主要存在于由分子构成的物质中,如:多数非金属单质、稀有气体、非金属氧化物、酸、氢化物、有机物等。 (3)分子间作用力的范围很小(一般是300-500pm),只有分子间的距离很小时才有。 (4)一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔、沸点越高。如卤素单质:

为什么HF、H2O和NH3的沸点会反常呢? (1)形成条件:原子半径较小,非金属性很强的原子X,(N、O、F)与H原子形成强极性共价键,与另一个分子的半径较小,非金属性很强的原子Y (N、O、F),在分子间H与Y产生较强的静电吸引,形成氢键 (2)表示方法:X—H…Y—H(X.Y可相同或不同,一般为N、O、F)。 (3)氢键能级:比化学键弱很多,但比分子间作用力稍强 (4)特征:具有方向性。 (5)氢键作用:使物质有较高的熔沸点(H2O、HF 、NH3)使物质易溶于水 (C2H5OH,CH3COOH)解释一些 反常现象。 结果1:氢键的形成会使含有氢键的物质的熔、沸点大大升高。如:水的沸点高、氨易液化等。这是因为固体熔 化或液体汽化时,必须破坏分子间作用力和氢键。 结果2:氢键的形成对物质的溶解性也有影响,如:NH3极易溶于水。

几种重要的氢键

一.氢键产生的条件和影响 在许多情况下,一个氢原子不仅仅被一个原子而是被两个原子强有力地吸引着,因此可以把它看作是在两个原子之间的键--氢键,可表示为X-H…Y 氢键是一种弱键,键能在2-10kcal/mol范围,因为键能小,它在形成和分离时所需的活化能也很小,特别适合在常温下的反应. 氢键能使蛋白质分子限制在它的天然构型上。今天,正当生命科学对我们生存的社会发生越来越大的影响时,了解氢键在蛋白质、核酸等大分子中的作用有更重要的意义。 氢键是氢的正离子(异常小)把一个负离子吸引到一个平衡距离,同样,它还可以吸引第二个负离子,从而形成一个稳定的复合体,但是由于负离子的排斥作用,氢质子不可能再吸引第三个负离子,所以氢的配位数为2。一般说来,氢原子只与电负性最大的元素如F、O、N、Cl等形成氢键。而电负性越大,氢键强度也越大。实验发现,氟生成的氢键很强,氧的较弱,氮、氯更弱。在所有的氢键中,氢原子总是比较靠近两个原子中的一个,例如冰的晶体中,质子离一个氧原子的距离为100pm,离另一个氧原子为176pm。形成氢键的物质的物理性质,如沸点、熔点会发生明显的变化--由此得出结论, HF、NH3、H2O晶体中的氢键在熔化时一部分被破坏,还有一部分(超过半数)还留在液体中,最后汽化时才破坏。只有HF中的氢键特别强,在蒸汽中仍有部分聚合体。 有些液态物质如NH3、H2O,观察到反常的高介电常数,可归结为氢键产生的连续聚合作用。 二.几种重要化合物的氢键 1.水 水是地球上数量最多的化合物之一,与人们的生活、动植物生长、工农业生产密切相关。由于水的结构在不同温度、压力下都有变化,几个世纪前人们就开始研究水的结构,这种研究一直持续至今日。 气态单个水分子的结构已确定键长95.7pm,∠HOH为在冰、水或水合物晶体中,H2O分子均可看作按四面体方向分布的电荷体系。水分子的两个氢原子指向四面体

研究蛋白质与蛋白质相互作用方法总结-实验步骤

研究蛋白质与蛋白质相互作用方法总结-实验步骤 蛋白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。把原来spaces空间上的一篇蛋白质与蛋白质间相互作用研究方法转来,算是实验技巧分类目录的首篇。(另补充2:检测两种蛋白质之间相互作用的实验方法比较) 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间的相互作用。

蛋白质相互作用数据库和分析方法

蛋白质相互作用数据库和分析方法 1. 蛋白质相互作用的数据库 蛋白质相互作用数据库见下表所示: 数据库名 说明 网址 BIND 生物分子相互作用数据库 http://bind.ca/ DIP 蛋白质相互作用数据库 https://www.sodocs.net/doc/6716551309.html,/ IntAct 蛋白质相互作用数据库 https://www.sodocs.net/doc/6716551309.html,/intact/index.html InterDom 结构域相互作用数据库 https://www.sodocs.net/doc/6716551309.html,.sg/ MINT 生物分子相互作用数据库 http://mint.bio.uniroma2.it/mint/ STRING 蛋白质相互作用网络数据库 http://string.embl.de/ HPRD 人类蛋白质参考数据库 https://www.sodocs.net/doc/6716551309.html,/ HPID 人类蛋白质相互作用数据库 http://wilab.inha.ac.kr/hpid/ MPPI 脯乳动物相互作用数据库 http://fantom21.gsc.riken.go.jp/PPI/ biogrid 蛋白和遗传相互作用数据,主要来自于酵母、线虫、果蝇和人 https://www.sodocs.net/doc/6716551309.html,/ PDZbase 包含PDZ 结构域的蛋白质相互作用数据库 https://www.sodocs.net/doc/6716551309.html,/services/pdz/start Reactome 生物学通路的辅助知识库 https://www.sodocs.net/doc/6716551309.html,/ 2. 蛋白质相互作用的预测方法 蛋白质相互作用的预测方法很非常多,以下作了简单的介绍 1) 系统发生谱 这个方法基于如下假定:功能相关的(functionally related)基因,在一组完全测序的基因组中预期同时存在或不存在,这种存在或不存在的模式(pattern)被称作系统发育谱;如果两个基因,它们的序列没有同源性,但它们的系统发育谱一致或相似.可以推断它们在功能上是相关的。

蛋白质-蛋白质相互作用

蛋白质-蛋白质相互作用 蛋白质与蛋白质之间相互作用构成了细胞生化反应网络的一个主要组成部分,蛋白-蛋白互作网络与转录调控网络对调控细胞及其信号有重要意义。把原来spaces空间上的一篇蛋白质与蛋白质间相互作用研究方法转来,算是实验技巧分类目录的首篇。(另补充2:检测两种蛋白质之 间相互作用的实验方法比较) 一、酵母双杂交系统 酵母双杂交系统是当前广泛用于蛋白质相互作用组学研究的一种重要方法。其原理是当靶蛋白和诱饵蛋白特异结合后,诱饵蛋白结合于报道基因的启动子,启动报道基因在酵母细胞内的表达,如果检测到报道基因的表达产物,则说明两者之间有相互作用,反之则两者之间没有相互作用。将这种技术微量化、阵列化后则可用于大规模蛋白质之间相互作用的研究。在实际工作中,人们根据需要发展了单杂交系统、三杂交系统和反向杂交系统等。Angermayr等设计了一个SOS蛋白介导的双杂交系统。可以研究膜蛋白的功能,丰富了酵母双杂交系统的功能。此外,酵母双杂 交系统的作用也已扩展至对蛋白质的鉴定。 二、噬茵体展示技术 在编码噬菌体外壳蛋白基因上连接一单克隆抗体的DNA序列,当噬菌体生长时,表面就表达出相应的单抗,再将噬菌体过柱,柱上若含目的蛋白,就会与相应抗体特异性结合,这被称为噬菌体展示技术。此技术也主要用于研究蛋白质之间的相互作用,不仅有高通量及简便的特点,还具有直接得到基因、高选择性的筛选复杂混合物、在筛选过程中通过适当改变条件可以直接评价相互结合的特异性等优点。目前,用优化的噬菌体展示技术,已经展示了人和鼠的两种特殊细胞系的cDNA文库,并分离出了人上皮生长因子信号传导途径中的信号分子。 三、等离子共振技术 表面等离子共振技术(Surface Plasmon Resonance,SPR)已成为蛋白质相互作用研究中的新手段。它的原理是利用一种纳米级的薄膜吸附上“诱饵蛋白”,当待测蛋白与诱饵蛋白结合后,薄膜的共振性质会发生改变,通过检测便可知这两种蛋白的结合情况。SPR技术的优点是不需标记物或染料,反应过程可实时监控。测定快速且安全,还可用于检测蛋白一核酸及其它生物大分子之间 的相互作用。 四、荧光能量转移技术

检测蛋白质与蛋白质之间相互作用的实验技术

一、检测蛋白质与蛋白质相互作用 ① FRET技术(in vivo) FRET,Fluorescence resonance energy transfer,即荧光共振能量转移技术。该技术的原理是用一种波长的光激发某种荧光蛋白后,它释放的荧光刚好又能激发另一种荧光蛋白,使其释放另一波长的荧光,如下图所示: 以下图为例,若要利用FRET检测两种蛋白是否有相互作用,需将两种蛋白的基因分别与这两种荧光蛋白的基因融合,并在细胞内表达出两种融合蛋白。然后只需用紫外光对CFP进行激发,并检测GFP是否放出绿色荧光。如果能检测到绿色荧光,那么可以说明这两种蛋白可能有相互作用;反之,则是这两种蛋白没有相互作用。 ②酵母双、三杂交技术(in vivo) 酵母双杂交系统主要用于考察两种蛋白是否有相互作用,其原理是典型的真核生长转录因子,如GAL4、GCN4等都含有二个不同的结构域,即AD和BD。这些转录因子只有同时具有这两个结构域时才能起始转录。由此,设计不同的两个载体,一个含有AD基因(假设为A载体),另一个含有BD基因(假设为B载体)。 一般将一个已知蛋白的基因连在B载体上,作为诱饵(Bait),将未知蛋白的基因连在A载体上,将这两个载体都转到特定的酵母细胞内,看未知蛋白与已知蛋白是否有相互作用。如果两者有相互作用,那么就可以启动报告基因的转录,从而使这个酵母细胞能在选择培养基上显现出来或者生存下来;如果两者无相互作用,那么报告基因就无法表达,那么这个酵母细胞就无法在择培养基上显现出来或者生存下来,如下图所示:

由于酵母双杂交系统不能鉴定膜蛋白间的相互作用,因此又发展出了分离泛素酵母双杂交系统。该系统的原理如下图所示: 如图所示,将泛素蛋白拆分为两个片段,即C端段(Cub)和N端段(NubG),并在C端段的N端接上一个LexA-VP16转录因子,此时它并不能激活基因转录(因为它被限制在了C端段上,不能进入细胞核发挥作用)。 将该C端段连到一个膜蛋白上,将N端段连接到另一个膜蛋白上。若两个膜蛋白有相互作用,那么两个膜蛋白在相互靠近时会使泛素蛋白的N端段和C端段靠近结合,形成一个完整的泛素蛋白。此时泛素蛋白酶体会将这一段被泛素标记的片段降解,那么连接C端段的LexA-VP16转录因子掉落,即可进入细胞核启动标记基因的表达。 酵母三杂交的原理与双杂交一样,只是它研究的是两个蛋白和第三个成分间的相互作用,通过第三个成分使两个蛋白相互靠近。第三个成分可以是:蛋白、RNA或小分子,如下图所示: 如上图所示,在加入第三种成分前,蛋白X与蛋白Y之间并无直接相互作用,因此无法使BD和AD靠近,报告基因不能表达;当加入第三种成分后,蛋白X与蛋白Y的距离被拉近,BD和AD靠近,报告基因表达,从而可以被检测到。 ③ Pulldown技术(in vitro) Pulldown,即蛋白沉降技术,它是建立在蛋白质亲和层析的基础上的一种检测蛋白质间相互作用的分析方法。亲和层析的原理如下图所示,不同蛋白对配体的亲和程度不同,因此可以先将非特异结合的蛋白用低浓度缓冲液给清洗出去,只剩目的蛋白与层析柱结合,然后再用洗脱液将目的蛋白洗脱下来,达到纯化目的蛋白的作用。

相关主题