搜档网
当前位置:搜档网 › Matlab 一维插值interp1 例子 及 可视拟合界面

Matlab 一维插值interp1 例子 及 可视拟合界面

Matlab 一维插值interp1 例子 及 可视拟合界面
Matlab 一维插值interp1 例子 及 可视拟合界面

一维插值:

已知离散点上的数据集,即已知在点集X上对应的函数值Y,构造一个解析函数(其图形为一曲线)通过这些点,并能够求出这些点之间的值,这一过程称为一维插值。

MATLAB命令:yi=interp1(X, Y, xi, method)

一些个人经验说明:

①关于拟合参数的,X必须是向量,行向量或列向量均可,不可以是复数

②Y是向量或矩阵.但必须满足行数与length(X)相同即size(Y,1)==length (X)

③针对以上说明的例子

function tu

x=[5 1 2 20 14 21]'

y=rand(6,2)%按列计算的

xi=linspace(0,21,100);

yi=interp1(x,y,xi,'cubic')

plot(x,y,'o',xi,yi)

size(x)

size(y,1)

length(x)

结果

size(x)

6 1

size(y,1)

6

length(x)

6

该命令用指定的算法找出一个一元函数,然后以给出处的值。xi可以是一个标量,也可以是一个向量,是向量时,必须单调,method可以下列方法之一:‘nearest’:最近邻点插值,直接完成计算;

‘spline’:三次样条函数插值;

‘linear’:线性插值(缺省方式),直接完成计算;

‘cubic’:三次函数插值;

对于[min{xi},max{xi}]外的值,MATLAB使用外推的方法计算数值。

%-- 09-4-1 下午8:38 --%

%已知数据

t=1900:10:1990;

p=[75.995,91.972,105.711,123.203,131.669,150.697,179.323,203.212,226.505,249.633];

x=1900:0.01:1990;

%使用不同的方法进行一维插值

yi_linear=interp1(t,p,x); %线性插值

yi_spline=interp1(t,p,x,'spline');%三次样条插值

yi_cubic=interp1(t,p,x,'cubic');%三次多项式插值

yi_v5cubic=interp1(t,p,x,'v5cubic');%matlab5中使用的三次多项式插值%绘制图像对比

subplot(2,1,1);

plot(t,p,'ko');

hold on;

plot(x,yi_linear,'g','LineWidth',1.5);grid on;

plot(x,yi_spline,'y','LineWidth',1.5);

title('Linear VS Spline ')

subplot(2,1,2);

plot(t,p,'ko');

hold on

plot(x,yi_cubic,'g','LineWidth',1.5);grid on;

plot(x,yi_v5cubic,'y','LineWidth',1);

title('Cubic VS V5cubic ');

%创建新图形窗口

figure

yi_nearest=interp1(t,p,x,'nearest');%最邻近插值法

plot(t,p,'ko');

hold on

plot(x,yi_nearest,'g','LineWidth',1.5);grid on;

title('Nearest Method');

%以下是根据拟合估计

msg=' year Cubic Linear Nearest Spline';

for i=0:8

n=10*i;

year=1905+n;

pop(i+1,1)=year;

pop(i+1,2)=yi_cubic((year-1900)/0.01+1);

pop(i+1,3)=yi_linear((year-1900)/0.01+1);

pop(i+1,4)=yi_nearest((year-1900)/0.01+1);

pop(i+1,5)=yi_spline((year-1900)/0.01+1);

end

P=round(pop);

disp(msg)

disp(P)

结果如图:

由此可见,各种插值的优劣,在速度上,Nearest最快,然后是Linear再到Cubic,最慢的是Spline.但是精度和曲线的平滑度恰好相反,Nearest甚至不连续~~

系统默认的是Linear

当然也可以用图形界面更易理解

附录:Matlab 样条工具箱(Spline ToolBox)【信息来源教师博客】

Matlab样条工具箱中的函数提供了样条的建立,操作,绘制等功能;

一. 样条函数的建立

第一步是建立一个样条函数,曲线或者曲面。这里的样条函数,根据前缀,分为4类:cs* 三次样条

pp* 分段多项式样条,系数为t^n的系数

sp* B样条,系数为基函数B_n^i(t)的系数

rp* 有理B样条

二. 样条操作

样条操作包括:函数操作:求值,算术运算,求导求积分等等节点操作:主要是节点重数的调节,设定,修改等等

附:样条工具箱函数

1. 三次样条函数

csapi 插值生成三次样条函数

csape 生成给定约束条件下的三次样条函数

csaps 平滑生成三次样条函数

cscvn 生成一条内插参数的三次样条曲线

getcurve 动态生成三次样条曲线

2. 分段多项式样条函数

ppmak 生成分段多项式样条函数

ppual 计算在给定点处的分段多项式样条函数值

3. B样条函数

spmak 生成B样条函数

spcrv 生成均匀划分的B样条函数

spapi 插值生成B样条函数

spap2 用最小二乘法拟合生成B样条函数

spaps 对生成的B样条曲线进行光滑处理

spcol 生成B样条函数的配置矩阵

4. 有理样条函数

rpmak 生成有理样条函数

rsmak 生成有理样条函数

5. 样条操作函数

fnval 计算在给定点处的样条函数值

fmbrk 返回样条函数的某一部分(如断点或系数等)

fncmb 对样条函数进行算术运算

fn2fm 把一种形式的样条函数转化成另一种形式的样条函数fnder 求样条函数的微分(即求导数)

fndir 求样条函数的方向导数

fnint 求样条函数的积分

fnjmp 在间断点处求函数值

fnplt 画样条曲线图

fnrfn 在样条曲线中插入断点。

fntlr 生成tarylor系数或taylor多项式

6. 样条曲线端点和节点处理函数

augknt 在已知节点数组中添加一个或多个节点

aveknt 求出节点数组元素的平均值

brk2knt 增加节点数组中节点的重次

knt2brk 从节点数组中求得节点及其重次

knt2mlt 从节点数组中求得节点及其重次

sorted 求出节点数组的元素在另一节点数组中属于第几个分量aptknt 求出用于生成样条曲线的节点数组

newknt 对分段多项式样条函数进行重分布

optknt 求出用于内插的最优节点数组

chbpnt 求出用于生成样条曲线的合适节点数组

MATLAB曲线拟合的应用

MATLAB曲线拟合的应用 王磊品吴东 新疆泒犨泰克石油科技有限公司新疆油田公司准东采油厂信息所 摘要:1.阐述MATLAB数学分析软件的基本功能; 2.对MATLAB在生产数据分析中的应用进行了研究,指出曲线拟合的基本方法; 3.以实例阐明MATLAB与行业生产数据结合对生产数据进行分析的原理。 关键词:MATLAB;曲线拟合;插值 1.引言 在生产开发过程中,复杂的生产数据之间或多或少的存在着这样或者那样的联系,如何利用现今普及的计算机以及网络资源在最短的时间内找到这个联系,以指导我们的生产开发,这对于行业科研人员来说无疑是一个最为关心的问题。MATLAB矩阵分析软件,自推出以来,已成为国际公认的最优秀的数学软件之一,其范围涵盖了工业、电子、医疗以及建筑等各个领域,以其强大的科学计算功能使众多科研机构纷纷采用。 为此,本文从介绍MATLAB软件开始,以实例讲述如何使用MATLAB对生产开发数据进行计算与分析,从而达到高效、科学指导生产的目的。 2.MATLAB简介 MATLAB是MathWorks公司于1982年推出的一套高性能的数值计算和可视化数学软件。由于使用编程运算与人进行科学计算的思路和表达方式完全一致,所以不象学习其它高级语言那样难于掌握,用Matlab编写程序犹如在演算纸上排列出公式与求解问题,所以又被称为演算纸式科学算法语言。在这个环境下,对所要求解的问题,用户只需简单地列出数学表达式,其结果便以数值或图形方式显示出来。 MATLAB的含义是矩阵实验室(MATRIX LABORATORY),主要用于方便矩阵的存取,其基本元素是无须定义维数的矩阵。自问世以来, 就是以数值计算称雄。MATLAB进行数值计算的基本单位是复数数组(或称阵列),这使得MATLAB高度“向量化”。经过十几年的完善和扩充,现已发展成为线性代数课程的标准工具。由于它不需定义数组的维数,并给出矩阵函数、特殊矩阵专门的库函数,使之在求解诸如信号处理、建模、系统识别、控制、优化等领域的问题时,显得大为简捷、高效、方便,这是其它高级语言所不能比拟的。美国许多大学的实验室都安装有供学习和研究之用。 MATLAB中包括了被称作工具箱(TOOLBOX)的各类应用问题的求解工具。工具箱实际上是对MATLAB进行扩展应用的一系列 MATLAB函数(称为M文件),它可用来求解各类学科的问题,包括信号处理、图象处理、控制系统辨识、神经网络等。随着 MATLAB版本的不断升

matlab中插值拟合与查表

MATLAB中的插值、拟合与查表 插值法是实用的数值方法,是函数逼近的重要方法。在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。寻找这样的函数φ(x),办法是很多的。φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。函数类的不同,自然地有不同的逼近效果。在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。 根据测量数据的类型: 1.测量值是准确的,没有误差。 2.测量值与真实值有误差。 这时对应地有两种处理观测数据方法: 1.插值或曲线拟合。 2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。 MATLAB中提供了众多的数据处理命令。有插值命令,有拟合命令,有查表命令。 2.2.1 插值命令 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。各个参量之间的关系示意图为图2-14。 格式 yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。 yi = interp1(Y,xi) %假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。 yi = interp1(x,Y,xi,method) %用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算;

第四讲 matlab插值、拟合和回归分析

第四讲 插值、拟合与回归分析 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样本点,要求得到变量之间的函数关系或得到样本点之外的数据。解决此类问题的方法一般有插值、拟合和回归分析等。 设有一组实验数据0011(,),(,),(,)n n x y x y x y ,当原始数据精度较高,要求确定一个简单函数()y x ?=(一般为多项式或分段多项式)通过各数据点,即(),0,,i i y x i n ?== ,称为插值问题。 另一类是拟合问题,当我们已经有了函数关系的类型,而其中参数未知或原始数据有误差时,我们确定的初等函数()y x ?=并不要求经过数据点,而是要求在某种距离度量下总体误差达到最小,即 (),0,,i i i y x i n ?ε=+= ,且20 n i i ε=∑达到最小值。 对同一组实验数据,可以作出各种类型的拟合曲线,但拟合效果有好有坏,需要进行有效性的统计检验,这类问题称为回归分析。 一、插值(interpolation) 常用的插值方法有分段线性插值、分段立方插值、样条插值等。 1、一元插值 yi=interp1(x,y,xi,method) 对给定数据点(x,y),按method 指定的方法求出插值函数在点(或数组)xi 处的函数值yi 。其中method 是字符串表达式,可以是以下形式: 'nearest' ——最邻近点插值

'linear' ——分段线性插值(也是缺省形式) 'spline' ——分段三次样条插值 'cubic' 分段立方插值 例:在一天24小时内,从零点开始每间隔2小时测得环境温度数据分别为(℃): 12,9,9,10,18,24,28,27,25,20,18,15,13 用不同的插值方法估计中午1点(即13点)的温度,并绘出温度变化曲线。 >> x=0:2:24; >> y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; >>y_linear=interp1(x,y,13),y_nearest=interp1(x,y,13,'nearest') >>y_cubic=interp1(x,y,13,'cubic'),y_spline=interp1(x,y,13,'spline') >> y1=interp1(x,y,xx); y2=interp1(x,y,xx,'nearest'); >> y3=interp1(x,y,xx,'cubic');y4=interp1(x,y,xx,'spline'); >> subplot(2,2,1),plot(x,y,'or',xx,y1) >> subplot(2,2,2),plot(x,y,'or',xx,y2) >> subplot(2,2,3),plot(x,y,'or',xx,y3) >> subplot(2,2,4),plot(x,y,'or',xx,y4) 2、二元插值 zi=interp2(X,Y,Z,xi,yi,method) 已知数据点(X,Y,Z),求插值函数在(xi,yi)处的函数值zi,插值方法method同interp1。这里要求X,Y,Z是同维矩阵,且X,Y是

matlab曲线拟合实例

曲线拟合 求二次拟合多项式 解:(一)最小二乘法MA TLAB编程: function p=least_squar(x,y,n,w) if nargin<4 w=1 end if nargin<3 n=1 end m=length(y); X=ones(1,m) if m<=n error end for i=1:n X=[(x.^i);X] end A=X*diag(w)*X';b=X*(w.*y)';p=(A\b)' 输入: x=[1 3 5 6 7 8 9 10]; y=[10 5 2 1 1 2 3 4] p=least_squar(x,y,2) 运行得: p = 0.2763 -3.6800 13.4320 故所求多项式为:s(x)=13.432-3.68x+0.27632x (二)正交多项式拟合MATLAB编程: function p=least_squar2(x,y,n,w) if nargin<4 w=1; end if nargin<3 n=1; end m=length(x); X=ones(1,m); if m<=n error end for i=1:n X=[x.^i;X]; end A=zeros(1,n+1);

A(1,n+1)=1; a=zeros(1,n+1); z=zeros(1,n+1); for i=1:n phi=A(i,:)*X;t=sum(w.*phi.*phi); b=-sum(w.*phi.*x.*phi)/t a(i)=sum(w.*y.*phi)/t; if i==1 c=0;else c=-t/t1; end t1=t for j=1:n z(j)=A(i,j+1); end z(n+1)=0 if i==1 z=z+b*A(i,:); else z=z+b*A(i,:)+c*A(i-1,:); end A=[A;z]; end phi=A(n+1,:)*X;t=sum(w.*phi.*phi); a(n+1)=sum(w.*y.*phi)/t; p=a*A; 输入: x=[1 3 5 6 7 8 9 10]; y=[10 5 2 1 1 2 3 4]; p=least_squar2(x,y,2) 运行得: b = -6.1250 t1 = 8 z = 0 1 0 b = -4.9328 t1 = 64.8750 z = 1.0000 -6.1250 0 p = 0.2763 -3.6800 13.4320 故所求多项式为:s(x)=13.432-3.68x+0.27632x

【VIP专享】MATLAB插值与拟合的几个函数整理

MATLAB插值与拟合 2015.4.19 19:21 【目录】 1. 线性拟合函数:regress() 2. 多项式曲线拟合函数:polyfit( ) 3. 多项式曲线求值函数:polyval( ) 4. 多项式曲线拟合的评价和置信区间函数:polyconf( ) 5. 稳健回归函数:robustfit( ) §1曲线拟合 实例:温度曲线问题 气象部门观测到一天某些时刻的温度变化数据为: t 0 1 2 3 4 5 6 7 8 9 10 T 13 15 17 14 16 19 26 24 26 27 29 试描绘出温度变化曲线。 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型:y=Xβ+ε; β是p′1的参数向量;ε是服从标准正态分布的随机干扰的n′1的向量;y为n′1的向量;X为n′p矩阵。bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1)

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程 最小二乘法曲线拟合的应用实例 班级: 姓名: 学号: 指导教师:

一,实验目的 通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法 二,实验内容 1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。要求: 对该数据进行合理的最小二乘法数据拟合得下列数据。 x=[10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 2 0000 21000 22000 23000]; y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 65.8 87.5 137.8 174. 2] 三,程序如下 X=10000:1000:23000; Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,65.8,87.5,137.8,17 4.2] dy=1.5; %拟合数据y的步长for n=1:6 [a,S]=polyfit(x,y,n); A{n}=a;

da=dy*sqrt(diag(inv(S.R′*S.R))); Da{n}=da′; freedom(n)=S.df; [ye,delta]=polyval(a,x,S); YE{n}=ye; D{n}=delta; chi2(n)=sum((y-ye).^2)/dy/dy; end Q=1-chi2cdf(chi2,freedom); %判断拟合良好度 clf,shg subplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’) subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’) nod=input(‘根据图形选择适当的阶次(请输入数值)’); elf,shg, plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’); axis([8000,23000,20.0,174.2]);hold on errorbar(x,YE{nod},D{nod},‘r’);hold off title(‘较适当阶次的拟合’) text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合 实际中,通常需要处理实验或测量得到的离散数据(点)。插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。 1.如果要求近似函数经过所已知的所有数据点,此时称为插值问 题(不需要函数表达式)。 2.如果不要求近似函数经过所有数据点,而是要求它能较好地反 映数据变化规律,称为数据拟合(必须有函数表达式)。 插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。【拟合】要求得到一个具体的近似函数的表达式。 因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值 根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值 Matlab 插值函数实现: (1)interp1( ) 一维插值 (2)intep2( ) 二维插值 (3)interp3( ) 三维插值 (4)intern( ) n维插值 1.一维插值(自变量是1维数据) 语法:yi = interp1(x0, y0, xi, ‘method’) 其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。 注:(1)要求x0是单调的,xi不超过x0的范围; (2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;

插值与拟合(使用插值还是拟合)

利用matlab实现插值与拟合实验 张体强1026222 张影 晁亚敏 [摘要]:在测绘学中,无论是图形处理,还是地形图处理等,大多离不开插值与拟合的应用,根据插值与拟合原理,构造出插值和拟合函数,理解其原理,并在matlab平台下,实现一维插值,二维插值运算,实现多项式拟合,非线性拟合等,并在此基础上,联系自己所学专业,分析其生活中特殊例子,提出问题,建立模型,编写程序,以至于深刻理解插值与拟合的作用。 [关键字]: 测绘学插值多项式拟合非线性拟合 [ Abstract]: in surveying and mapping, whether the graphics processing, or topographic map processing and so on, are inseparable from the interpolation and fitting application, according to the interpolation and fitting theory, construct the fitting and interpolation function, understanding its principle, and MATLAB platform, achieve one-dimensional interpolation, two-dimensional interpolation, polynomial fitting, non-linear fitting, and on this basis, to contact their studies, analysis of their living in a special example, put forward the question, modeling, programming, so that a deep understanding of interpolation and fitting function. [ Key words]: Surveying and mapping interpolation polynomial fitting nonlinear

曲线拟合的最小二乘法matlab举例

曲线拟合的最小二乘法 学院:光电信息学院 姓名:赵海峰 学号: 200820501001 一、曲线拟合的最小二乘法原理: 由已知的离散数据点选择与实验点误差最小的曲线 S( x) a 0 0 ( x) a 1 1(x) ... a n n ( x) 称为曲线拟合的最小二乘法。 若记 m ( j , k ) i (x i ) j (x i ) k (x i ), 0 m (f , k ) i0 (x i )f (x i ) k (x i ) d k n 上式可改写为 ( k , jo j )a j d k ; (k 0,1,..., n) 这个方程成为法方程,可写成距阵 形式 Ga d 其中 a (a 0,a 1,...,a n )T ,d (d 0,d 1,...,d n )T , 、 数值实例: 下面给定的是乌鲁木齐最近 1个月早晨 7:00左右(新疆时间 )的天气预报所得 到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。 它的平方误差为: || 2 | 2 ] x ( f

(2008 年 10 月 26~11 月 26) F 面应用Matlab 编程对上述数据进行最小二乘拟合 三、Matlab 程序代码: x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1]; %三次多项式拟合% %九次多项式拟合% %十五次多项式拟合% %三次多项式误差平方和 % %九次次多项式误差平方和 % %十五次多项式误差平方和 % %用*画出x,y 图像% %用红色线画出x,b1图像% %用绿色线画出x,b2图像% %用蓝色o 线画出x,b3图像% 四、数值结果: 不同次数多项式拟和误差平方和为: r1 = 67.6659 r2 = 20.1060 r3 = 3.7952 r1、r2、r3分别表示三次、九次、十五次多项式误差平方和 拟和曲线如下图: a 仁polyfit(x,y,3) a2= polyfit(x,y,9) a3= polyfit(x,y,15) b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).A 2) r2= sum((y-b2).A2) r3= sum((y-b3).A2) plot(x,y,'*') hold on plot(x,b1, 'r') hold on plot(x,b2, 'g') hold on plot(x,b3, 'b:o')

插值算法与matlab代码

Matlab中插值函数汇总和使用说明 MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MA TLAB提供的插值方法有几种:'method'是最邻近插值,'linear'线性插值;'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值 注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13, 推测中午12点(即13点)时的温度. x=0:2:24; y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; a=13; y1=interp1(x,y,a,'spline') 结果为:27.8725 若要得到一天24小时的温度曲线,则: xi=0:1/3600:24; yi=interp1(x,y,xi, 'spline'); plot(x,y,'o' ,xi,yi) 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点

xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。 (2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4)yi = interp1(x,Y,xi,method,'extrap') 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5)yi = interp1(x,Y,xi,method,extrapval) 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1 1. 2.>>x = 0:10; y = x.*sin(x); 3.>>xx = 0:.25:10; yy = interp1(x,y,xx); 4.>>plot(x,y,'kd',xx,yy) 复制代码 例2 1. 2.>> year = 1900:10:2010; 3.>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 4.249.633 256.344 267.893 ]; 5.>>p1995 = interp1(year,product,1995) 6.>>x = 1900:1:2010; 7.>>y = interp1(year,product,x,'pchip'); 8.>>plot(year,product,'o',x,y) 复制代码 插值结果为: 1.

MATLAB中简单的数据拟合方法与应用实例①

MATLAB中简单的数据拟合方法与应用实例 仅供努力学习matlab的同学们参考参考,查阅了M多资料,总结了以下方法 按步骤做能够基本学会matlab曲线拟合的 1.1数据拟合方法 1.1.1多项式拟合 1.多项式拟合命令 polyfit(X,Y,N):多项式拟合,返回降幂排列的多项式系数。 Polyval(P,xi):计算多项式的值。 其中,X,Y是数据点的值;N是拟合的最高次幂;P是返回的多项式系数;xi是要求的横坐标 拟合命令如下: x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; P=polyfit(x,y,3); xi=0:.2:10; yi=polyval(P,xi); plot(xi,yi,x,y,'r*'); 拟合曲线与原始数据如图1-1 图1-1 2图形窗口的多项式拟合 1)先画出数据点如图1-2 x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; plot(x,y,'r*');

图1-2 2)在图形窗口单击Tools—Basic Fitting,如图1-3勾选. 图1-3 图1-3右方分别是线性、二阶、三阶对数据进行多项式拟合。下面的柱状图显示残差,可以看出,三阶多项式的拟合效果是最好的。 1.1.2指定函数拟合 已知M组数据点和对应的函数形式f t (t)=acos(kt)e X Y 编写M文件:

syms t x=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6;14.4;15]; y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;-0.15;-0.071;0.059;0.08;0.032;-0.015;-0.02]; f=fittype('a*cos(k*t)*exp(w*t)','independent','t','coefficients',{'a','k','w'}); cfun=fit(x,y,f) xi=0:.1:20; yi=cfun(xi); plot(x,y,'r*',xi,yi,'b-'); 图1-4 运行程序,在命令窗口可达到以下运行结果,图像如图1-4 Warning: Start point not provided, choosing random start point. > In fit>handlewarn at 715 In fit at 315 In Untitled2 at 5 cfun = General model: cfun(t) = a*cos(k*t)*exp(w*t) Coefficients (with 95% confidence bounds): a = 0.9987 ( 0.9835, 1.014) k = 1.001 (0.9958, 1.006) w = -0.2066 (-0.2131, -0.2002) 从结果可以看出,拟合的曲线为: (0.2066) ()0.9987cos(1.001)*t f t t e- =。拟 合曲线给出了数据大致趋势,并给出了各参数的置信区间。

matlab 软件拟合与插值运算实验报告

实验6 数据拟合&插值 一.实验目的 学会MATLAB软件中软件拟合与插值运算的方法。 二.实验内容与要求 在生产和科学实验中,自变量x与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。 根据测量数据的类型有如下两种处理观测数据的方法。 (1)测量值是准确的,没有误差,一般用插值。 (2)测量值与真实值有误差,一般用曲线拟合。 MATLAB中提供了众多的数据处理命令,有插值命令,拟合命令。 1.曲线拟合 >> x=[0.5,1.0,1.5,2.0,2.5,3.0]; >> y=[1.75,2.45,3.81,4.80,7.00,8.60]; >> p=polyfit (x,y,2); >> x1=0.5:0.05:3.0; >> y1=polyval(p,x1 ); >> plot(x,y,'*r',x1,y1,'-b')

2.一维插值 >> year=[1900,1910,1920,1930,1940,1990,2000,2010]; >> product = [75.995,91.972,105.711,123.203,131.669,249.633,256.344,267.893 ]; >> p2005=interp1(year,product,2005) p2005 = 262.1185 >> y= interp1(year,product,x, 'cubic'); >> plot(year,product,'o',x,y)

matlab曲线拟合2010a演示

2010a版本曲线拟合工具箱 一、单一变量的曲线逼近 Matlab有一个功能强大的曲线拟合工具箱cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。下面结合我使用的Matlab R2007b 来简单介绍如何使用这个工具箱。 假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0。 1、在主命令输入数据: x=233.8:0.5:238.8; y=[235.148 235.218 235.287 235.357 235.383 235.419 235.456 235.49 235.503 235.508 235.536]; 2、启动曲线拟合工具箱 cftool(x,y) 3、进入曲线拟合工具箱界面“Curve Fitting tool” 如图 (1)利用X data和Y data的下拉菜单读入数据x,y,可在Fit name修改数据集名,这时会自动画出数据集的曲线图;

(2)在红色区域选择拟合曲线类型 工具箱提供的拟合类型有: ?Custom Equations:用户自定义的函数类型 ?Exponential:指数逼近,有2种类型,a*exp(b*x) 、a*exp(b*x) + c*exp(d*x) ?Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w) ?Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2) ?Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubicspline、shape-preserving ?Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree~ ?Power:幂逼近,有2种类型,a*x^b 、a*x^b + c ?Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree~;此外,分子还包括constant型 ?Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思) ?Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1) ?Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b) 在results一栏看结果

Matlab中的拟合与差值

您正在看的MATL AB是:曲线拟合与插值。 在大量的应用领域中,人们经常面临用一个解析函数描述数据(通常是测量值)的任务。对这个问题有两种方法。在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。这种方法在下一节讨论。这里讨论的方法是曲线拟合或回归。人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。图11.1说明了这两种方法。标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。 11.1 曲线拟合 曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。数学上,称为多项式的最小二乘曲线拟合。如果这种描述使你混淆,再研究图11.1。虚线和标志的数据点之间的垂直距离是在该点的误差。对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。最小二乘这个术语仅仅是使误差平方和最小的省略说法。 图11.12阶曲线拟合 在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

?x=[0.1.2.3.4.5.6.7.8.91]; ?y=[-.4471.9783.286.167.087.347.669.569.489.3011.2]; 为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。如果我们选择n=1作为阶次,得到最简单的线性近似。通常称为线性回归。相反,如果我们选择n=2作为阶次,得到一个2阶多项式。现在,我们选择一个2阶多项式。 ?n=2;%polyno mial order ?p=poly fit(x, y, n) p = -9.810820.1293-0.0317 polyfit的输出是一个多项式系数的行向量。其解是y= -9.8108x2+20.1293x-0.0317。为了将曲线拟合解与数据点比较,让我们把二者都绘成图。 ?xi=linspace(0, 1, 100);%x-axis data for plotting ?z=polyval(p, xi); 为了计算在xi数据点的多项式值,调用MATLAB的函数polyval。 ?plot(x, y, ' o ' , x, y, xi, z, ': ') 画出了原始数据x和y,用'o'标出该数据点,在数据点之间,再用直线重画原始数据,并用点' : '线,画出多项式数据xi和z。 ?xlabel('x '), y label('y=f(x) '), title('Second Order Curv e Fitting ') 将图作标志。这些步骤的结果表示于前面的图11.1中。

Matlab插值与拟合教程

MATLAB插值与拟合 §1曲线拟合 实例:温度曲线问题 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 1.线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型: y=Xβ+ε β是p?1的参数向量;ε是服从标准正态分布的随机干扰的n?1的向量;y为n?1的向量;X为n?p矩阵。 bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1) [b,bint]=regress(y,x,0.05) 结果:x = 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 y = 10.9567 11.8334

13.0125 14.0288 14.8854 16.1191 17.1189 17.9962 19.0327 20.0175 b = 9.9213 1.0143 bint = 9.7889 10.0537 0.9930 1.0357 即回归方程为:y=9.9213+1.0143x 2. 2.多项式曲线拟合函数:polyfit( ) 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval) 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2] n=3; p=polyfit(x,y,n) xi=linspace(0,1,100); z=polyval(p,xi); %多项式求值 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’3阶曲线’) 结果: p = 16.7832 -25.7459 10.9802 -0.0035 多项式为:16.7832x3-25.7459x2+10.9802x-0.0035 曲线拟合图形:

MATLAB数据拟合例子

MATLAB数据拟合例子(一次函数、指数函数、双曲线) (2010-06-03 01:44:30)转载▼ 分类:数学工具 标签:杂 谈 一次函数:(a+bx = y) %先求出拟合函数 format long; x = [2001 2002 2003 2004 2005 2006 2007 2008 2009]; y = [32.2 31.3 29.7 28.6 27.5 26.1 25.3 23.7 22.7]; d = [1 1 1 1 1 1 1 1 1]; a=[d;x]; b = a*y'; a=a*a'; c=a\b c = 1.0e+003 * 2.436797222221444 -0.001201666666666 %所以,拟合函数为 y = 1.0e+003 *(2.436797222221444 - 0.001201666666666*x %根据拟合函数求估测值 format short; x = [2010, 2011, 2012, 2013, 2014] 1.0e+003 *( 2.436797222221444 - 0.001201666666666*x) ans = 21.4472 20.2456 19.0439 17.8422 16.6406

指数函数:( y = exp(a + b*x)) >> x = [2001 2002 2003 2004 2005 2006 2007 2008 2009]; y = [21.5 15.9 11.8 8.7 6.5 4.8 3.5 2.6 2.0]; y=log(y'); d = [1 1 1 1 1 1 1 1 1]; a=[d;x]; b = a*y; a=a*a'; c=a\b c = 601.9448 -0.2993 %所以,拟合函数为 y = exp(601.9448 - 0.2993*x) %根据拟合函数求估测值 >> x = [2010, 2011, 2012, 2013, 2014] exp(601.9448 - 0.2993*x) ans = 1.4216 1.0539 0.7813 0.5792 0.4294 双曲线:(1/y = a + b/x) format long;

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

相关主题