搜档网
当前位置:搜档网 › MATLAB在拟合与插值中的应用

MATLAB在拟合与插值中的应用

MATLAB在拟合与插值中的应用
MATLAB在拟合与插值中的应用

MATLAB在拟合与插值中的应用

在大量的应用领域中,人们经常面临用一个解析函数描述数据(通常是测量值)的任务。(比如在土木工程中对实验梁的应力应变(σ--ε) 曲线的数据进行拟合,从而得出钢筋混凝土的弹性模量的计算式。)在这里讨论的方法是曲线拟合与插值。其中包括曲线拟合,一维插值,二维插值以及如何解决插值中求值时的单调性问题。

曲线拟合

曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。我们将最佳拟合解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。先看看图1

图1 2阶曲线拟合

在MA TLAB中,函数polyfit求解最小二乘曲线拟合问题。简单阐述这个函数的用法,让我们以上面图11.1中的数据开始。

? x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .11];

? y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];

为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。如果我们选择n=1作为阶次,得到最简单的线性近似。通常称为线性回归。如果我们选择n=2作为阶次,得到一个2阶多项式。

? n=2; % polynomial order

? p=polyfit(x, y, n)

p =

-9.8108 20.1293 -0.0317

polyfit的输出是一个多项式系数的行向量。其解是y = -9.8108x2+20.1293x-0.0317。为了将曲线拟合解与数据点比较,把二者都绘成图。

? xi=linspace(0, 1, 100); % x-axis data for plotting

? z=polyval(p, xi);

为了计算在xi数据点的多项式值,调用MATLAB的函数polyval。

? plot(x, y, ' o ' , x, y, xi, z, ' : ' )

画出了原始数据x和y,用'o'标出该数据点,在数据点之间,再用直线重画原始数据,并用点' : '线,画出多项式数据xi和z。

? xlabel(' x '), ylabel(' y=f(x) '), title(' Second Order Curve Fitting ')

将图作标志。这些步骤的结果表示于前面的图1中。

多项式阶次的选择是有点任意的。两点决定一直线或一阶多项式。三点决定一个平方或2阶多项式。按此进行,n+1数据点唯一地确定n阶多项式。于是,在上面的情况下,有11个数据点,我们可选一个高达10阶的多项式。然而,高阶多项式给出很差的数值特性,我们不应选择比所需的阶次高的多项式。此外,随着多项式阶次的提高,近似变得不够光滑,因为较高阶次多项式在变零前,可多次求导。不妨选一个10阶多项式

? pp=polyfit(x, y, 10) ;

? format short e

? pp.'

则ans =

-4.6436e+005

2.2965e+006

-4.8773e+006

5.8233e+006

-4.2948e+006

2.0211e+006

-6.0322e+005

1.0896e+005

-1.0626e+004

4.3599e+002

-4.4700e-001

要注意在现在情况下,多项式系数的规模与前面的2阶拟合的比较。还要注意在最小(-4.4700e-001)和最大(5.8233e+006)系数之间有7个数量级的幅度差。将这个解作图,并把此图与原始数据及2阶曲线拟合相比较。

? zz=polyval(pp, xi);

? plot(x, y, ' o ' , xi, z, ' : ' , xi, zz)

? xlabel(' x '), ylabel(' y=f(x) '), title(' 2nd and 10th Order curve Fitting ')

在下面的图11.2中,原始数据标以'o',2阶曲线拟合是虚线,10阶拟合是实线。注意,在10阶拟合中,在左边和右边的极值处,数据点之间出现大的纹波。当企图进行高阶曲线拟合时,这种纹波现象经常发生。根据图2,显然,‘越多就越好’在这里不适用。

图2 2阶和10阶曲线拟合

一维插值

正如曲线拟合所描述的那样,插值定义为对数据点之间函数的估值方法,这些数据点是由某些集合给定。当我们不能很快地求出所需中间点的函数值时,插值是一个有价值的工具。例如,当数据点是某些实验测量的结果或是过长的计算过程时,就有这种情况。

举例一维插值,考虑下列问题,(由于手头没有我们专业相关的实验数据,故采用老师经常提到的测温的例子,只是数据名称不一样)12小时内,一小时测量一次室外温度。数据存储在两个MATLAB变量中。

? hours=1:12; % index for hour data was recorded

? temps=[5 8 9 15 25 29 31 30 22 25 27 24]; % recorded temperatures ? plot(hours, temps, hours, temps,' + ') % view temperatures

? title(' Temperature ')

? xlabel(' Hour '), ylabel(' Degrees Celsius ')

图3 在线性插值下室外温度曲线

正如图3看到的,MA TLAB画出了数据点线性插值的直线。为了计算在任意给定时间的温度,人们可试着对可视的图作解释。另外一种方法,可用函数interp1。

? t=interp1(hours, temps, 9.3) % estimate temperature at hour=9.3

t =

22.9000

? t=interp1(hours, temps, 4.7) % estimate temperature at hour=4.7

t =

22

? t=interp1(hours, temps, [3.2 6.5 7.1 11.7]) % find temp at many points!

t =

10.2000

30.0000

30.9000

24.9000

若不采用直线连接数据点,我们可采用某些更光滑的曲线来拟合数据点。最常用的方法是用一个3阶多项式,即3次多项式,来对相继数据点之间的各段建模,每个3次多项式的头两个导数与该数据点相一致。这种类型的插值被称为3次样条或简称为样条。函数interp1也能执行3次样条插值。(这在工程中经常用到)

? t=interp1(hours, temps, 9.3, ' spline ') % estimate temperature at hour=9.3

t =

21.8577

? t=interp1(hours, temps, 4.7, ' spline ') % estimate temperature at hour=4.7

t =

22.3143

? t=interp1(hours, temps, [3.2 6.5 7.1 11.7], ' spline ')

t =

9.6734

30.0427

31.1755

25.3820

样条插值得到的结果,与上面所示的线性插值的结果不同。因为插值是一个估计或猜测的过程,其意义在于,应用不同的估计规则导致不同的结果。

一个最常用的样条插值是对数据平滑。也就是,给定一组数据,使用样条插值在更细的间隔求值。例如,

? h=1:0.1:12; % estimate temperature every 1/10 hour

? t=interp1(hours, temps, h, ' spline ') ;

? plot(hours, temps, ' - ' , hours, temps, ' + ' , h, t) % plot comparative results

? title(' Springfield Temperature ')

? xlabel(' Hour '), ylabel(' Degrees Celsius ')

在图4中,虚线是线性插值,实线是平滑的样条插值,标有' + '的是原始数据。如要求在时间轴上有更细的分辨率,并使用样条插值,我们有一个更平滑、但不一定更精确地对温度的估计。尤其应注意,在数据点,样条解的斜率不突然改变。作为这个平滑插值的回报,3次样条插值要求更大量的计算,因为必须找到3次多项式以描述给定数据之间的特征。

图4 在不同插值下室外温度曲线

二维插值

二维插值是基于与一维插值同样的基本思想。然而,正如名字所隐含的,二维插值是对两变量的函数z=f(x, y)进行插值(比如钢筋混凝土实验中的正应力和剪应力都对挠度产生影响)。这里依然考虑温度问题。(数据由课件中改动而成)设人们对平板上的温度分布估计感兴趣,给定的温度值取自平板表面均匀分布的格栅。

采集了下列的数据:

? width=1:5; % index for width of plate (i.e.,the x-dimension)

? depth=1:3; % index for depth of plate (i,e,,the y-dimension)

?temps=[82 81 80 82 84; 79 63 61 65 81; 84 84 82 85 86] % temperature data

temps =

82 81 80 82 84

79 63 61 65 81

84 84 82 85 86

如同在标引点上测量一样,矩阵temps表示整个平板的温度分布。temps的列与下标depth或y-维相联系,行与下标width或x-维相联系(见图5)。为了估计在中间点的温度,我们必须对它们进行辨识。

? wi=1:0.2:5; % estimate across width of plate

? d=2; % at a depth of 2

? zlinear=interp2(width, depth, temps, wi, d) ; % linear interpolation

? zcubic=interp2(width, depth, temps, wi,d, ' cubic ') ; % cubic interpolation

? plot(wi, zlinear, ' - ' , wi, zcubic) % plot results

? xlabel(' Width of Plate '), ylabel(' Degrees Celsius ')

? title( [' Temperature at Depth = ' num2str(d) ] )

另一种方法,我们可以在两个方向插值。先在三维坐标画出原始数据,看一下该数据的粗糙程度(见图6)。

? mesh(width, depth, temps) % use mesh plot

? xlabel(' Width of Plate '), ylabel(' Depth of Plate ')

? zlabel(' Degrees Celsius '), axis(' ij '), grid

图5 在深度d=2处的平板温度

图6 平板温度

然后在两个方向上插值,以平滑数据。

? di=1:0.2:3; % choose higher resolution for depth

? wi=1:0.2:5; % choose higher resolution for width

? zcubic=interp2(width, depth, temps, wi, di, ' cubic ') ; % cubic

? mesh(wi, di, zcubic)

? xlabel(' Width of Plate '), ylabel(' Depth of Plate ')

? zlabel(' Degrees Celsius '), axis(' ij '), grid

该例子清楚地证明了,二维插值更为复杂,只是因为有更多的量要保持跟踪。interp2的基本形式是interp2(x, y, z, xi, yi, method)。这里x和y是两个独立变量,z是一个应变量矩阵。x和y对z的关系是

z(i, :) = f(x, y(i)) 和z(:, j) = f(x(j), y).

也就是,当x变化时,z的第i行与y的第i个元素y(i)相关,当y变化时,z的第j列与x的第j个元素x(j)相关,。xi是沿x-轴插值的一个数值数组;yi是沿y-轴插值的一个数值数组。

图7 二维插值后的平板温度

虽然对于许多应用,函数interp1和interp2是很有用的,但它们限制为对单调向量进行插值。在某些情况,这个限制太严格。例如,考虑下面的插值:

? x=linspace(0, 5);

? y=1-exp(-x).*sin(2*pi*x);

? plot(x, y)

图8 函数1-exp(-x).*sin(2*pi*x)的曲线

函数interp1可用来在任何值或x的值上估计y值。

? yi=interp1(x, y, 1.8)

yi =

1.1556

然而,interp1不能找出对应于某些y值的x值。例如,如在图8上所示,考虑寻找y=1.1处的x值:

图8 给y值在函数曲线上求x的值

? plot(x, y, [0, 5], [1.1 1.1] )

从图8上,我们看到有四个交点。使用interp1,我们得到:

? xi=interp1(y, x, 1.1)

??? Error using ==> table1

First column of the table must be monotonic.

这个函数interp1失败,由于y不是单调的。

如何消除了单调性的要求(我尝试搜索了一些资料,对此问题可由如下解答)? table=[x; y].' ; % create column oriented table from data

? xi=mminterp(table, 2, 1.1)

xi =

0.5281 1.1000

0.9580 1.1000

1.5825 1.1000

1.8847 1.1000

这里使用了线性插值,函数mminterp估计了y=1.1处的四个点。由于函数mminterp 的一般性质,要插值的数据是由面向列矩阵给出,在上面的例子中称作为表(table)。第二个输入参量是被搜索矩阵table的列,第三个参量是要找的值。

函数的主体由下面给出:

function y=mminterp(tab, col, val)

% MMINTERP 1-D Table Search by Linear Interpolation.

% Y=MMINTERP(TAB,COL,V AL) linearly interpolates the table

% TAB searching for the scalar value V AL in the column COL.

% All crossings are found and TAB(:,COL) need not be monotonic.

% Each crossing is returned as a separate row in Y and Y has as

% many columns as TAB.Naturally,the column COL of Y contains

% the value V AL. If V AL is not found in the table,Y=[].

[rt, ct]=size(tab);

if length(val) > 1, error(' V AL must be a scalar. '), end

if col>ct|col < 1, error(' Chosen column outside table width. '), end

if rt < 2, error(' Table too small or not oriented in columns. '), end

above=tab(: , col) > val; % True where > V AL

below=tab(: , col) < val; % True where < V AL

equal=tab(: , col) = = val; % True where = V AL

if all(above = = 0) | all(below = = 0), % handle simplest case

y=tab(find(equal), : ); return

end

pslope=find(below(1:rt-1)&above(2:rt)); % indices where slope is +

nslope=find(below(2:rt)&above(1:rt-1)); % indices where slope is -

ib=sort([pslope; nslope+1]); % put indices below in order

ia=sort([nslope; pslope+1]); % put indices above in order

ie=find(equal); % indices where equal to val

[tmp,ix]=sort( [ib, ie] ); % find where equals fit in result

ieq=ix > length(ib); % True where equals values fit

ry=length(tmp); % # of rows in result y

y=zeros(ry, ct); % poke data into a zero matrix

alpha=(val-tab(ib,col))./(tab(ia,col)-tab(ib,col));

alpha=alpha(: , ones(1, ct)); % duplicate for all columns

y(~ieq, : )=alpha.*tab(ia, : )+(1-alpha).*tab(ib, : ); % interpolated values

y(ieq, : )=tab(ie, : ); % equal values

y( : , col)=val*ones(ry, 1); % remove roundoff error

正如所见的,mminterp利用了find和sort函数、逻辑数组和数组操作技术。没有For 循环和While循环。不论用其中哪一种技术来实现将使运行变慢,尤其对大的表。mminterp 与含有大于或等于2的任意数列的表一起工作,如同函数interp1一样。而且,在这种情况下,插值变量可以是任意的列。例如,

? z=sin(pi*x); % add more data to table

? table=[x; y; z].' ;

? t=mminterp(table, 2, 1.1) % same interpolation as earlier

t =

0.5281 1.1000 0.9930

0.9580 1.1000 0.1314

1.5825 1.1000 -0.9639

1.8847 1.1000 -0.3533

? t=mminterp(table, 3, -.5) % second third column now

t =

1.1669 0.7316 -0.5000

1.8329 1.1377 -0.5000

3.1671 0.9639 -0.5000

3.8331 1.0187 -0.5000

这些最后的结果估计了x和y在z= -0.5处的值。

小结

曲线的插值和拟合是一个很复杂的工作,但在MATLAB中能由几句轻松的命令来实现,为工程技术人员和科研工作者带来极大的方便,让人不禁感叹它的强大,实为工科学生必备之工具!!

下面的表总结了在MA TLAB中所具有的曲线拟合和插值函数。可供同学们参考。。。

曲线拟合和插值函数

polyfit(x, y, n) 对描述n阶多项式y=f(x)的数据

进行最小二乘曲线拟合

interp1(x, y, xo) 1维线性插值

interp1(x, y, xo, ' spline ') 1维3次样条插值

interp1(x, y, xo, ' cubic ') 1维3次插值

interp2(x, y, Z, xi, yi) 2维线性插值

interp2(x, y, Z, xi, yi, ' cubic ') 2维3次插值

interp2(x, y, Z, xi, yi, ' nearest ') 2维最近邻插值

matlab中插值拟合与查表

MATLAB中的插值、拟合与查表 插值法是实用的数值方法,是函数逼近的重要方法。在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。寻找这样的函数φ(x),办法是很多的。φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。函数类的不同,自然地有不同的逼近效果。在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。 根据测量数据的类型: 1.测量值是准确的,没有误差。 2.测量值与真实值有误差。 这时对应地有两种处理观测数据方法: 1.插值或曲线拟合。 2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。 MATLAB中提供了众多的数据处理命令。有插值命令,有拟合命令,有查表命令。 2.2.1 插值命令 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。各个参量之间的关系示意图为图2-14。 格式 yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。 yi = interp1(Y,xi) %假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。 yi = interp1(x,Y,xi,method) %用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算;

第四讲 matlab插值、拟合和回归分析

第四讲 插值、拟合与回归分析 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样本点,要求得到变量之间的函数关系或得到样本点之外的数据。解决此类问题的方法一般有插值、拟合和回归分析等。 设有一组实验数据0011(,),(,),(,)n n x y x y x y ,当原始数据精度较高,要求确定一个简单函数()y x ?=(一般为多项式或分段多项式)通过各数据点,即(),0,,i i y x i n ?== ,称为插值问题。 另一类是拟合问题,当我们已经有了函数关系的类型,而其中参数未知或原始数据有误差时,我们确定的初等函数()y x ?=并不要求经过数据点,而是要求在某种距离度量下总体误差达到最小,即 (),0,,i i i y x i n ?ε=+= ,且20 n i i ε=∑达到最小值。 对同一组实验数据,可以作出各种类型的拟合曲线,但拟合效果有好有坏,需要进行有效性的统计检验,这类问题称为回归分析。 一、插值(interpolation) 常用的插值方法有分段线性插值、分段立方插值、样条插值等。 1、一元插值 yi=interp1(x,y,xi,method) 对给定数据点(x,y),按method 指定的方法求出插值函数在点(或数组)xi 处的函数值yi 。其中method 是字符串表达式,可以是以下形式: 'nearest' ——最邻近点插值

'linear' ——分段线性插值(也是缺省形式) 'spline' ——分段三次样条插值 'cubic' 分段立方插值 例:在一天24小时内,从零点开始每间隔2小时测得环境温度数据分别为(℃): 12,9,9,10,18,24,28,27,25,20,18,15,13 用不同的插值方法估计中午1点(即13点)的温度,并绘出温度变化曲线。 >> x=0:2:24; >> y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; >>y_linear=interp1(x,y,13),y_nearest=interp1(x,y,13,'nearest') >>y_cubic=interp1(x,y,13,'cubic'),y_spline=interp1(x,y,13,'spline') >> y1=interp1(x,y,xx); y2=interp1(x,y,xx,'nearest'); >> y3=interp1(x,y,xx,'cubic');y4=interp1(x,y,xx,'spline'); >> subplot(2,2,1),plot(x,y,'or',xx,y1) >> subplot(2,2,2),plot(x,y,'or',xx,y2) >> subplot(2,2,3),plot(x,y,'or',xx,y3) >> subplot(2,2,4),plot(x,y,'or',xx,y4) 2、二元插值 zi=interp2(X,Y,Z,xi,yi,method) 已知数据点(X,Y,Z),求插值函数在(xi,yi)处的函数值zi,插值方法method同interp1。这里要求X,Y,Z是同维矩阵,且X,Y是

【VIP专享】MATLAB插值与拟合的几个函数整理

MATLAB插值与拟合 2015.4.19 19:21 【目录】 1. 线性拟合函数:regress() 2. 多项式曲线拟合函数:polyfit( ) 3. 多项式曲线求值函数:polyval( ) 4. 多项式曲线拟合的评价和置信区间函数:polyconf( ) 5. 稳健回归函数:robustfit( ) §1曲线拟合 实例:温度曲线问题 气象部门观测到一天某些时刻的温度变化数据为: t 0 1 2 3 4 5 6 7 8 9 10 T 13 15 17 14 16 19 26 24 26 27 29 试描绘出温度变化曲线。 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型:y=Xβ+ε; β是p′1的参数向量;ε是服从标准正态分布的随机干扰的n′1的向量;y为n′1的向量;X为n′p矩阵。bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1)

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合 实际中,通常需要处理实验或测量得到的离散数据(点)。插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。 1.如果要求近似函数经过所已知的所有数据点,此时称为插值问 题(不需要函数表达式)。 2.如果不要求近似函数经过所有数据点,而是要求它能较好地反 映数据变化规律,称为数据拟合(必须有函数表达式)。 插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。【拟合】要求得到一个具体的近似函数的表达式。 因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值 根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值 Matlab 插值函数实现: (1)interp1( ) 一维插值 (2)intep2( ) 二维插值 (3)interp3( ) 三维插值 (4)intern( ) n维插值 1.一维插值(自变量是1维数据) 语法:yi = interp1(x0, y0, xi, ‘method’) 其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。 注:(1)要求x0是单调的,xi不超过x0的范围; (2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;

插值与拟合(使用插值还是拟合)

利用matlab实现插值与拟合实验 张体强1026222 张影 晁亚敏 [摘要]:在测绘学中,无论是图形处理,还是地形图处理等,大多离不开插值与拟合的应用,根据插值与拟合原理,构造出插值和拟合函数,理解其原理,并在matlab平台下,实现一维插值,二维插值运算,实现多项式拟合,非线性拟合等,并在此基础上,联系自己所学专业,分析其生活中特殊例子,提出问题,建立模型,编写程序,以至于深刻理解插值与拟合的作用。 [关键字]: 测绘学插值多项式拟合非线性拟合 [ Abstract]: in surveying and mapping, whether the graphics processing, or topographic map processing and so on, are inseparable from the interpolation and fitting application, according to the interpolation and fitting theory, construct the fitting and interpolation function, understanding its principle, and MATLAB platform, achieve one-dimensional interpolation, two-dimensional interpolation, polynomial fitting, non-linear fitting, and on this basis, to contact their studies, analysis of their living in a special example, put forward the question, modeling, programming, so that a deep understanding of interpolation and fitting function. [ Key words]: Surveying and mapping interpolation polynomial fitting nonlinear

插值算法与matlab代码

Matlab中插值函数汇总和使用说明 MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MA TLAB提供的插值方法有几种:'method'是最邻近插值,'linear'线性插值;'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值 注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13, 推测中午12点(即13点)时的温度. x=0:2:24; y=[12 9 9 10 18 24 28 27 25 20 18 15 13]; a=13; y1=interp1(x,y,a,'spline') 结果为:27.8725 若要得到一天24小时的温度曲线,则: xi=0:1/3600:24; yi=interp1(x,y,xi, 'spline'); plot(x,y,'o' ,xi,yi) 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点

xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。 (2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。 (3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4)yi = interp1(x,Y,xi,method,'extrap') 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。 (5)yi = interp1(x,Y,xi,method,extrapval) 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1 1. 2.>>x = 0:10; y = x.*sin(x); 3.>>xx = 0:.25:10; yy = interp1(x,y,xx); 4.>>plot(x,y,'kd',xx,yy) 复制代码 例2 1. 2.>> year = 1900:10:2010; 3.>> product = [75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 4.249.633 256.344 267.893 ]; 5.>>p1995 = interp1(year,product,1995) 6.>>x = 1900:1:2010; 7.>>y = interp1(year,product,x,'pchip'); 8.>>plot(year,product,'o',x,y) 复制代码 插值结果为: 1.

matlab 软件拟合与插值运算实验报告

实验6 数据拟合&插值 一.实验目的 学会MATLAB软件中软件拟合与插值运算的方法。 二.实验内容与要求 在生产和科学实验中,自变量x与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。 根据测量数据的类型有如下两种处理观测数据的方法。 (1)测量值是准确的,没有误差,一般用插值。 (2)测量值与真实值有误差,一般用曲线拟合。 MATLAB中提供了众多的数据处理命令,有插值命令,拟合命令。 1.曲线拟合 >> x=[0.5,1.0,1.5,2.0,2.5,3.0]; >> y=[1.75,2.45,3.81,4.80,7.00,8.60]; >> p=polyfit (x,y,2); >> x1=0.5:0.05:3.0; >> y1=polyval(p,x1 ); >> plot(x,y,'*r',x1,y1,'-b')

2.一维插值 >> year=[1900,1910,1920,1930,1940,1990,2000,2010]; >> product = [75.995,91.972,105.711,123.203,131.669,249.633,256.344,267.893 ]; >> p2005=interp1(year,product,2005) p2005 = 262.1185 >> y= interp1(year,product,x, 'cubic'); >> plot(year,product,'o',x,y)

Matlab中的拟合与差值

您正在看的MATL AB是:曲线拟合与插值。 在大量的应用领域中,人们经常面临用一个解析函数描述数据(通常是测量值)的任务。对这个问题有两种方法。在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。这种方法在下一节讨论。这里讨论的方法是曲线拟合或回归。人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。图11.1说明了这两种方法。标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。 11.1 曲线拟合 曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。数学上,称为多项式的最小二乘曲线拟合。如果这种描述使你混淆,再研究图11.1。虚线和标志的数据点之间的垂直距离是在该点的误差。对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。最小二乘这个术语仅仅是使误差平方和最小的省略说法。 图11.12阶曲线拟合 在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

?x=[0.1.2.3.4.5.6.7.8.91]; ?y=[-.4471.9783.286.167.087.347.669.569.489.3011.2]; 为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。如果我们选择n=1作为阶次,得到最简单的线性近似。通常称为线性回归。相反,如果我们选择n=2作为阶次,得到一个2阶多项式。现在,我们选择一个2阶多项式。 ?n=2;%polyno mial order ?p=poly fit(x, y, n) p = -9.810820.1293-0.0317 polyfit的输出是一个多项式系数的行向量。其解是y= -9.8108x2+20.1293x-0.0317。为了将曲线拟合解与数据点比较,让我们把二者都绘成图。 ?xi=linspace(0, 1, 100);%x-axis data for plotting ?z=polyval(p, xi); 为了计算在xi数据点的多项式值,调用MATLAB的函数polyval。 ?plot(x, y, ' o ' , x, y, xi, z, ': ') 画出了原始数据x和y,用'o'标出该数据点,在数据点之间,再用直线重画原始数据,并用点' : '线,画出多项式数据xi和z。 ?xlabel('x '), y label('y=f(x) '), title('Second Order Curv e Fitting ') 将图作标志。这些步骤的结果表示于前面的图11.1中。

Matlab插值与拟合教程

MATLAB插值与拟合 §1曲线拟合 实例:温度曲线问题 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 1.线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型: y=Xβ+ε β是p?1的参数向量;ε是服从标准正态分布的随机干扰的n?1的向量;y为n?1的向量;X为n?p矩阵。 bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1) [b,bint]=regress(y,x,0.05) 结果:x = 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 y = 10.9567 11.8334

13.0125 14.0288 14.8854 16.1191 17.1189 17.9962 19.0327 20.0175 b = 9.9213 1.0143 bint = 9.7889 10.0537 0.9930 1.0357 即回归方程为:y=9.9213+1.0143x 2. 2.多项式曲线拟合函数:polyfit( ) 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval) 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2] n=3; p=polyfit(x,y,n) xi=linspace(0,1,100); z=polyval(p,xi); %多项式求值 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’3阶曲线’) 结果: p = 16.7832 -25.7459 10.9802 -0.0035 多项式为:16.7832x3-25.7459x2+10.9802x-0.0035 曲线拟合图形:

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

MATLAB插值与拟合实验报告

实验报告MATLAB 第二次实验报告题目:学生姓名:学院:专业班级:学号:

年月 MATLAB第二次实验报告 ————插值与拟合 插值即在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn}通过调整该函数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。 一、插值 <1>拉格朗日插值(课上例子) m=101; x=-5:10/(m-1):5; y=1./(1+x.^2);z=0*x; plot(x,z,'r',x,y,'LineWidth',1.5), gtext('y=1/(1+x^2)'),pause n=3; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y1=fLagrange(x0,y0,x); hold on,plot(x,y1,'b'),gtext('n=2'),pause, hold off n=5; x0=-5:10/(n-1):5; y0=1./(1+x0.^2);

y2=fLagrange(x0,y0,x); hold on,plot(x,y2,'b:'),gtext('n=4'),pause, hold off n=7; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y3=fLagrange(x0,y0,x);hold on, plot(x,y3,'r'),gtext('n=6'),pause, hold off n=9; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y4=fLagrange(x0,y0,x);hold on, plot(x,y4,'r:'),gtext('n=8'),pause, hold off n=11; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y5=fLagrange(x0,y0,x);hold on, plot(x,y5,'m'),gtext('n=10') 运行后得. <2>拉格朗日插值(课下修改) yh=lagrange (x,y,xh)function n = length(x);m = length(xh);yh = zeros(1,m); c1 = ones(n-1,1);c2 = ones(1,m); i=1:n for xp = x([1:i-1 i+1:n]); yh = yh + y(i)*prod((c1*xh-xp'*c2)./(x(i)-xp'*c2));end输入x=[1 2 3 4 5 6] y=[13 21 34 6 108 217] xh=3.2 lagrange(x,y,xh) 运行后得 x = 1 2 3 4 5 6

MATLAB插值与拟合实验报告材料

实用标准文档 MATLAB实验报告 题目:第二次实验报告 学生姓名: 学院: 专业班级: 学号: 年月

MATLAB第二次实验报告 ————插值与拟合插值即在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn}通过调整该函数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。 一、插值 <1>拉格朗日插值(课上例子) m=101; x=-5:10/(m-1):5; y=1./(1+x.^2);z=0*x; plot(x,z,'r',x,y,'LineWidth',1.5), gtext('y=1/(1+x^2)'),pause n=3; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y1=fLagrange(x0,y0,x); hold on,plot(x,y1,'b'),gtext('n=2'),pause, hold off n=5;

x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y2=fLagrange(x0,y0,x); hold on,plot(x,y2,'b:'),gtext('n=4'),pause, hold off n=7; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y3=fLagrange(x0,y0,x);hold on, plot(x,y3,'r'),gtext('n=6'),pause, hold off n=9; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y4=fLagrange(x0,y0,x);hold on, plot(x,y4,'r:'),gtext('n=8'),pause, hold off n=11; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y5=fLagrange(x0,y0,x);hold on, plot(x,y5,'m'),gtext('n=10') 运行后得

Matlab 一维插值interp1 例子 及 可视拟合界面

一维插值: 已知离散点上的数据集,即已知在点集X上对应的函数值Y,构造一个解析函数(其图形为一曲线)通过这些点,并能够求出这些点之间的值,这一过程称为一维插值。 MATLAB命令:yi=interp1(X, Y, xi, method) 一些个人经验说明: ①关于拟合参数的,X必须是向量,行向量或列向量均可,不可以是复数 ②Y是向量或矩阵.但必须满足行数与length(X)相同即size(Y,1)==length (X) ③针对以上说明的例子 function tu x=[5 1 2 20 14 21]' y=rand(6,2)%按列计算的 xi=linspace(0,21,100); yi=interp1(x,y,xi,'cubic') plot(x,y,'o',xi,yi) size(x) size(y,1) length(x) 结果 size(x) 6 1 size(y,1) 6 length(x) 6

该命令用指定的算法找出一个一元函数,然后以给出处的值。xi可以是一个标量,也可以是一个向量,是向量时,必须单调,method可以下列方法之一:‘nearest’:最近邻点插值,直接完成计算; ‘spline’:三次样条函数插值; ‘linear’:线性插值(缺省方式),直接完成计算; ‘cubic’:三次函数插值; 对于[min{xi},max{xi}]外的值,MATLAB使用外推的方法计算数值。

%-- 09-4-1 下午8:38 --% %已知数据 t=1900:10:1990; p=[75.995,91.972,105.711,123.203,131.669,150.697,179.323,203.212,226.505,249.633];

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MA TLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MA TLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 (2) 编写MA TLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0, , 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0 )()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为

Matlab 曲面插值和拟合

Matlab 曲面插值和拟合 插值和拟合都是数据优化的一种方法,当实验数据不够多时经常需要用到这种方法来画图。在matlab中都有特定的函数来完成这些功能。 这两种方法的确别在于: 当测量值是准确的,没有误差时,一般用插值; 当测量值与真实值有误差时,一般用数据拟合。 插值: 对于一维曲线的插值,一般用到的函数yi=interp1(X,Y,xi,method) ,其中method包括nearst,linear,spline,cubic。 对于二维曲面的插值,一般用到的函数 zi=interp2(X,Y,Z,xi,yi,method),其中method也和上面一样,常用的是 cubic。 拟合: 对于一维曲线的拟合,一般用到的函数p=polyfit(x,y,n)和yi=polyval(p,xi),这个是最常用的最小二乘法的拟合方法。 对于二维曲面的拟合,有很多方法可以实现,但是我这里自己用的是Spline Toolbox里面的函数功能。具体使用方法可以看后面的例子。 对于一维曲线的插值和拟合相对比较简单,这里就不多说了,对于二维曲面的插值和拟合还是比较有意思的,而且正好胖子有些数据想让我帮忙处理一下,就这个机会好好把二维曲面的插值和拟合总结归纳一 下,下面给出实例和讲解。 原始数据 x=[1:1:15]; y=[1:1:5]; z=[0.2 0.24 0.25 0.26 0.25 0.25 0.25 0.26 0.26 0.29 0.25 0.29; 0.27 0.31 0.3 0.3 0.26 0.28 0.29 0.26 0.26 0.26 0.26 0.29; 0.41 0.41 0.37 0.37 0.38 0.35 0.34 0.35 0.35 0.34 0.35 0.35; 0.41 0.42 0.42 0.41 0.4 0.39 0.39 0.38 0.36 0.36 0.36 0.36; 0.3 0.36 0.4 0.43 0.45 0.45 0.51 0.42 0.4 0.37 0.37 0.37]; z是一个5乘12的矩阵。 直接用原始数据画图如下: surf(x,y,z) title(’Original data Plot’); xlabel(’X'), ylabel(’Y'), zlabel(’Z'), colormap, colorbar; axis([0 15 0 6 0.15 0.55])

Matlab 曲面插值和拟合

得用拟合或插值。 常用的拟合有多项式拟合POLYFIT 插值有INTERP1,SPLINE,LAGR1等。。。 在Matlab中,用于曲线和曲面平滑的方法与函数很多,曲线平滑可用smooth和smoothts 等,三维数据可用smooth3,另外样条工具箱中也有不少可用于平滑数据的函数,如三次样条csaps和B样条spaps等。 matlab中三维作图功能总结2007-12-09 11:29plot3 画三维坐标中的点,连线,但只能顺序连接。 surf(X,Y,Z) 用X和Y定义x-y坐标网格,Z定义网格上每一点的高度,来生成三维曲面。如:[X,Y,Z] = peaks(30);surf(X,Y,Z) mesh,和surf一样,只不过生成的是网格。 surface 用法也一样。 fill3 只能生成平面。重点在色彩。 [X,Y,Z]=meshgrid(1:3,1:3,1:5) 生成3*3*5的三维网格,X,Y,Z都是3*3*5三维矩阵。 这只是生成坐标网格,还需要一个V(X,Y,Z)定义图形。 ndgrid 生成三维以上网格时用。 smooth3 作用于体数据,使光滑 isosurface X,Y,Z如meshgrid的定义。 V中元素为1则表示存在,即要显示。但要连成片的1才会显示。 V中元素如a>1时,表示要显示的这个点离上方的网格距离是单位距离的1/a 圆滑程度由isovalue决定,0.9999是最硬,越接近0越圆滑。可同时配合isocaps. isocaps 生成并显示图形与坐标系交界处的平面。 patch 接收isosuface返回的参数,生成图形。

Matlab 曲面插值和拟合 附录: Matlab 样条工具箱(Spline ToolBox)【信息来源教师博客】 Matlab样条工具箱中的函数提供了样条的建立,操作,绘制等功能; 一. 样条函数的建立 第一步是建立一个样条函数,曲线或者曲面。这里的样条函数,根据前缀,分为4类: cs* 三次样条 pp* 分段多项式样条,系数为t^n的系数 sp* B样条, 系数为基函数B_n^i(t)的系数 rp* 有理B样条 二. 样条操作 样条操作包括:函数操作:求值,算术运算,求导求积分等等 节点操作:主要是节点重数的调节,设定,修改等等 附:样条工具箱函数 1. 三次样条函数 csapi 插值生成三次样条函数 csape 生成给定约束条件下的三次样条函数 csaps 平滑生成三次样条函数 cscvn 生成一条内插参数的三次样条曲线 getcurve 动态生成三次样条曲线 2. 分段多项式样条函数

matlab实现插值法和曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点上取值为0。2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

(1) I h (x k )=y k ,(k=0,1,…,n) ; (2) 在每个区间[x k ,x k+1 ] 上,I h (x)是个一次函数。 易知,I h (x)是个折线函数, 在每个区间[x k ,x k+1 ]上,(k=0,1,…,n) k 1k k 1k 1 k k 1k k k ,1) () ()(x x x x x f x x x x x f x L --+--=++++, 于是, I h (x)在[a,b]上是连续的,但其一阶导数是不连续的。 3拉格朗日插值多项式算法 ○1输入,(0,1,2,,)i i x y i n = ,令0)(=x L n 。 ○ 2对0,1,2,,i n = ,计算 0,()()/() n i j i j j j i l x x x x x -≠= --∏ ()()()n n i i L x L x l x y ←??+ 4分段线性插值算法 ○1输入(x k ,y k ),k=0,1,…,n; ○2计算k 1k k 1k 1 k k 1k k k ,1) () ()(x x x x x f x x x x x f x L --+--=++++ 5插值法和分段线性插值程序 按下列数据分别作五次插值和分段线性插值,画出两条插值曲线以及给定数据点。求x 1=0.32, functionlagrint xi=[0.32,0.55,0.68]; %xi=[0.2:0.001:0.8]; x=[0.3,0.42,0.50,0.58,0.66,0.72]; y=[1.04403,1.08462,1.11803,1.15603,1.19817,1.23223]; L=zeros(size(y)); m=length(xi); fori=1:m dxi=xi(i)-x; L(1)=prod(dxi(2:6))/prod(x(1)-x(2:6)); L(6)=prod(dxi(1:6-1))/prod(x(6)-x(1:6-1)); for j=2:6-1

MATLAB插值与拟合实验报告

MATLAB实验报告 题目:第二次实验报告 学生姓名: 学院: 专业班级: 学号: 年月

MATLAB第二次实验报告 ————插值与拟合插值即在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn}通过调整该函数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。 一、插值 <1>拉格朗日插值(课上例子) m=101; x=-5:10/(m-1):5; y=1./(1+x.^2);z=0*x; plot(x,z,'r',x,y,'LineWidth',1.5), gtext('y=1/(1+x^2)'),pause n=3; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y1=fLagrange(x0,y0,x); holdon,plot(x,y1,'b'),gtext('n=2'),pause, hold off n=5; x0=-5:10/(n-1):5; y0=1./(1+x0.^2);

y2=fLagrange(x0,y0,x); holdon,plot(x,y2,'b:'),gtext('n=4'),pause, hold off n=7; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y3=fLagrange(x0,y0,x);hold on, plot(x,y3,'r'),gtext('n=6'),pause, hold off n=9; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y4=fLagrange(x0,y0,x);hold on, plot(x,y4,'r:'),gtext('n=8'),pause, hold off n=11; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y5=fLagrange(x0,y0,x);hold on, plot(x,y5,'m'),gtext('n=10') 运行后得

相关主题