搜档网
当前位置:搜档网 › (完整)高中三角函数典型例题(教用)

(完整)高中三角函数典型例题(教用)

(完整)高中三角函数典型例题(教用)
(完整)高中三角函数典型例题(教用)

【典型例题】:

1、已知2tan =x ,求x x cos ,sin 的值. 解:因为2cos sin tan ==

x

x

x ,又1cos sin 22=+a a , 联立得???=+=,1

cos sin cos 2sin 2

2x x x

x 解这个方程组得.55cos 5

52sin ,55cos 552sin ???

????-=-=???????==x x x x

2、求)

330cos()150sin()690tan()

480sin()210cos()120tan(οοοοοο----的值。

解:原式)

30360cos()150sin()30720tan()

120360sin()30180cos()180120tan(o ο

οοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=ο

οοοοο

3、若

,2cos sin cos sin =+-x

x x

x ,求x x cos sin 的值.

解:法一:因为

,2cos sin cos sin =+-x

x x

x

所以)cos (sin 2cos sin x x x x +=-

得到x x cos 3sin -=,又1cos sin 22=+a a ,联立方程组,解得

,,???

???

?=-=???????-==1010cos 10

103sin 1010cos 10103sin x x x x 所以?-

=10

3

cos sin x x 法二:因为,2cos sin cos sin =+-x

x x

x

所以)cos (sin 2cos sin x x x x +=-,

所以2

2)cos (sin 4)cos (sin x x x x +=-,所以x x x x cos sin 84cos sin 21+=-,

所以有?-

=10

3cos sin x x 4、求证:x x x x 2

2

2

2

sin tan sin tan -=。

5、求函数)6

π

2

sin(2+

=x

y 在区间]2,0[π上的值域。 解:因为]20π≤≤x ,所以π≤≤20x ,6

7626π

ππ≤+≤x 由正弦函数的图象,

得到

???

???-∈+=1,21)6π2sin(2x y ,所以[]

2,1)6π2sin(2-∈+∈x y

6、求下列函数的值域.

(1)2cos sin 2

+-=x x y ; (2))cos (sin cos sin 2x x x x y +-=)

解:(1)2cos sin 2

+-=x x y

=3)cos (cos 2cos cos 122++-=+--x x x x

令x t cos =,则,413)21(413)2

1

(3)(],1,1[22

2

++-=++-=++-=-∈t t t t y t

利用二次函数的图象得到].4

13,

1[∈y (2) )cos (sin cos sin 2x x x x y +-=

=)cos (sin 1)cos (sin 2

x x x x +--+

令x x t cos sin +=2=

)4

π

sin(+x ,则]2,2[-∈t

则,12

--=t t y 利用二次函数的图象得到].21,4

5[+-∈y

7、若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式。

解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴

交点的间隔是

41

个周期,这样求得44=T ,T =16,所以?=8

πω 又由)28π

sin(22?+?=,得到可以取).4

π8πsin(2.4π+=∴=x y ?

8、已知函数f (x )=cos 4

x -2sin x cos x -sin 4

x .

(Ⅰ)求f (x )的最小正周期; (Ⅱ)若],2

π

,0[∈x 求f (x )的最大值、最小值.数

x

x

y cos 3sin 1--=

的值域.

解:(Ⅰ)因为f (x )=cos 4

x -2sin x cos x -sin4x =(cos 2

x -sin 2

x )(cos 2

x +sin 2

x )-sin2x )4

π

2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x

所以最小正周期为π.

(Ⅱ)若]2π,0[∈x ,则]4

π

3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为

;1)4πsin(2=--当8

π

3=

x 时,f (x )取最小值为.2-

9、已知2tan =θ,求(1)θ

θθ

θsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.

解:(1)

2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-

+

=++θθθ

θθθ

θθθθ; (2) θ

+θθ+θθ-θ=θ+θθ-θ22222

2cos sin cos 2cos sin sin cos 2cos sin sin

3

24122221cos sin 2cos sin cos sin 2222-=++-=+θ

θ+θθ

-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过 程简化。

10、求函数2

1sin cos (sin cos )y x x x x =++++的值域。

解:设sin cos )[4

π

t x x x =+=

+∈,则原函数可化为

2213

1()24

y t t t =++=++

,因为[t ∈,所以

当t =

时,max 3y =12t =-时,min 3

4

y =,

所以,函数的值域为3

[34

y ∈,。

11、已知函数2

()4sin 2sin 22f x x x x R =+-∈,;(1)求()f x 的最小正周期、()

f x

的最大值及此时x 的集合;(2)证明:函数()f x 的图像关于直线8

π

x =-对称。 解:2

2

()4sin 2sin 222sin 2(12sin )f x x x x x =+-=--

2sin 22cos 2)4

πx x x =-=- (1)所以()f x 的最小正周期T π=,因为x R ∈,

所以,当2242ππx k π-=+,即38

π

x k π=+时,()f x 最大值为 (2)证明:欲证明函数()f x 的图像关于直线8

π

x =-对称,只要证明对任意x R ∈,有

()()88

ππ

f x f x --=-+成立,

因为())]2)28842ππππ

f x x x x --=---=--=-,

())]2)28842ππππ

f x x x x -+=-+-=-+=-,

所以()()88ππf x f x --=-+成立,从而函数()f x 的图像关于直线8

π

x =-对称。

12 、已知函数y=

2

1cos 2

x+23sinx ·cosx+1 (x ∈R ),

(1)当函数y 取得最大值时,求自变量x 的集合;

(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?

解:(1)y=

21cos 2x+23sinx ·cosx+1=41 (2cos 2

x -1)+ 41+43(2sinx ·cosx )+1

=41cos2x+43sin2x+45=21(cos2x ·sin 6π+sin2x ·cos 6π)+4

5

=21sin(2x+6π)+4

5 所以y 取最大值时,只需2x+6π=2π+2k π,(k ∈Z ),即 x=6

π

+k π,(k ∈Z )。

所以当函数y 取最大值时,自变量x 的集合为{x|x=6

π

+k π,k ∈Z}

(2)将函数y=sinx 依次进行如下变换:

(i )把函数y=sinx 的图像向左平移

6π,得到函数y=sin(x+6

π

)的图像; (ii )把得到的图像上各点横坐标缩短到原来的2

1

倍(纵坐标不变),得到函数

y=sin(2x+6

π

)的图像;

(iii )把得到的图像上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数y=

2

1

sin(2x+

6

π

)的图像; (iv )把得到的图像向上平移45个单位长度,得到函数y=21sin(2x+6π)+4

5

的图像。 综上得到y=2

1cos 2

x+23sinxcosx+1的图像。

三角函数,反三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2 A )= A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB 积化和差 sinasinb = - 21[cos(a+b)-cos(a-b)] cosacosb = 2 1 [cos(a+b)+cos(a-b)]

上海高一反三角函数典型例题

反三角函数典型例题 例1:在下列四个式子中,有意义的为__________: 解:(4)有意义。 (1)(2)arcsin 4 π ;(3)sin(arcsin 2);(4)arcsin(sin 2)。 点评:arcsin x ——x [1,1]∈-。 例2:求下列反正弦函数值 (1)= 解:3 π (2)arcsin 0= 解:0 (3)1arcsin()2-= 解:6π- (4)arcsin1= 解:2 π 点评:熟练记忆:0,1 2 ±、,,1±的反正弦值。 思考:1sin(arcsin )24 π +该如何求? 例3:用反正弦函数值的形式表示下列各式中的x (1)sin x = ,x [,]22ππ ∈- 解:x = 变式:x [,]2 π ∈π? 解:x [,]2π ∈π时,π-x [0,]2 π∈,sin(π-x)=sinx ∴π-x =,则x =π- 变式:x [0,]∈π? 解:x =x =π-(2)1sin x 4=-,x [,]22ππ∈- 解:1 x arcsin 4 =- 变式:1 sin x 4=-,3x [,2]2π∈π 解:3x [,2]2π∈π时,2π-x [0,]2 π∈,sin(2π-x)=-sinx =1 4 ∴2π-x =arcsin 14,则x =2π-arcsin 1 4 点评:当x [,]22ππ ∈-时,x arcsin a =;而当x [,]22ππ?-,可以将角转化到区间[,]22 ππ-上,

再用诱导公式处理对应角之三角比值即可。 练习: (1)sin x = ,x [,]22ππ ∈- 解:x 3π= (2)sin x =,x [0,]∈π 解:x arcsin =x =π-(3)3sin x 5=-,3x [,]22ππ∈ 解:3 x arcsin 5 =π+ 例4:求函数y 2arcsin(52x)=-的定义域和值域。 解:由152x 1-≤-≤,则x [2,3]∈,arcsin(52x)[,]22ππ-∈-,则y [,]∈-ππ。 变式:y sin x arcsin x =+ 解:x [1,1]∈-,y [sin1,sin1]22 ππ ∈--+ 思考:当3x [,]44 ππ ∈-时,求函数y arcsin(cos x)=的值域。 解:当3x [, ]44ππ∈-时t cos x [=∈,而y arcsin t =为增函数,则y [,]42 ππ∈-。 例5:求下列函数的反函数 (1) y sin x =,x [,]2 π∈π 解:y [0,1]∈,x [,0]2 π-π∈-且sin(x )sin x y -π=-=-,则x arcsin(y)-π=-, 则x arcsin y =π-,则反函数是1f (x)arcsin x -=π-,x [0,1]∈。 (2) y arcsin x =,x [0,1]∈ 解:y [0,]2π∈,x sin y =,则反函数是1f (x)sin x -=,x [0,]2 π∈。

高中三角函数典型例题(教用)

【典型例题】: 1、已知2tan =x ,求x x cos ,sin 的值. 解:因为2cos sin tan == x x x ,又1cos sin 22=+a a , 联立得???=+=,1 cos sin cos 2sin 2 2x x x x 解这个方程组得.55cos 5 52sin ,55cos 552sin ??? ????-=-=???????==x x x x 2、求) 330cos()150sin()690tan() 480sin()210cos()120tan(οοοοοο----的值。 解:原式) 30360cos()150sin()30720tan() 120360sin()30180cos()180120tan(o ο οοοοοοοοο--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=ο οοοοο 3、若 ,2cos sin cos sin =+-x x x x ,求x x cos sin 的值. 解:法一:因为 ,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=- 得到x x cos 3sin -=,又1cos sin 22=+a a ,联立方程组,解得 ,,??? ??? ?=-=???????-==1010cos 10 103sin 1010cos 10103sin x x x x 所以?- =10 3 cos sin x x 法二:因为,2cos sin cos sin =+-x x x x 所以)cos (sin 2cos sin x x x x +=-, 所以2 2)cos (sin 4)cos (sin x x x x +=-,所以x x x x cos sin 84cos sin 21+=-,

高中数学常用反三角函数公式

反三角函数公式 arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y = 2 arc sin x = 2 arc cos x = 2 arc tanx = cos (n arc cos x) = .

反三角函数图像与特征 反正弦曲线图像与特征反余弦曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率为1 拐点(同曲线对称中心): ,该点切线斜率为-1 反正切曲线图像与特征反余切曲线图像与特征 拐点(同曲线对称中心):,该点切线斜率 为1 拐点: ,该点切线斜率为-1 渐近线: 渐近线: .

名称 反正割曲线反余割曲线 方程 图像 顶点 渐近线 反三角函数的定义域与主值范围 函数主值记号定义域主值范围 反正弦若,则 反余弦若,则 反正切若,则 反余切若,则 反正割若,则 反余割若,则 式中n为任意整数. .

反三角函数的相互关系 arc sin x = arc cos x = arc tan x = arc cot x = sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x)) If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function .

反三角函数典型例题

精品文档 5 5 (1) sin x 解: (2) sin x [0,] 解: (3) sin x 处] 解: 3 ?胚或 arcs in 或 x 3 .3 arcsin .3 arcsin - 3 反三角函数典型例题 例2:求下列反正弦函数值 1 sin( arcs in )该如何求? 2 4 用反正弦函数值的形式表示下列各式中的 变式:x [一,]? 2 解: x [2,] 时,n —x 【°,2], sin( n — x) =sinx = £ ? n — x = arcsin —3 ,贝U x = n — arcsin — 3 5 5 解: x = arcsin — 3 或 x = n — arcsin —3 5 例1:在下列四个式子中,有意义的为 解:(4)有意 义。 (1) arcs in . 2 ; (2) arcsin _ ; (3) 点评:arcsinx 4 1,1]。 sin( arcs in 2) ; ( 4) arcsin(sin2)。 (1) arcsin - 2 (2) arcsin0 解:0 (3) arcsin(-) 2 点评: 1 熟练记忆:0,- 2 解:- 6 2, (4) arcs ini 1的反正弦值。 思考: (1)sinx £,x [ -,^] 解: .43 x = arcs in 5 变式:x [0, ]? ⑵ sin x - 4 变式:si nx 2 2 x [—,2 ] 2 解: .1 arcs in 4 3 解:x [ ,2 2 ]时,2 - x [0,2], 1 sin( 2 n — x) = — sinx =— 4 2 n — x = 1 山 arcs in ,贝U x = 2 n — arcs in — 点评:当 x [ 2, 2 ] 时, x arcsina ;而当 处理对应角之三角比值即可。 [舊],可以将角转化到区间[ 形]上,再用诱导公式 练习:

反三角函数公式(完整)

反三角函数 分类 反正弦 反余弦 余弦函数x y cos =在]0[π,上的反函数,叫做反余弦函数。记作x cos arc ,表示一个 余弦值为x 的角,该角的范围在]0[π,区间内。定义域]11[, - , 值域]0[π,。 反正切 反余切 余切函数y=cot x 在)0(π,上的反函数,叫做反余切函数。记作x arc cot ,表示一个余切值为x 的角,该角的范围在)0(π,区间内。定义域R ,值域)0(π,。

反正割 反余割 运算公式 余角关系 2 arccos sin arc π = +x x 2 cot tan arc π =+x arc x 2 csc ec a π = +x arc x rcs 负数关系 x x sin arc )sin(arc -=- x x rc arccos )cos(a -=-π x x tan arc )tan(arc -=- x rc x c cot a )(ot arc -=-π

x rc x sec a )(arcsec -=-π x arc x c sec )(sc arc -=- 倒数关系 x arc x csc )1 arcsin(= x arc x sec )1 arccos(= x arc x arc x cot 2cot )1arctan(-==π x x x arc arctan 23arctan )1cot(-=+=ππ x x arc arccos )1 sec(= x x arc arcsin )1 csc(= 三角函数关系

加减法公式 1. ) 10,0()11arcsin(arcsin arcsin ) 10,0()11arcsin(arcsin arcsin ) 10()11arcsin(arcsin arcsin 22222 2 222222>+<<-+---=+>+>>-+--=+≤+≤-+-=+y x y x x y y x y x y x y x x y y x y x y x xy x y y x y x ,,或ππ 2. ) 10,0()11arcsin(arcsin arcsin ) 10,0()11arcsin(arcsin arcsin ) 10()11arcsin(arcsin arcsin 22222 2 222222>+><-----=->+<>----=-≤+≥---=-y x y x x y y x y x y x y x x y y x y x y x xy x y y x y x ,,或ππ 3. ) 0() 11arccos(2arccos arccos ) 0() 11arccos(arccos arccos 2 2 22<+----=+≥+---=+y x x y xy y x y x x y xy y x π 4. ) () 11arccos(arccos arccos ) () 11arccos(arccos arccos 2 2 22y x x y xy y x y x x y xy y x <--+=-≥--+-=- 5. ) 1,0(1arctan arctan arctan ) 1,0(1arctan arctan arctan ) 1(1arctan arctan arctan ><-++-=+>>-++=+<-+=+xy x xy y x y x xy x xy y x y x xy xy y x y x ππ

高中数学基础知识典型例题4——三角函数

高中数学基础知识典型例题4——三角函数

数学基础知识与典型例题 第四章三角函数 三 角 函 数 相 关 知 识 关 系 表 角的概念1.①与α(0°≤α<360°)终边相 同的角的集合 (角α与角β的终边重 合):{}Z k k∈ + ? =, 360 |α β β ; ②终边在x轴上的角的集 合:{}Z k k∈ ? =, 180 | β β; ③终边在y轴上的角的集合: {}Z k k∈ + ? =, 90 180 | β β; ④终边在坐标轴上的角的集 合:{}Z k k∈ ? =, 90 | β β. 2. 角度与弧度的互换关系: 360°=2π180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数, 例1.已知2弧度的圆心 角所对的弦长为2,那么 这个圆心角所对的弧长 为( ) ()2 A ()sin2 B 2 () sin1 C ()2sin1 D 例 2. 已知α为第三象 限角,则 2 α 所在的象限 是( ) (A)第一或第二象限 (B)第二或第三象限 (C)第一或第三象限 (D)第二或第四象限 负角的弧度数为负数,零角的 弧度数为零,熟记特殊角的弧度制. 3.弧度制下,扇形弧长公式 1 2 r α =,扇形面积公 式2 11 || 22 S R Rα ==,其中α为弧所对圆心角的弧 度数。 三 角 函 数 的 定 义 1.三角函数定义:利用直角坐标系,可以把直角三角 形中的三角函数推广到任意角的三角数.在α终边 上任取一点(,) P x y(与原点不重合),记 22 || r OP x y ==+, 则sin y r α=,cos x r α=,tan y x α=,cot x y α=。 注: ⑴三角函数值只与角α的终边的位置有关,由 角α的大小唯一确定,∴三角函数是以角为自变量, 以比值为函数值的函数. ⑵根据三角函数定义可以推出一些三角公式: ①诱导公式:即 2 kπ αα ±→或 90 2 k αα ±→ 之间函数值关系() k Z ∈,其规律是“奇变偶不变, 符号看象限”;如sin(270) α -=cosα - ②同角三角函数关系式:平方关系,倒数关系,商 数关系. ⑶重视用定义解题. ⑷三角函数线是通过有向线段直观地表示出角的各 种三角函数值的一种图示方法.如单位圆 例 3.已知角α的终边经 过P(4,-3),求 2sinα+cosα的值. 例 4.若α是第三象限 角,且cos cos 22 θθ =-, 则 2 θ 是( ) ()A第一象限角 ()B第二象限角 () C第三象限角 () D第四象限角 例5. 若cos0, θ>sin20, θ< 且

常用反三角函数公式表

反三角函数公式

反三角函数图像与特征 1 :

反三角函数的定义域与主值范围 式中n为任意整数.

反三角函数的相互关系 sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))

If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function ArcCos(x) 函数 功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。 语法:ArcCos(x)。 说明:其中,x的取值范围为[-1,1],x的数据类型为Double。 程序代码: Function ArcCos(x As Double) As Double If x >= -1 And x < -0.5 Then ArcCos = Atn(Sqr(1 - x *x) / x) + 4 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcCos = -Atn(x/ Sqr(1 - x * x)) + 2 * Atn(1) If x> 0.5 And x <= 1 Then ArcCos = Atn(Sqr(1 - x*x) / x) End Function

(完整word版)反三角函数典型例题.docx

反三角函数典型例题 例 1:在下列四个式子中,有意义的为 __________: 解:( 4)有意义。 ( 1) arcsin 2 ;( 2) arcsin ;( 3) sin(arcsin 2) ;( 4) arcsin(sin 2) 。 4 点评: arcsin x —— x [ 1,1]。 例 2:求下列反正弦函数值 ( 1) arcsin 3 解: ( 2) arcsin0 解: 0 2 3 ( 3) arcsin( 1) 解: (4) arcsin1 解: 2 6 2 点评:熟练记忆: 0, 1 2 3 、 , , 的反正弦值。 2 2 2 1 思考: sin(arcsin 1 4) 该如何求? 2 例 3:用反正弦函数值的形式表示下列各式中的 x (1) sin x 3 , x [ , ] 3 5 解: x = arcsin 2 2 5 变式: x [ , ] ? 2 解: x [ , ] 时, π- x [0, 3 ] , sin(π- x)= sinx = 2 2 5 ∴ π- x = arcsin 3 ,则 x =π- arcsin 3 5 5 变式: x [0, ] ? 解: x =arcsin 3 或 x = π-arcsin 3 5 5 (2) sin x 1 , x [ , ] 解: x arcsin 1 4 2 2 4 变式: sin x 1 , x [ 3 ,2 ] 4 2 解: x [ 3 ] 时, 2π- x [0, ] , sin(2π- x)=- sinx = 1 ,2 4 2 2 ∴ 2π- x = arcsin 1 ,则 x =2π- arcsin 1 4 4 点评: 当 x [ , ] 时, x arcsina ;而当 x [ , ] ,可以将角转化到区间 [ , ] 上,再用诱导公式 2 2 2 2 2 2 处理对应角之三角比值即可。 练习: (1) sin x 3 [ , ] 解: x , x 3 2 2 2 (2) sin x 3 [0, ] 解: x arcsin 3 3 , x 或 x arcsin 3 3 3 (3) sin x 3 , x [ , 3 ] 解: x arcsin 3

三角函数典型例题剖析与规律总结00

学科: 数学任课教师:黄老师授课时间:2013年3月日(星期) 1 :00-1 :00 姓名年级:教学课题三角函数典型例题剖析与规律总结 阶段 基础(√)提高()强化()课时计划共次课第次课 课前 检查作业完成情况:__________________ 建议_________________________________________________________ 教学过程一:函数的定义域问题 1.求函数1 sin 2+ =x y的定义域。 分析:要求1 sin 2+ = y的定义域,只需求满足0 1 sin 2≥ + x的x集合,即只需求出满足 2 1 sin- ≥ x的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk2()Z k∈即可。 解:由题意知需0 1 sin 2≥ + x,也即需 2 1 sin- ≥ x①在一周期? ? ? ?? ? - 2 3 , 2 π π 上符合①的角为? ? ? ?? ? - 6 7 , 6 π π ,由此 可得到函数的定义域为? ? ? ?? ? + - 6 7 2, 6 2 π π π πk k()Z k∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1 ,0 log≠ > =a a x f y a 的函数,则其定义域由()x f确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y2 sin 2 3- =(2)2 sin 2 cos2- + =x y x 分析:利用1 cos≤ x与1 sin≤ x进行求解。 解:(1) 1 2 sin 1≤ ≤ -x∴[]5,1 5 1∈ ∴ ≤ ≤y y (2) ()[].0,4 ,1 sin 1 1 sin 1 sin 2 sin 2 sin 22 2 2 cos- ∈ ∴ ≤ ≤ - - - = - + - = - + =y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。

三角函数_反三角函数_积分公式_求导公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) = a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式

反三角函数及最简三角方程.docx

标准实用 反三角函数及最简三角方程 一、知识回顾: 1、反三角函数: 概念:把正弦函数y sin x , x,时的反函数,成为反正弦函数,记作 22 y arcsin x . y sin x( x R) ,不存在反函数. 含义: arcsin x 表示一个角;角,;sin x . 22 反余弦、反正切函数同理,性质如下表. 名称函数式定义域值域奇偶性单调性 反正弦函数y arcsin x1,1 增, 2奇函数增函数 2 y arccosx arccos( x)arccosx 反余弦函数1,1 减0,减函数 非奇非偶 反正切函数y arctanx R增, 2奇函数增函数 2 y arc cot x arc cot( x)arc cot x 反余切函数R减0,减函数 非奇非偶 其中: ().符号 arcsin x 可以理解为-, ] 上的一个角弧度,也可以理解为 1[ 2 () 2 区间[- , ] 上的一个实数;同样符号 arccos x 可以理解为 [0 ,π 上的一个角2 ] 2

(弧度 ),也可以理解为区间 [0 ,π]上的一个实数; (2). y =arcsin x 等价于 sin y=x, y∈ [-,], y= arccos x 等价于 cos y 22 =x, x ∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; (3).恒等式 sin(arcsin x)=x, x∈ [- 1, 1] , cos(arccos x)=x, x∈ [-1, 1], tan(arctanx)=x,x ∈ R arcsin(sin x) = x, x ∈ [ -,], arccos(cos x) = x, x ∈ [0, 22 π],arctan(tanx)=x, x∈(-,)的运用的条件; 22 (4).恒等式 arcsin x+arccos x=, arctan x+arccot x=的应用。 22 2、最简单的三角方程 方程方程的解集 a1x | x2k arcsin a, k Z sin x a a1x | x k 1 k arcsin a, k Z a1x | x2k arccos a, k Z cos x a a1x | x2k arccos a, k Z tan x a x | x k arctana, k Z cot x a x | x k arc cot a, k Z 其中: (1 ).含有未知数的三角函数的方程叫做三角方程。解三角方程就是确定三 角方程是否有解,如果有解,求出三角方程的解集; (2).解最简单的三角方程是解简单的三角方程的基础,要在理解三角方程的

【高中数学经典】三角函数的诱导公式重难点题型(举一反三)

【高中数学】三角函数的诱导公式重难点题型【举一反三系列】 三角函数的诱导公式 【知识点1诱导公式】 【知识点2诱导公式的记忆】 诱导公式一: sin(α+2kπ) = Sin a , cos(α + 2kπ) = COSα, taιι(α + 2kπ) = xana ,其中 k ∈Z 诱导公式二: sin(∕r + G) = -Sin a, cos(∕r+α) =—COSα, tan(∕r+α) = tana,其中keZ 诱导公式三: sin(-a) =-Sina, cos(-a) = COSa , tan(-a) = -taιιa ,其中k ∈Z 诱导公式四: cos(∕F -a) = -cosa, taιι(^?-a) = -tana,其中k ∈Z 诱导公式五: Sin π ——a 2 COS π ——a 2 = Sina ,其中R ∈Z 诱导公式六: Sin π —+a 2 COS —+a =-sinα ,其中k ∈Z U 丿

记忆11诀“奇变偶不变,符号看象限”,意思是说角k-90 ±a(k 为常整数)的三角函数值:当k 为奇数 时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视Q 为锐角 时原函数值的符号. 【考点1利用诱导公式求值】 【方法点拨】对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化 过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完 成求值. 【例1】(2018秋?道里区校级期末)已知点P(l,l)在角Q 的终边上,求下列各式的值. T 、 COS (Λ^ + α)sin(^? - a) (I )------------------------------------- ; tan(∕r + α) + sin 2 (彳-a) sin(- + α)cos(- 一 a) (II) 、 2 、——召—— cos^ a - sm^ a + tan(;T - a) 【分析】由条件利用任意角的三角函数的定义求得smα, cosα, Sna 的值,再利用诱导公式即可求得要 求式子的值. 【答案】解:?.?角α终边上有一点P(l,l), .x = l , y = l , r =|OP I= √7, Sill CL = — = _ , COS Ct = — = — , tan Ct — -- = It r 2 r 2 X ([) cos(∕r + α)sin(%-α) 、 -、,兀 、 tan(^? + α) + sιn^ (― 一 a) ./3∕r 3π ([[)SInq-+Q )COS (T _Q ) _ (γosα)(-smα) cos 2 a - sin 2 a + tan(∕r - a) cos 2a - sin 2a 一 tan a 【点睛】本题主要考查任意角的三角函数的定义,诱导公式在三角函数化简求值中的应用,考查了转化思 想,属于基础题. 【变式1-1】 (2019春?龙潭区校级月考)己知tan(^+ ?) = -!,求下列各式的值: -COSa ?smα ton a + cos 2(x

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

人教版初中数学锐角三角函数的经典测试题及答案解析

人教版初中数学锐角三角函数的经典测试题及答案解析 一、选择题 1.如图,在Rt ABC V 中,90ACB ∠=?,3tan 4B = ,CD 为AB 边上的中线,CE 平分ACB ∠,则AE AD 的值( ) A .35 B .34 C .45 D .67 【答案】D 【解析】 【分析】 根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE =37 AB ,再由点D 为AB 中点得AD = 12AB ,进而可求得AE AD 的值. 【详解】 解:∵CE 平分ACB ∠, ∴点E 到ACB ∠的两边距离相等, 设点E 到ACB ∠的两边距离位h , 则S △ACE =12AC·h ,S △BCE =12 BC·h , ∴S △ACE :S △BCE = 12AC·h :12 BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE , ∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=?,3tan 4B = , ∴AC :BC =3:4, ∴AE :BE =3:4 ∴AE =37 AB , ∵CD 为AB 边上的中线, ∴AD =12 AB ,

∴3 6 7 17 2 AB AE AD AB ==, 故选:D. 【点睛】 本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC 是解决本题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC上找一点B,取145 ABD ∠=o,500 BD m =,55 D ∠=o,要使A,C,E成一直线,那么开挖点E离点D的距离是() A.500sin55m o B.500cos55m o C.500tan55m o D. 500 cos55 m o 【答案】B 【解析】 【分析】 根据已知利用∠D的余弦函数表示即可. 【详解】 在Rt△BDE中,cosD= DE BD , ∴DE=BD?cosD=500cos55°. 故选B. 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.3.在半径为1的O e中,弦AB、AC32,则BAC ∠为()度.A.75B.15或30C.75或15D.15或45 【答案】C 【解析】 【分析】 根据题意画出草图,因为C点位置待定,所以分情况讨论求解. 【详解】 利用垂径定理可知: 32 AE.

三角函数的易错点以及典型例题与高考真题

三角函数的易错点以及典型例题与真题 1.三角公式记住了吗两角和与差的公式________________; 二倍角公式:_________________ 万能公式 ______________正切半角公式____________________;解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次。 万能公式: (1) (sinα)2 +(cosα)2 =1 (2)1+(tanα)2=(secα)2 (3)1+(cotα)2=(cscα)2 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC (证明:利用A+B=π-C ) 同理可得证,当x+y+z=n π(n ∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC 可得出以下结论: (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA )2+(cosB )2+(cosC )2=1-2cosAcosBcosC (8)(sinA )2+(sinB )2+(sinC )2=2+2cosAcosBcosC (9)设tan(A/2)=t sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z) tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z) cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z) 2.在解三角问题时,你注意到正切函数、余切函数的定义域了吗正切函数在整个定义域内是否为单调函数你注意到正弦函数、余弦函数的有界性了吗 3.在三角中,你知道1等于什么吗(x x x x 2222tan sec cos sin 1-=+=

(完整版)反三角函数公式大全

反三角函数公式大全 三角函数的反函数,是多值函数。它们是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x,反正割Arcsec x=1/cosx,反余割Arccsc x=1/sinx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2

arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x 当x∈〔0,∏〕,arccos(cosx)=x x∈(—∏/2,∏/2),arctan(tanx)=x x∈(0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似 若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)

推荐-反三角函数的概念和运算·典型例题 精品

反三角函数的概念和运算·典型例题 【例1】回答下列问题: (3)π-arcsinx是什么范围内的角? (2)∵0≤arccosx≤π,3∈〔0,π〕∴arccosx=3有解x=cos3而 (4)∵cos(arccosx)=xx∈〔-1,1〕 [ ]

由选择题的唯一性知应选C. 【说明】本题考查对反正弦函数的概念的理解.题目给的θ∈ 要灵活运用诱导公式加以变形,使得角进入主值区间且函数值可用已知表示,不能顾此失彼.解法二用的是排除法.

【分析】由于已知函数的定义域不在反正弦函数的主值区间内,因此不能直接用反正弦函数表示,要先用诱导公式解决角. 由y=2sinx=2sin(π-x) [ ] (1994年全国高考试题,难度0.50)

故已知函数的值域应选B. 【说明】本题采用由函数的内层到外层逐步解决的方法.最易出错的地方是sinx的取值范围,观察正弦函数的图象,采用数形结合进行 【例5】求函数y=arccos(x2-x)的单调减区间. 【分析】注意到已知函数是由函数u=x2-x和函数y=arccosu复合而成的,因此要先求定义域,再根据求复合函数单调区间的规律来解决. [ ] A.y=arcsin(sin2x) B.y=2arcsin(sinx) C.y=sin(arcsin2x) D.y=2sin(arcsinx) 【分析】此题要从选项入手,主要考察反三角函数基本关系式成立的条件,可采用逐项验证的方法. 解:由基本关系式sin(arcsinx)=xx∈〔-1,1〕C.和D.的定义域

∴y=2arcsin(sinx)=2x选B..否定A. 数,它可以是角的弧度数,也可以是三角函数的值,要正确理解.【例7】求下列各式的值 原式=cos(α-β)=cosαcosβ+sinαsinβ

相关主题