搜档网
当前位置:搜档网 › 国内外传感器现状及发展趋势

国内外传感器现状及发展趋势

国内外传感器现状及发展趋势
国内外传感器现状及发展趋势

引言3正文3 1.传感器的开发3气体传感器3温度传感器6 2. 传感器的现状及发展趋势8传感器发展的三个阶段8我国传感器的现状9传感器的发展方向与途径10欧美传感器发展趋势11传感器的宏观技术特点分析17 3.传感器的精度问题18消除传感器零点误差和零点漂移的方法18提供直流供电电源的稳定性方法18统一和标准化保证传感器精度19传感器的标校19敏感元件的质量控制19精度的结构防护技术20传感器补偿技术21 4.传感器的品牌22称重传感器22压力传感器22流量传感器22

位移传感器23温湿度传感器23液位传感器23传感器的一些竞争品牌24中国的传感器基地24

引言

随着科学技术的发展,检测技术巳应用于人类科研、生产、生活等活动中。检测技术既是服务于其它学科的工具,又是综合运用其它多门学科最新成果的尖端技术。因此检测技术的发展是科学技术和生产发展的重要基础,也是一个国家生产力发展和现代化程度的重要标志。而研究检测技术的进步总是从检测的新方法与新对象来考虑。但不论是检测方法的更新还是检测对象的扩展,都与传感器的开发有着密切的联系,也就是说检测技术的发展,如果离开传感器的开发那是绝对不行的。

正文

1.传感器的开发

气体传感器

气体传感器是一种将气体的成份、浓度等信息转换成可以被人员、仪器仪表、计算机等利用的信息的装置,气体传感器通常是用来检测气体的类别、浓度和成分。气体传感器的种类很多,分类方法也各不相同。按气体传感器的材料分,可分为半导体型和非半导体型。应用广泛的气体传感器有:半导体型气体传感器、固体电解质气体传感器、电化学传感器、光学气体传感器等。

1.半导体型气体传感器

这种类型的传感器在气体传感器中约占60%,根据其机理分为电阻型半导体气体传感器和非电阻型半导体气体传感器。

电阻型半导体气体传感器

电阻型半导体气体传感器是将气体浓度的变化转变成电阻值变化的一种传感器,典型的电阻型半导体气体传感器材料是322e n nO O F O Z S 、、等因为这些材料存在气敏效应,当表面吸附某种气体时会引起电导率的变化,作为传感器,还要求这种反应必须是可逆的。 电阻型半导体气体传感器中应用最广泛的是气敏元件,其工作原理是和空气中电子亲和性大的气体发生反应形成吸附氧束缚晶体中的电子。使器件处于高阻状态,当它与被测气体

接触时,气体与吸附氧发生反应,元件表面电导增加,电阻减小。气敏元件制作时多采用烧结工艺。以多孔陶瓷为基底材料,再添加不同的其他物质,用制陶工艺烧结而成。烧结时埋入加热电阻丝和测量电极。此外,还有薄膜型与厚膜型两种工艺。

非电阻型半导体气体传感器

结型气体传感器

结型气体传感器又称气敏二极管。是利用气体改变二极管的整流特性,将金属与半导体结合做成整流二级管,其整流作用来源于金属和半导体功函数的差异。随着功函数因吸附气体而变化,其整流作用也随之变化。

型气体传感器

气敏二极管的特性曲线左移可以看作二极管导通电压发生改变,这一特性如果发生在场效应管的栅极,将使场效应管的阈值电压UT改变。利用这一原理可以制成MOSFET型气敏器件。

氢气敏MOSFET是一种最典型的气体传感器,它用金属钯(Pd)制成钯栅。在含有氢气的气氛中由于钯的催化作用,氢气分子分解成氢原子扩散到钯与二氧化硅的界面。最终导致MOSFET的阈值电压UT发生变化。使用时常将栅漏短接,可以保证MOSFET工作在饱和区,利用这一气敏器件可以测出氢气浓度。氢气敏MOSFET在氢气浓度高时其灵敏度变低,氢气浓度低时灵敏度则升高。

2.固体电解质气体传感器

这种传感器元件为离子对固体电解质隔膜传导,称为电化学池。分为阳离子传导和阴离子传导,是选择性强的传感器,研究较多达到实用化的是氧化锆固体电解质传感器。其机理是利用隔膜两侧两个电池之间的电位差等于浓差电池的电势。稳定的氧化锆固体电解质传感器已成功地应用于钢水中氧的侧定和发动机空燃比成分测量等。

为弥补固体电解质导电的不足,近几年来在固态电解质上蒸镀一层气体敏膜。把周围环境中存在的气体分子数量和介质中可移动的粒子数量联系起来。

3.接触燃烧式气体传感器

接触燃烧式气体传感器的工作原理是:气敏材料在通电状态下,温度约在300~600℃,当可燃性气体氧化燃烧或在催化剂作用下氧化燃烧,燃烧热进一步使电热丝升温,从而使其电阻值发生变化,测量电阻变化从而测量气体浓度。该种气体传感器的优点是对气体选择性好,受温度和湿度影响小,响应快,已经被广泛应用在石油化工厂、矿井、浴室和厨房等处。目前接触燃烧式气体传感器实现规模生产的有H2、LPG、CH4以及部分有机溶剂蒸气检测用产品。该类传感器市场上一般以各类报警器的形式出现较多,但它们对低浓度可燃性气体灵敏度低,敏感元件受催化剂侵害较严重。

4.光学式气体传感器

光学式气体传感器包括光谱吸收型、荧光型、光纤化学材料型等类型。光谱吸收型荧光

型的原理是:不同的气体物质由于其分子结构不同、浓度不同和能量分布的差异而有各自不同的吸收光谱。这就决定了光谱吸收型气体传感器的选择性、鉴别性和气体浓度的唯一确定性。若能测出这种光谱便可对气体进行定性、定量分析。目前已经开发了流体切换式、流程直接测量式等多种在线红外吸收式气体传感器[16,24]。在汽车的尾气中,CO、CO2和烃类物质的浓度,以及工业燃烧锅炉中的有害气体SO2、NO2都可采用光谱吸收型气体传感器来检测。荧光型是指气体分子受激发光照射后处于激发态,在返回基态的过程中发出荧光。由于荧光强度与待测气体的浓度成线性关系,荧光型气体传感器通过测试荧光强度便可测出气体的浓度。光纤化学材料型气体传感器是在光纤的表面或端面涂一层特殊的化学材料,而该材料与一种或几种气体接触时,引起光纤的耦合度、反射系数、有效折射率等诸多性能参数的变化,这些参数又可以通过强度调制等方法来检测。例如:涂在光纤上的钯膜遇H2时就会膨胀,薄膜的膨胀可以通过测量干涉仪的输出光的强度来测得。光谱吸收型的原理清楚,技术相对成熟,是目前光学式气体传感器的市场主流。

5.石英谐振式气体传感器

石英谐振式气体传感器的气敏元件主要由石英基片、金电极和支架三部分组成。其电极上涂有一层气体敏感膜,当被测气体分子吸附在气体敏感膜上时,敏感膜的质量增加,从而使石英振子的谐振频率降低。由于谐振频率的变化量与被测气体的浓度成正比,故通过检测谐振频率便可判断气体浓度大小[7]。该传感器结构简单、灵敏度高,但只能使用在室温下工作的气体敏感膜。选取聚乙烯亚胺PEI(poly ethylene imine)作敏感膜,该传感器对CO2的气敏特性、选择性都很好,对体积分数为500×10-6的CO2进行测试,其响应时间为5 s,恢复时间为2 s。另外酞菁类聚合物也常被用来制成石英谐振式气敏元件。目前已经开发出可测试NH3、SO2、HCl、H2S、醋酸蒸气等气体的石英谐振式气体传感器,但产业化还需时日,尤其是选择性还未得到根本解决。

6.表面声波气体传感器

表面声波气体传感器的发展历史很短,可谓是后起之秀。表面声波传播速度的影响因素很多,例如:环境温度、压力、电磁场、气体性质、固体介质的质量、电导率等。通过选择合适的敏感膜来控制诸多影响因素中的一个因素起主导作用。当质量起主导作用时,表面声波的振荡频率与气体敏感膜的密度成正比;当电导率起主导作用时,表面声波的振荡频率与气体敏感膜的电导率成反比。设计时,通常采用双通道延迟线结构来实现对环境温度和压力变化的补偿。目前研究的该类气体传感器大多采用有机膜做气敏材料,主要有聚异丁烯、氟聚多元醇等,被用来检测苯乙烯和甲苯等有机蒸气[16,28];酞菁类聚合物薄膜被用来检测NO2、NH3、CO、SO2等气体[7]。尽管该类气体传感器在实用化方面还存在许多问题,但它符合信号系统数字化、集成化、高精度的方向,因此受到许多国家的高度重视。

7.气体传感器的发展方向

气体传感器的研究涉及面广、难度大,属于多学科交叉的研究领域。要切实提高传感器

各方面的性能指标需要多学科、多领域研究者的协同合作。气敏材料的开发和根据不同原理进行传感器结构的合理设计一直受到研究人员的关注。在综合气体传感器的国内外的研究未来气体传感器的发展也将围绕这两方面展开工作。主要内容为:

(1)气敏材料的进一步开发:一方面寻找新的添加剂对已开发的气敏材料的敏感特性进一步提高,尤其是通过选择不同的添加剂来改善同一基质材料对不同气体的选择性;另一方面充分利用纳米、薄膜等新材料制备技术使气敏材料各方面的性能均得到大大改善,譬如:纳米器件比表面积大,有利于提高其灵敏度,大大降低使用温度,易于器件集成化,降低成本,便于使用。

(2)新型气体传感器的开发和设计:根据气体与气敏材料可能产生的不同效应设计出新型气体传感器是气体传感器未来发展的重要方向和后劲。近年来表面声波气体传感器、光学式气体传感器、石英谐振式气体传感器等新型传感器的开发成功进一步开阔了设计者的视野。目前仿生气体传感器也在研究中。警犬的鼻子就是一种灵敏度和选择性都非常好的理想气敏传感器,结合仿生学和传感器技术研究类似狗鼻子的”电子鼻”将是气体传感器发展的重要趋势和目标之一。

(3)气体传感器传感机理的研究:新的气敏材料和新型传感器层出不穷,需要在理论上对它们的传感机理进行深入研究。传感机理一旦明确,设计者便可有据可依地针对传感器的不足之处加以改进,也将大大促进气体传感器的产业化进程。

(4)气体传感器的智能化:生产和生活日新月异的发展变化对气体传感器提出了更高的要求,气体传感器智能化是其发展的必由之路。纳米、薄膜技术等新材料制备技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件[30]。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术、模糊理论等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字化的智能气体传感器将是以后该领域的重要研究方向。

温度传感器

1.气体温度传感器

气体的状态方程为PV = nRT,其中P为压力,V为体积,n为气体的摩尔量,R为常数,T为温度。如果其中一个量保持不变,测量另外一个变量,然后第三个变量可以通过计算得到。因此,如果气体的摩尔量保持不变,温度可以通过测量压力计算出。简单的气体温度计最早是1952年Simon使用的。它包括一个球形容器,并通过一毛细管连接至测量压力的规管。这个气体温度计在低温下的测量结果非常准确。在高温下需要经过一些修正。在温度降

低的时候,外来体积的比例越来越小,因此修正值也越来越小。

2.蒸汽压力温度传感器

液体的饱和蒸汽压随温度的变化而表现出一定的关系,因此可以通过测量液体的饱和蒸汽压推算出环境温度。蒸汽压温度计的一个最大的优势是在其使用的温度范围内其灵敏度非常高,适合于蒸汽压温度计的气体包括氧气、氮气、氢气和氦气。这些温度计比较精确,可以从临界点到三相点的温度区间内使用。因此,对于某些温度区间可能蒸汽压力温度计并不适合。例如从40 K至50K,这个温度区间比氖气的高,但比氧气和氮气的低。这些温度计的响应时间比较迅速,并且其准确度不受离子束和磁场的影响。蒸汽压力温度计的准确度非常高,常用来作为对其他温度计的标定。

3.金属电阻温度传感器

金属电阻温度传感器的原理是基于金属的电阻与温度之间的关系。一般来说,金属的电阻与温度成正比例方向的关系。根据Mattheissen定律,纯金属的总的电阻可以表示为:P = Po + P1。这里P是指总的电阻,P0是本身的残余电阻,是不依赖于温度,由材料本身的缺陷或杂质引起的电子散射而产生的电阻。P1是温度依赖的电阻。大约在20 K以下,纯金属的电阻只剩下残余电阻,而与温度关系不大。因此,在该温度范围内不能使用这种类型的电阻。

4.铂电阻温度传感器

铂电阻温度传感器是在20 K至800 K温度范围内精确度高和重复性好的温度计。它具有很多优势,例如,它的电阻与温度几乎呈线性。根据Lakeshore的PT一100温度计的温度、电阻曲线图。铂很容易获得较高的纯度,并且它的纯度在制造过程中可以重复。就像之前所提到的,在20 K以下,铂的灵敏度下降的非常快。在50K以上的时候,具有相对较低的磁场依赖性。在65 K以下温度继续增大。这些传感器也可以抵抗离子辐射的影响。

5.半导体电阻温度传感器

(1)锗温度传感器

锗温度传感器一小块单晶。其电阻随着温度的降低增长的非常快。锗温度传感器具有较高的稳定性,在无磁场存在的条件下最适合于测量0. 05-30K区间的温度。其测量的精度还受锗中所掺杂的其他原子的影响,并且其可以抗离子辐射的干扰。

(2)碳电阻温度传感器

因为在低温下具有较高的灵敏度,所以碳电阻传感器广泛应用于低温测量。1952年Allen

- Bradley公司的Clement和Quninell首次推出了商业化的碳电阻温度传感器。从那时起,碳电阻温度传感器开始用在1K至100K之间的温区测用。随着温度的降低,碳电阻温度计的电阻粗糙的上升,其灵敏度也在增加,典型的碳电阻温度传感器在1K时的电阻大约为1 千欧。

碳电阻温度传感器的可重复性较差,在4. 2K经过热循环以后,其测温误差在2%左右。如果需要进行精确测量,碳电阻温度传感器在每次热循环处理后都需要进行校正。在液氦温度范围,经过几次热循环以后可以观察到电阻会上升2%。出现这种现象的原因是因为在经过热冲击的时候,碳原子会发生重排。因为质量较轻,所以其温度响应时间短(在4. 2K时10ms) 。

(3)碳-玻璃电阻温度传感器

碳一玻璃电阻温度传感器是在碳电阻温度传感器基础上发展起来的,具有更高的稳定性和抗磁干扰性。它是通过在高纯碳里添加了孔状的玻璃制备的,它的温度一电阻性能在很长的温度区间内(1 K-325K)表现出一定的单调性。但是它在100K以上的温度其灵敏度比较低欧 /K),所以限制了它在高温区的使用。碳一玻璃电阻温度传感器在100K以下的可重复性非常高,并且其在10K以下的灵敏度也非常高。通过一定的校正,碳一玻璃温度传感器可以在高达20T的强磁场中使用。

6.热电偶温度传感器

热电偶温度传感器广泛应用在不同温度的测量,它必须要进行实时校正,因为热偶的整条线在有温差的环境中会对输出电压产生影响。不同的电线组成,结点甚至拉伸力都会对温度的显示产生影响。用于低温测量的温度计有很多种,最常用的热偶包括铜镍合金(T型),其中镍的含量大约在10%;铬镍合金(E型),其中镍的含量大约在10%;镍铬合金和镍铝合金(K型)等。E型热偶主要应用于3-1000K温区的测量。在T型和K型热偶中,E型热偶最有最高的灵敏度。

2.传感器的现状及发展趋势

传感器发展的三个阶段

传感技术的发展经历了三个阶段,即结构型传感器、物性型传感器和智能型传感器。

(1)结构型传感器以其结构部分变化或结构部分变化后而引起某种场的变化来反映被测量的大小及变化。经常使用的方法是以传感器机构的位移或力的作用使传感器产生电阻、电感或电容等值的变化来反映被测量的大小。

(2)物性型传感器利用构成传感器的某些材料本身的物理特性在被测量的作用下发生变化,从而将被测量转换为电信号或其他信号输出。例如,利用半导体材料在热辐射照射下会产生各种光效应的特性可制成光敏电阻、光敏三极管等光敏元件。利用二氧化锡材料在某些气体作用下,其阻值会发生变化的特性可以制成气敏元件。由于物性型传感器无可动部件,

灵敏度高,因此,可减少对被测对象的影响,从而能解决结构型传感器不能解决的某些参数及非接触测量的问题,扩大了传感器应用领域。

(3)智能型传感器把传感器与微处理器有机地结合成一个高度集成化的新型传感器。它与结构型、物性型传感器相比,能瞬时获取大量信息,对所获得的信息还具有信号处理的功能,使信息的质量大大提高,其功能也扩展了。以网络化智能传感器为例,它以嵌入式微处理器为核心,集成了传感单元、信号处理单元和网络接口单元,使传感器由单一功能、单一检测向多功能和多点检测发展;从被动检测向主动进行信息处理方向发展;从孤立元件向系统化、网络化发展;从就地测量向远距离实时在线测控发展,它已成为传感器技术发展的主要方向之一。

我国传感器的现状

我国传感器行业虽起步较早,但直到1986年“七五”开始才正式将传感器技术列入国家重点攻关项目,展开以机械敏、力敏、气敏、温敏、生物敏为主的5大敏研究。经过十几年的发展,现已形成了一定规模的产业格局,其特点有:

(1)厂商多,上规模的企业少。

(2)地区发展不平衡。

(3)品种多,档次不高。目前国内共有主要传感器产品1000多种,国产敏感元器件950种,基本涵盖了信息采集的各种领域。但是,水平还处在国际80年代末或90年代初的水平。

(4)生产研发多以大学和研究所为依托,专业公司少。

当然,从80年代开始发展传感器技术至今,也取得了一些骄人的成绩,虽然规模有限但也给了我们信心,看到前途的光明。

(1)综合实力得到加强目前全行业职工总数约42万人,固定资产5亿多元,共引进50多条生产线与专用设备。传感器行业产值每年都以(10~15)%的速率增长。

(2)拓宽了开发领域已经由过去的少数品种扩展到光敏、热敏、力敏、电压敏、磁敏、气敏、湿敏、声敏、射线敏、离子敏、生物敏等各种传感器,以及变送器、二次仪表等多种类、多形式产品,与国外研制领域相当。同时形成了近40个院校、研究所的骨干科研队伍。

(3)扩大了生产规模热敏电阻器、ZnO压敏电阻器、可燃性气体传感器、光电二极管等十几个品种已形成一定规模的生产能力。经过“九五”阶段的努力,已建成敏感技术国家重点实验室,包括南北两部分(北方在北京中科院电子所,南方在上海冶金所)。此外,还建立了传感器国家工程研究中心,并形成了4个生产基地:

(1)湿敏传感器。主要以中科院新疆物理所和成都715厂为主,年产量达到2000~3000万只,有少量出口。

(2)电压敏传感器。主要以西安无线电二厂为主,年产量1000~2000万只。

(3)集成霍尔开关。南京中旭微电子有限公司(从南京半导体总厂分出),生产能力3000~4000万只/年。

(4)石英谐振称重传感器。深圳清华传感设备有限公司,产值1000多万元。产品以出口为主。

传感器的发展方向与途径

1.发展方向

(1)向高精度方向发展随着自动化生产程度的不断提高,对传感器技术的要求也在不断提高,必须研制出具有灵敏度高、精确度高、响应速度快、互换性好的新型传感器以确保生产自动化的可靠性。

(2)向高可靠性、宽温范围发展传感器的可靠性直接影响到电子设备的性能。研制高可靠性、宽温度范围的传感器将是永久性的方向。大部分传感器的工作范围都在-20℃~70℃ ,在军用系统中要求工作温度在-40℃~85℃ ,而汽车、锅炉等场合对传感器的温度要求更高,因此发展新兴材料(如陶瓷)的传感器将很有前途。

(3)向微型化发展以往的传感器由于尺寸大,可以用经典物理知识很好地描述。微传感器敏感元件的尺寸一般为微米级,所以随着传感器的微小型化,量子效应将越来越起支配作用。在将来,把光波和电子波统一在一起的统一波将可以更好地揭示传感器的工作规律。

(4)向模糊识别方向发展从传感的模式看,微观信息由人工智能完成,感觉信息由神经元完成,宏观信息由模糊识别完成。未来的传感器将突破零维、瞬间的单一量检测方式,在时间

上实现广延,空间上实现扩张(三维),检测量实现多元,检测方式实现模糊识别。

2.发展途径

传感器的核心部件是敏感元件,其作用是感受、检测未知量。开发新型传感器,其途径大致有以下几个方面:

(1)采用新材料由于材料科学的进步,新功能材料的开发将导致新的传感器的出现。半导体材料研究的进展,促进了半导体传感器的迅速发展;光导纤维的问世,产生了各种光纤传感器。

(2)采用新的加工方法随着生产工艺水平的不断提高,新的加工方法不但使传感器的性能指标得以提高,应用范围得以扩大,还可加工出原有工艺不能制造的新型传感器。采用集成工艺和激光电阻微调技术,可制成集成温度传感器等。

(3)采用新的原理随着各相关学科的发展,人们对非电量转化为电学量的认识逐步加深,它们之间新的转换关系必将导致新型传感器的产生。

(4)采用新的构思许多古老的原理或设计,在巧妙的构思下可以产生出新的传感器。对热敏感的热敏电阻可做成温度传感器。也可把酶固定在电阻表面,用来检测酶反应中产生的热量,根据酶反应的专一性,就可测定酶的底物的含量,从而做成各种酶热敏电阻生物传感器。欧美传感器发展趋势

传感器技术是现代科技的前沿技术,许多国家已将传感器技术与通信技术和计算机技术列为同等重要的位置,称之为信息技术的三大支柱之一。传感器技术作为国内外公认的具有发展前途的高新技术,正得到空前迅速的发展,并且在相当多的领域被越来越广泛地利用。

目前,全世界约有40个国家从事传感器的研制、生产和应用开发,研发机构达6000余家,其中以美、德、日、俄等国实力较强。" SENSOR + TEST”传感器展览会与“SENSORS EXPO”传感器展览交流会是欧洲和北美地区最大和最专业的传感器和传感器系统集成展会,汇集欧州与美国的绝大部分传感器与仪表制造厂商,其展出产品在很大程度上代表了当前全球范围内先进传感器的发展趋势。

2011年的“SENSOR + TEST”传感器展览会和2012年的“SENSORS EXPO”传感器展出

的传感器种类主要有:MEMS传感器、光纤传感器、气体传感器和无线传感器等。从目前各类传感器的应用领域范围和市场销售增长情况可以预测出:在未来10年甚至更长的时间,MEMS 传感技术、光纤传感技术、气体传感技术及无线传感技术仍将是传感器领域的发展重点,而且其应用将渗透各个领域。

(1)MEMS传感器

MEMS ( micro electro mechanical systems)技术是采用微制造技术,在一个公共硅片基础上整合了传感器、机械元件、执行器(actuator)与电子元件。MEMS通常会被看作是一种系统单晶片(SoC),它让智能型产品得以开发,并得以进人很多的次级市场,为包括汽车、保健、手机、生物技术、消费性产品等各领域提供解决方案。MEMS技术已被认为是21世纪最有前途的技术之一。

相对于传统的传感器,MEMS技术传感器具有体积小、质量轻、成本低、功耗低、可靠性高、技术附加值高,适于批量化生产、易于集成和实现智能化等特点,这使得它们的应用数量和范围大大扩大,国内外MEMS厂商的数量在急剧增加,在航空航天、军事领域、汽车领域等都得到了广泛的应用。

目前市场上的MEMS传感器种类很多,包括惯性、压力、流量、温度传感器等,其主要应用领域包括军事、消费电子、汽车、航空、航天、医疗健康等。

美国飞思卡尔(Freescale)公司是用于汽车领域的MEMS传感器的主要供应商,生产的产品主要有:MEMS卫星压力传感器、MEMS卫星加速度传感器、MEMS惯性传感器和MEMS低g传感器。

医疗健康领域的MEMS传感器主要包括:非接触式心电图测量传感器和惯性测量传感器。其中,研制非接触式心电图测量传感器的有英国普莱思( Plessey)公司,主要采用非接触的方式来测量人体心电图情况,例如,可以将该传感器安装在椅子上,通过与衣服的接触来测量人体心电图情况。研制惯性测量传感器的有美国YEI技术公司,主要可用于监测引起关节损伤的撞击,具有高精确度、高可靠性和成本效益等优势。

用于航空航天领域的MEMS传感器主要包括:MEMS温度传感器、MEMS压力传感器、MEMS 油液传感器、MEMS加速度传感器等。目前应用在航空航天的MEMS压力传感器大部分出自美国Kulite公司和AST公司,主要用于机械液压系统、发动机/推进器、润滑油系统、冷却系

统等。Kulite公司的压力传感器精度<0. 1 % FS,可耐500一600℃的高温。AST公司生产的压力传感器其精度<士% BFSL,稳定性小于<1 0. 25% FS(典型值)。

MEMS传感器在消费电子领域中主要应用于运动/坠落检测、导航数据补偿、游戏/人机界面、电源管理、GPS增强/盲区消除、速度/距离计数等方面。这些MEMS传感器在很大程度上提高了用户体验,并带来了全新的电子消费产品。其中加速传感器是该市场中第一大应用产品。除此之外,陀螺仪也增长迅速,已经成为继加速度传感器后第二大应用产品。

MEMS传感器还可以用于机器控制、测量仪器、仪表等领域,主要用来测量压力和加速度。其中应用在主动(制导)悬浮系统的压力传感器主要出自美国SDM ( silicon designs MEMS ),该公司生产的MEMS加速度传感器,具有耐高温、高性能的优势,在高温环境下可连接100 m以上的线缆,大大增加了产品的灵活性。除此之外,该公司生产的MEMS加速度传感器,具有小尺寸、轻体积,可在-55~+125℃的环境下工作的优势。

根据电子产业市场研究与信息网路的资料,MEMS传感器的平均年增长率高于20%,并预计在2015年超过150亿美元。目前,国外MEMS传感器技术总体发展趋势是向提高精度、全数字化电路及高可靠性方向发展,其应用领域正在不断得以拓展,非常值得关注。

MEMS传感器技术发展的主要方向有:多功能化;多传感器融合;开发新的架构;测试手段的标准化;封装形式不断发展。

(2)光纤传感器

伴随着光导纤维和光纤通信技术发展而出现的光纤传感器,其传感灵敏度要比传统传感器高许多倍,而且它可以在高电压、大噪声、高温、强腐蚀性等很多特殊环境下工作,还可以与光纤遥感、遥测技术配合,形成光纤遥感系统和光纤遥测系统。光纤传感技术是许多经济、军事强国争相研究的高新技术,它可广泛应用于国民经济的各个领域和国防军事领域。

光纤传感器在航空工业应用的主要优势包括:不受电磁干扰/无线电频率干扰、抗腐蚀、体积小、耐高温、高精度、本质安全等。

光纤传感器的应用领域非常广泛,主要应用于结构健康监测、热炉监测、电力线路温度监测、风速监测、大型发电机状态监测、飞机应变、火灾预警等多个应用领域。由于光纤传感器在一些特殊领域具有不可替代性,必将成为未来发展的热点,世界上已有多家传感器制造商开始研发制造光纤传感器。

卢森堡FiberSensing公司的光纤传感器主要有光纤应变传感器、分布式光纤传感器、光纤振动监测传感器、温度监测传感器和光纤式应变传感器。该公司生产的光纤应变传感器可实现收敛性连续监测,并且无需在管道内安装电气设备,带有数据管理网络接口和多达100个监测点,非常适用于结构健康监测;分布式光纤传感器用于电力线路温度监测,可以优化电力分布网络,实现高压架空线的下垂控制以及长距离多点温度测量,无需现场维护,还可以用于热炉监测,可实现每只温度传感器同时进行3个测点的温度测量;光纤振动监测传感器利用光学引线和多路复用器,实现振动分析和报警;光纤温度传感器利用光学引线和分离器,实现热分析和报警;光纤式应变传感器可以用于风速监测,该类传感器可以实现嵌人式和表面安装,静态和动态应变均能实现高精度测量。

美国Luna检测公司、Luna能源公司和LockheedMartin公司联合研制了一种光纤分布式应变传感系统。该传感系统利用光频率反射计解调已经在光纤中心刻录的多路光栅传感器的发射信号,进而实现飞机应变的实时在线监测。

加拿大OZ光学公司布里渊分布式温度传感器( DTS)可用于火灾预警。该光纤温度传感器是基于受激布里渊散射的原理制成的,具有精密的光学传感系统。该光纤温度传感器具有成本低、实时在线测量、多通道检测、空间分辨率优良、精度高等优点,其监测范围高达100 km。除此之外,分布式温度传感提供了测量整条光纤温度变化的直接的方法。

未来光纤传感器市场发展潜力巨大,其技术发展的主要方向有:全光纤微型化;多参数、实时化;阵列化、网络化;集成化、多功能化;高精度、实用化。

(3)无线传感器

无线传感器分为两种概念:无线传感模块和无线传感网络。

微机电系统和低功耗高集成数字设备的发展,使得低成本、低功耗、小体积的传感器节点得以实现。这样的节点配合各类型的传感器,可组成无线传感器网络(WSN)。无线传感网络是一种开创了新的应用领域的新兴概念和技术,广泛应用于战场监视、大规模环境监测和大区域内的目标追踪等领域。

当前国内外出现了多种无线传感器网络节点的硬件平台。典型的节点包括Mica系列、Telos, IRIS和Imote2等。各平台的主要区别是采用了不同的处理器和无线通信模块。在国外,IZ'P(美国再生能源办公室工业技术计划)在2002年发布的报告《21世纪工业无线技

术》中引用了总统科技顾问的断言:无线传感器可将能源利用率提高10%,将能源损耗减少25 %。

无线传感器和无线传感器网络主要应用于航空航天、医疗健康、消费电子、汽车领域、工业领域等。

德国DS ( Dialog Semiconductor)公司DECT ULE(超低功耗)标准的无线器件SmartPulse 套件已应用于消费电子。SmartPulse套件是一组满足DECT ULE(超低功耗)标准的集成电路,其中包括SC 14 WSMDATA和SCI4CVMDECT两款无线数据传感器,这两种芯片都可以只用一节3A电池正常工作IO年以上,另外,采用DECT ULE标准的无线网络简单易用、安装方便。其采用简单的星状结构,通过简单的网络即可实现全屋覆盖,可以自主配置,不需要消费者进行复杂的设置,无需网络规划,无干扰问题,广泛地应用于家庭自动化、健康护理、能源监控等消费性应用领域。

美国飞思卡尔(Freescale)公司研制的ZigBee无线传感器已应用于智能家居。该芯片是全球首个实现了集成标准ARM内核和强大的32位高速处理计算能力,内置Flash ,SRAM和ROM,及AD/DA转换等大量外围电路,IEEE802. 15. 4-ZigBee2006高频电路和最新ZigBee 2007/PRO协议栈。除此之外,该传感器功耗很低,使用普通AA碱性电池,可以实现无线传感器网络低功耗节点工作10年无需更换电池。

未来,无线传感器和无线传感器网络将成为未来新型十大技术之首,其应用和发展将引起一场划时代的军事技术革命和未来战争的变革。无线传感器市场增长强劲,2010年为5亿3200万美金,2011年已达7亿9000万美金的规模。此市场以复合年成长率( CAGR)43. 1%扩大,到2016年预计达到47亿美金的规模。其中,所占市场份额最大的为工业领域,其次为汽车和能源管理。

未来无线传感器技术的研究方向主要有:传感网络的无线互联;低功耗;无线传感模块对信息的移动式采集;自供能源;寿命增加。

(4)气体传感器

气体传感器是以气敏器件为核心组成的、能把气体成分转换成电信号的装置。气体传感器的基本性能是能按要求检测出气体的成分、浓度等参数,不受其他气体或物质的干扰;可以重复多次使用,有较长的使用寿命和稳定性;动态特性好等。

气体种类繁多,性质各异,因此,气体传感器种类也很多,按检测原理可分为电化学法、电气法、光学法、化学法几类。

气体传感器主要用于在煤矿、石油、化工等领域,对煤气、天然气、液化气等可燃性气体进行气体泄漏、浓度等实时在线监测,可早发现事故隐患,避免重大灾害的发生。

日本费加罗公司生产的催化燃烧式化学传感器,用于可燃气场所的监控与报警。该催化燃烧式化学传感器可测量天然气、液化气、氢气、一氧化碳等气体的泄露情况,进而实现这些气体的泄露报警控制。该生产的空气质量气体传感器也可用于可燃气的报警。该传感器属N型半导体类气体传感器,其主要成分是二氧化锡烧结体。当吸附还原性气体(例如液化气、天然气、氢气、一氧化碳、有机溶剂蒸汽等)时,电导率上升。当恢复到清洁空气中时,电导率恢复。TGS传感器就是将这种电导率变化,以输出电压的方式取出,从而检测出气体的浓度。

美国EO ( Eleetro-Optics)科技公司生产的气体传感器可用于空气质量监测。该传感器基于激光散射原理,可以无缝测量气溶胶粒子浓度和粒度分布,其测量对象为:直径10一10000 nm 的冷凝粒子。

荷兰爱万提斯(Avantes)公司研发的AvaRaman系列拉曼散射型气体传感器可用于环境监测。该系列传感器共有4种型号,分别为:AvaRaman-PRB , AvaRa-man-PRB-FP, AvaRaman-PRB-FIP, AvaRaman-PRB-FC,其中AvaRaman-PRB-FIP传感器可承受200℃的高温,AvaRaman-PRB-FC传感器可承受500℃的高温和3000 psi气压,极大地扩宽了气体传感器的应用环境。

美国AppliedSensor公司研制的电化学式氢过程传感器已应用于航空航天领域,主要用于检测飞机引擎盖下,发动机舱氢气泄漏以及氢燃料站氢气的泄漏等。该传感器具有高灵敏度、快速响应时间、低功耗、长期稳定性和可靠性、长寿命、低交叉灵敏度等优点。

气体传感器的研究涉及面广、难度大,属于多学科交叉的研究领域。未来,要切实提高气体传感器各方面的性能指标需要多学科、多领域研究者的协同合作。综合气体传感器研究现状和市场对气体传感器的需求情况,未来气体传感器技术发展的主要方向有:新气敏材料与制作工艺的研究开发;新型气体传感器的研制;智能化气体传感器的发展;向低功耗、多功能、集成化方向发展。

传感器的宏观技术特点分析

(1)传感器尺寸愈加减小、功耗及成本进一步降低

各种控制仪器设备的功能越来越强,要求各个部件体积越小越好,因而传感器本身体积也是越小越好。从国外发展趋势看,采用新型封装结构及其技术,建立MEMS封装单元库,注重成本的新封装结构与MEMS研发之间的进一步整合,成为另一个发展趋势。

(2)由器件级向系统级发展

展会展出的器件级产品较少,大部分都是系统级的,反映了主流的技术方向正在从单一器件走向系统融合。

MEMS本身具备有系统化的概念,由于MEMS制备工艺与CMOS等工艺难以完全兼容,封装的过程往往需要将MEMS芯片与其他电路集成在一个封装体内,形成一定的功能,具有系统级封装的内涵。

(3)智能化和多传感器融合趋势进一步发展

智能化是传感器的主要发展趋势之一,仅有信息检测能力的传感器将越来越不能满足应用需求,其发展趋势是传感器技术与通信技术、计算机技术等进行智能的结合。智能化传感器是将一个或多个敏感元件、精密电路、微处理器、通信接口、智能软件等相结合,并封装在一个组件内,将具有信息采集、信息处理、数据存储、自诊断(自检各部分是否正常,及时发现故障部件并通知主系统)、自补偿(通过软件对传感器的非线性、温漂、时漂等进行自动补偿)、在线校准(操作者可灵活改变输人零值或标准量值,传感器可自动校准)、逻辑判断、双向通信、数字输出等功能,极大地提高传感器的准确度、稳定性和可靠性。

在航空领域,未来航空工业的发展将对测控传感器提出更多的需求,以MEMS、无线传感、光纤传感和气体传感为基础的传感器技术是重要的发展方向,智能传感器、光电传感器以及传感器系统等与它都有着技术上密切的联系,它将带动与促进航空传感器技术的更新与发展。但是,采用新材料、新工艺、新技术对传统的传感器进行改进和发展,仍是航空测控传感器发展的重要方向。

3.传感器的精度问题

传感器是自动化控制中重要部件之一,它的精度直接影响过程控制的精度。影响传感器精度的因素很多、其中最主要的是传感器的零点误差、零点漂移、非线性误差、温度漂移及供电直流稳压电源稳定度等因素。为提高传感器的精度,采用下列方法消除上述诸影响因素。消除传感器零点误差和零点漂移的方法

所谓零点误差就是当无任何物理量输入时,传感器的输出值并非等于零,这个值叫作零点误差。零点漂移主要由于机械蠕变或载流子扩散不稳定现象所引起的零点时间漂移。

用零点校正电路消除零点误差和零点漂移

图(1)用调零电桥抵消传感器的零点输出,它通常是由高稳定的电阻(R1. R2. R3. R4. R5.)多圈电位器w。及直流稳压电源E。组成,申接在传感器输出和测量系统之间。通过调节调零电桥的电位器Wo,改变桥路不平衡输出电压U2,使之和传感器空载时输出电压U1大小相等,极性相反,从而使传感器在空载时输出电压U。为零。达到消除零点误差和零点漂移。

提供直流供电电源的稳定性方法

传感器所需要的直流供电电源要求在一定范围内有平稳和均匀的输出,以保证传感器输出电压的精度要求,更重要是要求直流供电电压的时漂和温漂很小,其稳定度一般要求高于传感器精度几倍,甚至一个数是级,否则由于供电直流电压不稳定而影响传感器的输出性能。

当供电电源距离与传感器的安装位置较远时,为了减少线路损耗,其连线一般采用铜线,但铜线的电阻温度系数较大,至使传感器输入端的电压将由铜线电阻随温度的变化而变化。这一点在环境温度变化较大地区尤为显著。解决的办法除了上述采用传感器恒流源供电外,目前更多的采用六线制长线补偿法。

统一和标准化保证传感器精度

基于传感器具有高度离散性、多样性的技术特点,更要强调把统一和标淮化列为传感器精度技术的基础研究内容。

由于航天型号的被测参数数量大、变化、范围宽,一项参数的检测可供选用的传感器方案有多种多样,为了使方案选择时达到总体优化,需要统一标准。

为了使系统内的传感器具有互换性和灵活性,为了传感器在制造与标定过程中的质量管理,需要统一的约定文件;

为了交换数据和处理数据;也为了提高经济效益。在制订标准时,要注意标准的科学性、配套性和领先性,要努力提高标准质量,使标准更好地起指导作用。

从统一精度的标准化要求考虑,“八五”期间还应开展以下标谁化研究:

传感器综合精度标准化;

传感器、变换器接口标淮;

环境因素与传感器标校实验指南;

综合环境实验规程等。

传感器的标校

传感器的工作特点决定了对其进行的试验要求十分严格,这些要求也就是要考核传感器的结构和精度特性是否符合规定的技术要求。

通常把标校与环境试验分开进行。标校是在室内标谁条件下进行的,由于室内标谁条件与实际工作环境相差甚远,致使标校结果的使用价值受到种种责难。

标校传感器时要考虑环境因素的影响,标校时要加入环境因素,开展多因素实验研究,设法减少环境因素对传感器影响,这是当前传感器精度技术研究的重要课题。

敏感元件的质量控制

方案正确选定后,敏感元件的质量就是关键,从材料选择、物性效应应用到加工工艺方

法和检测技术都要作通盘的认真的设计和管理。我国航天系统各型号各种试验使用的大量传感器,现在还是金属敏感材料、机械加工方法占主导地位,从资料上看到,美国航天飞机上装备的传感器也是这种方案,这是由于技术成熟,能满足航天系统对传感器的各种要求。显然,这类传感器的敏感元件会继续发展并获得广泛的应用。同时由于新技术的迅速发展,许多新型敏感元件发展得更加迅速,并已在汽车、民用电器等方面得到广泛的应用。其中居于突出地位的是硅材料。美国Nove, Kulite. Motorola等公司年产硅压力传感器数百万只,供汽车工业配套。其次,石英、陶瓷、SOS, MOM等薄膜敏感元件也发展迅速,这是由于:硅、石英和多种薄膜材料是一些机电性能优异的敏感元件材料,其生产工艺成熟,结构稳定;

微电子工艺(如光刻、扩散、薄膜)易于移植来制造微型敏感元件;

适于批量生产,成品率高,一致性好,成本低;

易于实现传感器小型、轻量和集成化。

在国外,上述敏感元件已经做得很好,但就我国目前水平看,相当数量的敏感元件其稳定性和可靠性还不理想,性能有待改进,除原材料质量问题外,就传感器技术讲其原因可以归纳为二条:①工艺技术尚未臻完善,缺乏完善的质量控制手段;②设计上未采用现代设计技术和有效的补偿。因此新型敏感元件的质量控制技术是新型传感器精度与可靠性上水平的关键。对此,还需要下大力气去解决。

精度的结构防护技术

航天传感器工作在失重、真空、不稳定热作用以及振动、冲击、噪声、辐射、腐蚀等严峻苛刻的工作条件下,为了保证必要的使用精度,对上述影响因素通常采取的措施是减少传感器对影响因素的灵敏度,或者是减少影响因素本身对传感器的影响强度(功率)。两者区别点是,前者是在选择设计方案,选用敏感元件及其补偿方案时就要加以考虑。后者在确定设计方案之后,从结构设计上考虑如何对最强的影响因素进行抑制,我们称之为防护技术。

影响因素可以看作一种干扰能量,为了抑制它,必须获得能量。通常获得这种能量的方式有两种:①不需要由电源获得附加能量来抑制影响因素。此称为无源防护;②需要由电源获得附加能量来抑制影响因素。此称为有源防护;

MEMS传感器的现状及发展前景

M E M S传感器的现状及 发展前景 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

毕 业 设 计 指 导 课 论 文 MEMS传感器的现状及发展前景 摘要:MEMS传感器是随着纳米技术的发展而兴起的新型传感器,具有很多新的特性,相对传统传感器其具有更大的优势。在追求微型化的当代,其具有良好的发展前景,必将受到各个国家越来越多的重视。文章首先介绍了MEMS传感器的分类和典型应用,然后着重对几个传感器进行了介绍,最后对MEMS传感器的发展趋势与发展前景进行了分析。 关键词:MEMS传感器;加度计;陀螺仪;纳米技术;微机构;微传感器StatusandDevelopmentProspectofMEMSSensors Abstract:MEMSsensorisanewtypeofsensorwiththedevelopmentofnanotechnology.Ithasma nynewfeatures,whichhasagreatadvantageovertraditionalsensors.Inthepursuitofminia turizationofthecontemporary,itsgoodprospectsfordevelopment,willbesubjecttomorea

ndmoreattentioninvariouscountries.Firstly,theclassificationandtypicalapplicatio nofMEMSsensorareintroduced.Then,severalsensorsareintroduced.Finally,thedevelopm enttrendanddevelopmentprospectofMEMSsensorareanalyzed. Keywords:MEMSsensor;accelerometer;gyroscope;nanotechnology;micro- mechanism;micro-sensor 目录 一、引言 MEMS传感器是采用微机械加工技术制造的新型传感器,是MEMS器件的一个重要分支。1962年,第一个硅微型压力传感器的问世开创了MEMS技术的先河,MEMS技术的进步和发展促 进了传感器性能的提升。作为MEMS最重要的组成部分,MEMS传感器发展最快,一直受到各发达国家的广泛重视。美、日、英、俄等世界大国将MEMS传感器技术作为战略性的研究领域之一,纷纷制定发展计划并投入巨资进行专项研究。 随着微电子技术、集成电路技术和加工工艺的发展,MEMS传感器凭借体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成以及耐恶劣工作环境等优势,极大地促进了传感器的微型化、智能化、多功能化和网络化发展。MEMS传感器正逐步占据传感器市场,并逐渐取代传统机械传感器的主导地位,已得到消费电子产品、汽车工业、航空航天、机械、化工及医药等各领域的青睐。

生物传感器的研究现状及应用

生物传感器的研究现状及应用 生物传感器?这个熟悉但又概念模糊的名词最近不断出现在媒体报道上,生物传感器相关的研究项目陆续获得巨额的研究资助,显示出越来越受重视的前景。要掌握生命科学研究的前研信息,争取好的研究课题和资金,你怎能不了解生物传感器? 让我们来看看生物通最近的一些报道: 英国纽卡斯尔大学科学家研发了可用于检测肿瘤蛋白以及耐药性MASA细菌的微型生物传感器。该系统利用一个回旋装置来检测,类似导航系统和气袋的原理。振荡晶片的大小类似于一颗尘埃尺寸,有望可使医生诊断和监测常见类型的肿瘤,获得最佳治疗方案。该装置可以鉴定肿瘤标志物-蛋白以及其它肿瘤细胞产生的丰度不同的生物分子。该小组下一步目标是把检测系统做成一个手持式系统,更加快速方便地检测组织样品。欧共体已经拨款1200万欧元资金给该小组,以使该技术进一步完善。 苏格兰IntermediaryTechnologyInstitutes计划投资1亿2千万英镑发展“生物传感器平台(BiosensorPlatform)”——一种治疗诊断技术。作为将诊断和治疗疾病结合在一起的新兴疗法,能够在诊断的同时,提出适合不同病人的治疗方案,可以降低疾病诊断和医学临床的费用与复杂性,同时具备提供疾病发展和药品疗效成果的能力。目前该技术已被使用在某些乳癌的治疗上,只需在事前做些特殊的测试,即可根据结果决定适合的疗程。这个技术更被医学界视为未来疾病疗程的主流。 来自加州大学洛杉矶分校的研究者使用GeneFluidics开发的新型生物传感器来鉴定引起感染的特定革兰氏阴性菌,该结果表明利用微型电化学传感器芯片已经可以用于人临床样本的细菌检查。GeneFluidics'16-sensor上的芯片包被了UCLA设计的特异的遗传探针。临床样本直接加到芯片上,然后其电化学信号被多通道阅读器获取。根据传感器上信号的变化来判断尿路感染的细菌种类。从样品收集到结果仅需45分钟。比传统方法(需要2天时间)

传感器的发展前景

传感器的发展前景 近年来,传感器正处于传统型向新型传感器转型的发展阶段。传感器正向着微型化、高精度、高可靠性、低功耗、智能化、数字化发展。这不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。 向微型化发展:各种控制仪器设备的功能越来越大,要求各个部件体积能占位置越小越好,因而传感器本身体积也是越小越好,这就要求发展新的材料及加工技术,目前利用硅材料制作的传感器体积已经很小。如传统的加速度传感器是由重力块和弹簧等制成的,体积较大、稳定性差、寿命也短,而利用激光等各种微细加工技术制成的硅加速度传感器体积非常小、互换性可靠性都较好 向高精度发展:随着自动化生产程度的不断提高,对传感器的要求也在不断提高,必须研制出具有灵敏度高、精确度高、响应速度快、互换性好的新型传感器以确保生产自动化的可靠性。目前能生产万分之一以上的传感器的厂家为数很少,其产量也远远不能满足要求。 向高可靠性、宽温度范围发展:传感器的可靠性直接影响到电子设备的抗干扰等性能,研制高可靠性、宽温度范围的传感器将是永久性的方向。提高温度范围历来是大课题,大部分传感器其工作范围都在-20℃~70℃,在军用系统中要求工作温度在-40℃~85℃范围,而汽车锅炉等场合要求传感器的温度要求更高,因此发展新兴材料(如陶瓷)的传感器将很有前途。 向微功耗及无源化发展:传感器一般都是非电量向电量的转化,工作时离不开电源,在野外现场或远离电网的地方,往往是用电池供电或用太阳能等供电,开发微功耗的传感器及无源传感器是必然的发展方向,这样既可以节省能源又可以提高系统寿命。目前,低功耗损的芯片发展很快,如T12702运算放大器,静态功耗只有1.5μA,而工作电压只需2~5V。 向智能化数字化发展:随着现代化的发展,传感器的功能已突破传统的功能,其输出不再是一个单一的模拟信号(如0~10mV),而是经过微电脑处理好后的数字信号,有的甚至带有控制功能,这就是所说的数字传感器。智能传感器具有信息处理功能的传感器。智能传感器带有微处理机,具有采集、处理、交换信息的能力,是传感器集成化与微处理机相

(完整版)传感器的目前现状与发展趋势综述

传感器的目前现状与发展趋势 吴伟 1106032008 材控2班 摘要:传感器是高度自动化系统乃至现代尖端技术必不可少的一个关键组成部分。传感器技术是世界各国竞相发展的高新技术,也是进入21 世纪以来优先发展的十大顶尖技术之一。传感器技术所涉及的知识领域非常广泛,其研究和发展也越来越多地和其他学科技术的发展紧密联系。本文首先介绍了传感器的基本知识和传感器技术的发展历史。之后,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究状况。最后,展望了现代传感器技术的发展和应用前景。 关键词:传感器技术;传感器;研究现状;趋势 引言 当今社会的发展,是信息化社会的发展。在信息时代,人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理。而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统。它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置,一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的“大脑”,把通信系统比喻为传递信息的“神经系统”,那么传感器就是感知和获取信息的“感觉器官”。 传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置。现代传感器技术具有巨大的应用潜力,拥有广泛的开发空间,发展前景十分广阔。 1 传感器的基本知识

1.1 传感器的定义和组成 广义地说,传感器是指将被测量转化为可感知或定量认识的信号的传感器。从狭义方面讲,感受被测量,并按一定规律将其转化为同种或别种性质的输出信号的装置。传感器一般由敏感元件、转换元件、测量电路和辅助电源四部分组成,其中敏感元件和转换元件可能合二为一,而有的传感器不需要辅助电源。 1.2 传感器技术的基本特性 在测试过程中,要求传感器能感受到被测量的变化并将其不失真地转换成容易测量的量。被测量有两种形式:一种是稳定的,称为静态信号;一种是随着时间变化的,称为动态信号。由于输入量的状态不同,传感器的输入特性也不同,因此,传感器的基本特性一般用静态特性和动态特性来描述。衡量传感器的静态特性指标有线性度、灵敏度、迟滞、重复性、分辨率和漂移等。影响传感器的动态特性主要是传感器的固有因素,如温度传感器的热惯性等,动态特性还与传感器输入量的变化形式有关。 2 传感器技术的发展历史与回顾 传感器技术是在20世纪的中期才刚刚问世的。在那时,与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段,并没有投入到实际生产与广泛应用中,转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目的科研研发以及各国军事技术、航空航天领域的试验研究。然而,随着各国机械工业、电子、计算机、自动化等相关信息化产业的迅猛发展,以日本和欧美等西方国家为代表的传感器研发及其相关技术产业的发展已在国际市场中逐步占有了重要的份额。 我国从20世纪60年代开始传感技术的研究与开发,经过从“六五”到“九五”的国家攻关,在传感器研究开发、设计、制造、可靠性改进等方面获得长足的进步,初步形成了传感器研究、开发、生产和应用的体系,并在数控机床攻关中取得了一批可喜的、为世界瞩目的发明专利与工况监控系统或仪器的成果。但从总体上讲,它还不能适应我国经济与科技的迅速发展,我国不少传感器、信号

传感器技术的研究现状

传感器技术综述 Luqingsong@https://www.sodocs.net/doc/6a3459046.html, 摘要:本文简介了传感器技术的原理、分类和应用,以位移传感器为例概述了传感器技术的研究现状,在此基础上分析了我国传感器技术发展中存在的问题和解决方法,分析了传感器技术的发展方向。 关键词:传感器技术应用研究发展方向 1传感器 传感器是一种检测装置,一般由敏感元件、传感元件和其他辅助件组成,有时也将信号调节也转换电路、辅助电源作为传感器的组成部分。能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器通常可以按照一系列方法进行分类。根据用途分类,传感器常以测别的物理量命名,如位移传感器、速度传感器、温度传感器、压力传感器等;根据工作原理分类,传感器可以依据工作原理进行命名,如振动传感器、磁敏传感器、生物感器等;按输出信号,可分为模拟传感器和数字传感器等;还可按照传感器的制造工艺、构成、作用形式等进行分类。[1] 随着微电子技术、微机械加工技术、光电科学以及当代生物科学等高新技术的推动下,传感器己经从过去单一功能转变为功能多样、科技含量高的新型产品。传感器技术是当前代表国家综合科研水平的重要技术,传感器技术的具体应用是传感器技术转化的重要途径和方法。其所涉及的知识领域非常广泛,研究和发展也越来越多地和其他学科技术的发展紧密联系。 2主要传感技术分类[2][5] 2.1光电传感技术 光电式传感器是以光为测量媒介、以光电器件为转换元件的传感器,它具有非接触、响应快、性能可靠等卓越特性。随着光电科技的飞速发展,光电传感器己成为光电传感器己成为各种光电检测系统中实现光电转换的关键元件,并在传感器应用中占据着重要的地位,其中在非接触式测量领域更是扮演者无法替代的角色。光电传感器工作时,光电器件负责将光能(红外辐射、可见光及紫外辐射)信号转换为电学信号。光电器件不仅结构简单、经济性好,且具有响应快、可靠性强等优势,在自动控制、智能化控制等方面应用前景十分广阔。此外,光电传感器除了对光学信号进行测量,还能够对引起光源变化的构件或其它被测量进行

国内外研究现状及发展趋势

国内外研究现状及发展趋势 世界银行2000年研究报告《中国:服务业发展和中国经济竞争力》的研究结果表明,在中国有4个服务性行业对于提高生产力和推动中国经济增长具有重要意义,它们是物流服务、商业服务、电子商务和电信。其中,物流服务占1997年服务业产出的42.4%,是比重最大的一类。进入21世纪,中国要实现对WTO缔约国全面开放服务业的承诺,物流服务作为在服务业中所占比例较大的服务门类,肯定会首先遭遇国际物流业的竞争。 物流的配送方式从手工下单、手工核查的方式慢慢转变成现今的物流平台电子信息化管理方式,从而节省了大量的人力,使得配送流程管理自动化、一体化。 当今出现一种智能运输系统,即是物流系统的一种,也是我国未来大力研究的方向。它是指采用信息处理、通信、控制、电子等先进技术,使人、车、路更加协调地结合在一起,减少交通事故、阻塞和污染,从而提高交通运输效率及生产率的综合系统。我国是从70年代开始注意电子信息技术在公路交通领域的研究及应用工作的,相应建立了电子信息技术、科技情报信息、交通工程、自动控制等方面的研究机构。迄今为止以取得了以道路桥梁自动化检测、道路桥梁数据库、高速公路通信监控系统、高速公路收费系统、交通与气象数据采

集自动化系统等为代表的一批成果。尽管如此,由于研究的分散以及研究水平所限,形成多数研究项目是针对交通运输的某一局部问题而进得的,缺乏一个综全性的、具有战略意义的研究项目恰恰是覆盖这些领域的一项综合性技术,也就是说可以通过智能运输系统将原来这些互不相干的项目有机的联系在一起,使公路交通系统的规划、建设、管理、运营等各方面工作在更高的层次上协调发展,使公路交通发挥出更大的效益。 1.国内物流产业发展迅速。国内物流产业正处在前所未有的高速增长阶段。2008年,全国社会物流总额达89.9万亿元,比2000年增长4.2倍,年均增长23%;物流业实现增加值2万亿元,比2000年增长1.9倍,年均增长14%。2008年,物流业增加值占全部服务业增加值的比重为16. 5%,占GDP的比重为6. 6%。预计“十一五”期间,我国物流产业年均增速保持在15%以上,远远高于美国的10%和加拿大、西欧的9%。 2.物流专业化水平与服务效率不断提高。社会物流总费用与GDP 的比例体现了一个国家物流产业专业化水平和服务效率。我国社会物流总费用与GDP的比例在近年来呈现不断下降趋势,“十五”期间,社会物流总费用占GDP的比例,由2000年的19.4%下降到2006年的18. 3%;2007年这一比例则下降到18. 0%,标志着我国物流产业的专业化水平和服务效率不断提高。但同发达国家相比较,我国物流

传感器的应用现状及发展趋势-论文2011-11-16

传感器技术的研究应用现状与发展前景 传感器技术作为信息技术的三大基础之一,是当前各发达国家竞相发展的高技术是进入21 世纪以来优先发展的十大顶尖技术之一。传感器在科学技术领域、工农业生产以及日常生活中发挥着越来越重要的作用。人类社会对传感器提出的越来越高的要求是传感器技术发展的强大动力,而现代科学技术突飞猛进则提供了坚强的后盾。传感器是信息系统的源头, 在某种程度上是决定系统特性和性能指标的关键部件。本文回顾了传感器技术的发展历史,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究应用状况,并通过简述当前的应用实例,展望了现代传感器技术的发展和应用前景。 1.引言 传感器是将物理、化学、生物等自然科学和机械、土木、化工等工程技术中的非电信号转换成电信号的换能器。当今社会的发展是信息化社会的发展,在信息时代人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理,而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统,它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的大脑,把通信系统比喻为传递信息的神经系统,那么传感器就是感知和获取信息的感觉器官。传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置现代传感器技术具有巨大的应用潜力拥有广泛的开发空间,发展前景十分广阔。 2.传感器的发展历史及分类 2.1传感器技术的发展历史 传感器技术是20世纪的中期才刚刚问世的,在那时与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段并没有投入到实际生产与广泛应用转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目

机器学习研究现状与发展趋势

机器学习研究现状与发展趋势 计算机科学与软件学院 引言: 机器能否象人类一样能具有学习能力呢?1959年美国的塞缪尔(Samuel)设计了一个下棋程序,这个程序具有学习能力,它可以在不断的对奕中改善自己的棋艺。4年后,这个程序战胜了设计者本人。又过了3年,这个程序战胜了美国一个保持8年之久的常胜不败的冠军。这个程序向人们展示了机器学习的能力,提出了许多令人深思的社会问题与哲学问题。 机器学习的研究是根据生理学、认知科学等对人类学习机理的了解,建立人类学习过程的计算模型或认识模型,发展各种学习理论和学习方法,研究通用的学习算法并进行理论上的分析,建立面向任务的具有特定应用的学习系统。这些研究目标相互影响相互促进。 机器学习是关于理解与研究学习的内在机制、建立能够通过学习自动提高自身水平的计算机程序的理论方法的学科。近年来机器学习理论在诸多应用领域得到成功的应用与发展,已成为计算机科学的基础及热点之一。 机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。对机器学习的讨论和机器学习研究的进展,必将促使人工智能和整个科学技术的进一步发展。 一.机器学习的发展史 机器学习是人工智能研究较为年轻的分支,它的发展过程大体上可分为4个时期。 第一阶段是在50年代中叶到60年代中叶,属于热烈时期。…> 第二阶段是在60年代中叶至70年代中叶,被称为机器学习的冷静时期。 第三阶段是从70年代中叶至80年代中叶,称为复兴时期。 机器学习的最新阶段始于1986年。 机器学习进入新阶段的重要表现在下列诸方面: (1) 机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。 (2) 结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。 (3) 机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。 (4) 各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。 (5) 与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。 二.机器学习分类 1、基于学习策略的分类 学习策略是指学习过程中系统所采用的推理策略。一个学习系统总是由学习和环境两部分组成。由环境(如书本或教师)提供信息,学习部分则实现信息转换,用能够理解的形

未来传感器的发展趋势

未来传感器的发展趋势 课程论文 论文题目:未来传感器的发展趋势学院: 专业: 姓名: 学号: 指导老师: 二零一二年五月六日

目录 中文摘要 (3) 英文摘要 (3) 一、引言 (4) 二、传感器的历史 (5) 三、未来传感器的发展趋势 (7) (一)未来传感器的特点 (7) (二)未来传感器的几大方向 (8) (三)几个热门的研究方向 (8) 四、结束语 (9)

摘要:在人类进入信息时代的今天,人们的一切社会活动都是以信息获取与信息转换为中心的,传感器作为信息获取与信息转换的重要手段,是信息科学最前端的一个阵地,是实现信息化的基础技术之一。在工程科学与技术领域里,可以认为:传感器是人体“五官”的工程模拟物。 当前,我国传感器产业正处于由传统型向新型传感器发展的关键阶段,它体现了新型传感器向微型化、多功能化、数字化、智能化、系统化和网络化发展的总趋势。我国在传感器生产产业化过程中,应该兼顾引进国外和自主创新两方面。在引进国外先进技术中,可以提高自己的技术,同时也满足了国内市场的需求,形成了传感器生产产业规模。发现新效应,开发新材料、新功能;研研究生物感官、开发仿生传感器等为主要寻求传感器技术发展的新途径。 关键词:信息获取信息转换信息化关键趋势 Abstract:In the information age in human today, people of all social activities are based on information acquisition and information conversion as the center, sensor information acquisition and information conversion as the important means of information science is the same a position, is the foundation to realize the information technical one. In the engineering science and technology field, can think: sensor is human body \"facial features,\" engineering simulation objects. At present, our country sensors from the traditional industry is in the key of the development of new sensors stage, it reflects the new sensor to miniaturization, muti_function change, digital, intelligent, systematic and network the general trend of development. Our country in the sensor in the process of industrialization of production, should give consideration to the introduction of foreign and independent innovation two aspects. In introducing foreign advanced technology, can improve their technology, but also meet the demand of the domestic market, formed the sensor manufacturing industry scale. Find new effects, the development of new materials, new function; Research on biological research, develop bionic sensors senses as the main seek sensor technology development new way. Keywords: information acquisition information conversion informatization key trend

国内外测试仪器发展现状及趋势

国内外测试仪器发展现状及趋势 科学是从测量开始的—这是19世纪著名科学家门捷列夫的名言。到了21世纪的今天,作为信息产业的三大关键技术之一,测试测量行业已经成为电子信息产业的基础和发展保障。 而测试仪器作为测试测量行业发展不可或缺的工具,在测试测量行业的发展中起到了巨大的作用。中国“十一五”期间,由于国家不断增加基础建设的投入力度,在旺盛市场需求的带动下,对仪器需求不断增加,同时测试仪器市场也正在快速发展。 全球测试仪器市场情况及分析 国内电子测量仪器行业在经过一段沉寂后,慢慢开始复苏。产品大幅增长主要有两个原因,一是市场的巨大需求,特别是通信、广播电视市场的巨大发展,引发了电子测量仪器市场的迅速增长,二是电子测量仪器行业近几年迅速向数字化、

智能化方向发展,推出了部分数字化产品,因而在若干个门类品种上取得了较快增长。从近期中国仪表行业发展的情况来看势头喜人的,与全国制造业一样,虽然遇到了不少困难但仍然保持了向上发展的态势。 尽管中国仪器市场正在快速的发展着,但与国外仪器生产企业比较仍然有很大的差距。中国主要科研单位、学校以及企业等单位中使用的高档、大型仪器设备几乎全部依赖进口。同时,国外公司还占有国内中档产品以及许多关键零部件市场60%以上的份额。世界测试仪器市场对中国的影响依然非常大。目前,在世界电子测量仪器市场上,竞争日趋激烈。以往,测试仪器生产厂商主要都将仪器产品的高性能作为竞争优势,厂商开发什么,用户买什么。而今则已变成厂商努力开发用户需要的仪器,并且把更便宜、更好、更快、更易使用的测试仪器作为奋斗目标。在信息化的推动下,全世界测试仪器市场将继续保持增长的势头。人们普遍认为,电子测量仪器市场的前景依然乐观。 国际仪器发展趋势和国内现状 一、国际趋势

国内外传感器技术现状与未来发展趋势

《传感器原理与应用》结课论文国外传感器现状及发展趋势 学院:计算机与信息工程学院 专业:通信工程 班级:13级通信工程 学号: : 指导教师:袁博 学年学期:2016-2017学年第一学期

摘要:传感器技术是现代技术的应用具有巨大的发展潜力,通过传感器技术的应用现状,在未来发展中存在的问题和面临的挑战,传感器技术现状与发展趋势。 关键字:传感器,现状,发展趋势。 正文: 一、传感器的定义和组成 根据国家标准(GB7665—87),传感器(transduer/sensor)的定义是:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。 这一定义包含了以下几方面的含意:①传感器是测量装置,能完成检测任务:②它的输出旦是某一被测量,可能是物理量.也可能是化学量、生物量等;②它的输出量是某种物理量,这种量要便于传输、转换、处理、显示等,这种量可以是气、光、电物理量,但主要是电物理量;④输出输入有对应关系,且应有一定的精确程度。 关于传感器,我国曾出现过多种名称,如发送器、传送器、变送器等,它们的涵相同或相似。所以近来己逐渐趋向统一,大都使用传感器这一名称了。 但是,在我国还经常有把‘传感器”和“敏感元件”等同使用的情况。当从仪器仪表学科的角度强调是一种感受信号的装置时,称其为。传感器”:而从电子学的角度强调它是一种能感受信号的电子元件时,称其为“敏感元件”。两种

不同的提法在大多数情况下并不矛盾。例如热敏电阻,既可以称其为“温度传感器”,也可以称之为“热敏元件”。但在有些情况下则只能概括地用“传感器”一词来称谓。例如,利用压敏元件作为敏感元件,并具有质量块、弹按和阻尼等结构的加速度传感器,很难用“敏感元件%类的词称谓,而只“传感器”则更为贴切。 传感器一般由敏感元件、转换元件和转换电路三部分组成。 (1)敏感元件:它是直接感受被测量,并输出与被测量成确定关系的某一种量的元件。 是一种气体压力传感器的示意图。膜盒2的下半部与壳体l固接,上半部通过连扦与磁芯 4相连,磁芯4置于两个电感线圈3中,后者接人转换电路5。这里的膜盒就是敏感元件,其外部与大气压力尸。相通,部与被测量压力尸相通。当尸变化时.引起膜盒上半部移动,即输出相应的位移量。 (2)转换元件:敏感元件的输出就是它的输入,它把输入转换成电路参量。在图2—2中,转换元件是可变电感线圈3,它把输入的位移量转换成电感的变化。 (3)转换电路:上述电路参数接入转换电路.便可转换成电量输出。 实际上,有些传感器很简单.有些则较复杂,大多数是开环系统,也有些是带反馈的闭环系统。 最简单的传感器由一个敏感元件(兼转换元件)组成,它感受被测量时直接输出电量,如热电偶;有些传感器由敏感元件组成,没有转换电路,如压电式加

机器人研究现状及发展趋势

机器人发展历史、现状、应用、及发展 趋势 院系:信息工程学院 专业:电子信息工程 姓名:王炳乾

机器人发展历史、现状、应用、及发展趋势 摘要:随着计算机技术不断向智能化方向发展,机器人应用领域的不断扩展和深化,机器人已成为一种高新技术产业,为工业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。文章介绍了机器人的国内国外的发展历史、状况、应用、并对机器人的发展趋势作了预测。 关键词:机器人;发展;现状;应用;发展趋势。 1.机器人的发展史 1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶并公开表演。 1738年,法国技师杰克·戴·瓦克逊发明了机器鸭,它会嘎嘎叫、进食和游泳。 1773年,瑞士钟表匠杰克·道罗斯发明了能书写、演奏的玩偶,其体内全是齿轮和发条。它们手执画笔、颜料、墨水瓶,在欧洲很受青睐。 保存至今的、最早的机器人是瑞士的努萨蒂尔历史博物馆里少女形象的玩偶,有200年历史。她可以用风琴演奏。 1893年,在机械实物制造方面,发明家摩尔制造了“蒸汽人”,它靠蒸汽驱动行走。 20世纪以后,机器人的研究与开发情况更好,实用机器人问世。 1927年,美国西屋公司工程师温兹利制造了第一个机器人“电报箱”。它是电动机器人,装有无线电发报机。 1959年第一台可以编程、画坐标的工业机器人在美国诞生。 现代机器人 有关现代机器人的研究始于20世纪中期,计算机以及自动化技术的发展、原子能的开发利用是前提条件。1946年,第一台数字电子计算机问世。随后,计算机大批量生产的需要推动了自动化技术的发展。1952年,数控机床诞生,随后相关研究不断深入;同时,各国原子能实验室需要代替人类处理放射性物质的机械。

传感器发展趋势

传感器应用的发展现状与研究趋势 1 引言 随着工业数字化、智能化发展,传感器在机械加工,温度监测,可穿戴设备、智能家居、智慧交通中得到了广泛的应用。传感器技术水平在一定程度上反映了一个国家科技现代化的水平,传感器在实现自动化控制及测试控制中发挥着重要的作用。传感器技术在近些年来发展迅速,与计算机技术和通信技术一起被称为信息技术的三大支柱,近年来,我国传感器市场发展比较迅猛,但是我国传感器技术并不成熟,在国际竞争中并不占优势,传感器市场被德国、美国、日本等工业国家所主导。根据传感器技术的发展趋势,它将由简单的传感器系统向智能化、集成化、微型化、网络化、多样化的复杂传感器系统方向发展。近年来我国传感器产业快速增长,应用模式也日渐成熟。传感器的重要性可说是不言而喻的,它在机械加工,可穿戴设备、智能家居、智能交通等各个领域都有着极为重要的应用。传感器在智能可穿戴设备、智能家居和智能交通的最新应用,以及目前传感器的市场前景、现代科技中,自动化与智能化己经成为新的发展方向,传感器作为自动测量与控制中的关键环节,在社会的生产生活中应用十分广泛,且具有巨大的发展空间[1-3]。 1 传感器的研究现状 1.1 光电传感器技术 光电式传感器是以光为测量媒介、以光电器件为转换元件的传感器,它具有非接触、响应快、性能可靠等卓越特性。随着光电科技的飞速发展,光电传感器己成为光电传感器己成为各种光电检测系统中实现光电转换的关键元件,并在传感器应用中占据着重要的地位,其中在非接触式测量领域更是扮演者无法替代的角色。光电传感器工作时,光电器件负责将光能(红外辐射、可见光及紫外辐射)信号转换为电学信号。光电器件不仅结构简单,且具有响应快、可靠性强等优势,在自动控制、智能化控制等方面应用前景十分广阔。此外,光电传感器除了对光学信号进行测量,还能够对引起光源变化的构件或其它被测量进行信息捕捉,再通过电路对转换的电学信号进行放大和输出[4]。 1.2生物传感器技术 生物传感器的原理主要由两大部分组成:生物功能物质的分子识别部分和转换部分前者的作用是识别被测物质,当生物传感器的敏感膜与被测物接触时,敏感膜上的某种生化活性物质就会从众多化合物中挑选适合于自己的分子并与之产生作用,使其具有选择识别的能九转换部分,是由于细胞膜受体与外界发生了共价结合,通过细胞膜的通透性改变,诱发了一系列的电化学过程,而这种变换得以把生物功能物质的分子识别转换为电信号,形成了生物传感器[5]。 1.3气敏传感器技术 气体传感器是指将被测气体浓度转换为与其成一定关系的电量输出的装置或器件。被测气体的种类

国内外公路研究现状与发展趋势

第1章绪论 1.1我国公路现状 交通运输业是国民经济中从事运送货物和旅客的社会生产部门,是国民经济和社会发展的动脉,是经济社会发展的基础行业、先行产业。交通运输主要包括铁路、公路、水运、航空、管道五种运输方式,其中,铁路、水运、航空、管道起着“线”的作用,公路则起着“面”的作用,各种运输方式之间通过公路路网联结起来,形成四通八达、遍布城乡的运输网络。改革开放以来,灵活、快捷的公路运输发展迅速,目前,在综合运输体系中,公路运输客运量、货运量所占比重分别达90%以上和近80%。高速公路是经济发展的必然产物,在交通运输业中有着举足轻重的地位。在设计和建设上,高速公路采取限制出入、分向分车道行驶、汽车专用、全封闭、全立交等较高的技术标准和完善的交通基础设施,为汽车快速、安全、经济、舒适运行创造了条件。与普通公路相比,高速公路具有行车速度快、通行能力大、运输成本低、行车安全、舒适等突出优势,其行车速度比普通公路高出50%以上,通行能力提高了2~6倍,并可降低30%以上的燃油消耗、减少1/3的汽车尾气排放、降低1/3的交通事故率。 新中国成立以来,经过60多年的建设,公路建设有了长足发展。2011年初正值“十一五”规划结束,“十二五”规划伊始。“十一五”时期是我国公路交通发展速度最快、发展质量最好、服务水平提升最为显著的时期。经过4年多的发展,公路交通运输紧张状况已实现总体缓解,基础设施规模迅速扩大,运输服务水平稳步提升,安全保障能力明显增强,为应对国际金融危机、保持经济平稳较快发展、加快经济发展方式转变、促进城乡区域协调发展、保障社会和谐稳定、进一步提高我国的综合国力和国际竞争力作出了重要贡献。 “十一五”前4年,全国累计完成公路建设投资2.93万亿元,年均增长近16%,约为“十一五”预计总投资的1.2倍,也超过了“九五”和“十五”的投资总和。公路建设投资的快速增长,极大地拉动和促进了国民经济的迅猛发展。从公路建设投资占同期全社会固定资产总投资的比重来看,“十一五”期间基本保持在4.5%左右。 在投资带动下,公路网规模不断扩大,截至2009年底,全国公路网总里程达到386万公里,其中高速公路6.51万公里,二级及以上公路42.52万公里,分别较"十五"末增加36.4万公里、2.5万公里和9.4万公里;全国公路网密度由“十五”末的每百平方公里34.8公里提升至40.2公里。预计到2010年底,全国公路网总里程将达到395万公里,高速公路超过7万公里,分别较“十五”末增加45.3万公里与3万公里。农村公路投资规模年均增长30%,总里程将达到345万公里,实现全国96%的乡镇通沥青(水泥)路。 “十一五”期间公路的快速发展,为扩大内需、拉动经济增长作出了突出贡献。特别是2008年以来,为应对国际金融危机,以高速公路为重点,建设步伐进一步加快,“十一五”末高速公路里程将达到"十五"末的1.78倍。“十一五”期间全社会高速公路建设累计投资达2万亿元,直接拉动GDP增长约3万亿元,拉动相关行业产出

传感器技术发展现状及趋势

传感器技术发展现状及趋势 桂林航天工业学院 课程论文 题目:传感器技术发展现状及趋势 专业:工商企业管理(生产运作与质量管理) 姓名:罗并 学号:20190820Z00102 指导教师:陈少航 2019年 6月12日 传感器技术发展现状及趋势 在信息化社会,几乎没有任何一种科学技术的发展和应用能够离得开传感器和信号探 测技术的支持。生活在信息时代的人们,绝大部分的日常生活与信息资源的开发,采集, 传送和处理息息相关。分析当前信息与技术发展状态,21世纪的先进传感器必须具备小型化,智能化,多功能化和网络化等优良特征。 为了能够与信息时代信息量激增,要求捕获和处理信息的能力日益增强的技术发展趋 势保持一致,对于传感器性能指标(包括精确性,可靠性,灵敏性等)的要求越来越严格; 与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标 准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被 各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小,重量轻,反应快,灵敏度高以及成本低等优点。 目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD) 的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本,高性能的 新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能 够满足科技发展需求的微型化的方向发展。 智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新 型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用 领域,如分布式实时探测,网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。,智能化传感器具有以下优点: (1)智能化传感器不但能够对信息进行处理,分析和调节,能够对所测的数值及其误 差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行

国内外研究现状和发展趋势

北京市绿化隔离带可持续经营技术及效益评价 二、项目所属领域国内外研究开发现状和发展趋势 1、由城市绿地到城市林业的发展 城市绿地是城市中一种特殊的生态系统,它是城市系统中能够执行“吐故纳新”负反馈调节机制的子系统。这个系统一方面能为城市居民提供良好的生活环境,为城市生物提供适宜的生境;另一方面能增强城市景观的自然性、促进城市居民与自然的和谐共生。它是城市现代化和文明程度的重要标志。 绿地(green space)一词,各国的法律规范和学术研究对它的定义和范围有着不同的解释,西方城市规划概念中一般不提城市绿地,而是开敞空间(Open Space),我国建国以来一直延用原苏联的绿地概念,包括城市区域内的各类公园、居住区绿地、单位绿地、道路绿化、墓地、农地、林地、生产防护绿地、风景名胜区、植物覆盖较好的城市待用地等。 尽管各国关于开敞空间(或绿地)的定义不尽相同,但它们都强调了开敞空间(或绿地)在城市中的自然属性,即都是为了保持、恢复或建立自然景观的地域。绿地作为城市的一种景观,是城市中保持自然景观,或使自然景观得到恢复的地域,是城市自然景观和人文景观的综合体现,是城市中最能体现生态性的生态空间,是构成城市景观的重要组成部分。在结构上为人工设计的植物景观、自然植物景观或半自然植物景观。绿地在城市中的功能和作用主要包括:组织城市空间的功能、生态功能(改善生态环境的功能、生物多样性保护功能)、游憩休闲功能、文化(历史)功能、教育功能、社会功能、城市防护和减灾功能。 城市绿地发展和研究进程包括:城市绿地思想启蒙阶段、城市绿地规划思想形成阶段、城市绿地理论和方法的发展阶段、城市绿地生态规划和建设阶段。 吴人韦[1]、汪永华[2]、胡衡生[3]等从城市公共绿地的起源开始介绍了国外城市绿地的发展历程,认为国外的城市绿地建设经历了从公园运动(1843~1887)、公园体系(1880~1890)、重塑城市(1898~1946)、战后大发展(1945~1970)、生物圈意识(1970年以后)等一系列由简单到复杂的城市绿地发展过程,其中“重塑城市”阶段提出了“田园城市”和城市绿带概念,绿带网络提供城区间的隔离、交通通道,并为城市提供新鲜空气。“有机疏散”理论中的城市与自然的有机结合原则,对以后的城市绿化建设具有深远的影响。1938年,英国议会通过了绿带法案(Green Belt Act)。1944年的大伦敦规划,环绕伦敦形成一道宽达5英里的绿带。1955年,又将该绿带宽度增加到6~10英里。英国“绿带政策”的主要目的是控制大城市无限蔓延、鼓励新城发展、阻止城市连体、改善大城市环境质量。早在1935年,莫斯科进行了第一个市政建设总体规划,规划在城市用地外围建立10公里宽的“森林公园带”;1960年调整城市边界时,“森林公园带”进一步扩大为10~15公里宽,北部最宽处达28公里;1971年,莫斯科采用环状、楔状相结合的绿地布局模式,将城市分隔为多中心结构。目前,德国城市森林建设已取得了让世人瞩目的成绩,其树种主要为乡土树种,基本上是高大的落叶乔木(栎类、栗类、悬铃木、杨树、核桃、欧洲山毛榉等)[4]。在绿化城

传感器技术发展现状及趋势

桂林航天工业学院 课程论文 题目:传感器技术发展现状及趋势 专业:工商企业管理(生产运作与质量管理) 姓名:罗并 学号:20130820Z00102 指导教师:陈少航 2015年6月12日 传感器技术发展现状及趋势 在信息化社会,几乎没有任何一种科学技术的发展和应用能够离得开传感器和信号探测技术的支持。生活在信息时代的人们,绝大部分的日常生活与信息资源的开发,采集,传送和处理息息相关。分析当前信息与技术发展状态,21世纪的先进传感器必须具备小型化,智能化,多功能化和网络化等优良特征。 为了能够与信息时代信息量激增,要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性,可靠性,灵敏性等)的要求越来越严格;与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小,重量轻,反应快,灵敏度高以及成本低等优点。 目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本,高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。 智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用领域,如分布式实时探测,网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。,智能化传感器具有以下优点: (1)智能化传感器不但能够对信息进行处理,分析和调节,能够对所测的数值及其误差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行线性化处理,借助于软件滤波器滤波数字信号。此外,还能够利用软件实现非线性补偿或其它更复杂的环境补偿,以改进测量精度。 (2)智能化传感器具有自诊断和自校准功能,可以用来检测工作环境。当工作环境临近其极限条件时,它将发出告警信号,并根据其分析器的输入信号给出相关的诊断信息。当智能化传感器由于某些内部故障而不能正常工作时,它能够借助其内部检测链路找出异常现象或出了故障的部件。 (3)智能化传感器能够完成多传感器多参数混合测量,从而进一步拓宽了其探测与应用领域,

相关主题