搜档网
当前位置:搜档网 › 磁场经典例题

磁场经典例题

磁场经典例题
磁场经典例题

磁 场

知识网络:

单元切块:

按照考纲的要求,本章内容可以分成三部分,即:基本概念 安培力;洛伦兹力 带电粒子在磁场中的运动;带电粒子在复合场中的运动。其中重点是对安培力、洛伦兹力的理解、熟练解决通电直导线在复合场中的平衡和运动问题、带电粒子在复合场中的运动问题。难点是带电粒子在复合场中的运动问题。

一.磁场和磁感线

1.磁场的产生:磁场是磁极、电流周围存在的一种物质,对放在磁场中的磁极、电流具有力的作用. 注意:地球产生的磁场,如图1-1所示,地球的北极是地磁场的_____(南、北)极。

2.磁场的方向:规定在磁场中任一点小磁针N 极受力的方向(或小磁针静止时N 极的指向).

3.磁感线:用来形象描述磁场的大小和方向的一系列________(闭合、不闭合)的________(相 交、不相交)曲线.用_________表示大小,用____________表示方向。

4.电流产生的磁场方向判断:安培定则(又叫____________定则)

5.常见磁场的磁感线:

例1:下列

图 1-1

说法中正确的是 ( )

A 磁场和电场一样,是客观存在的特殊物质

B 磁感线总是从磁体的N 极出发,终止于磁体的S 极

C .磁感线的方向就是磁场方向

D 磁感线和电场线一样都是闭合不相交的曲线

例2:两根非常接近且互相垂直的长直导线,当通以如图1-2所示的电流时,图中磁场方向 向外且最大的是第______区域. 例3:如图1-3所示,带负电的橡胶环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的

小磁针最后平衡的位置是 ( ) A .N 极竖直向下 B .N 极竖直向上

C .N 极沿轴线向左

D .N 极沿轴线向右 二. 安培力和磁感应强度 1.安培力:F=________, F 的方向:F___B;F___I 。

具体判断方法:左手定则:伸开左手,让磁感线穿过掌心,四指沿着_____方向,大姆指指向_________方向. 常见结论:同向电流相互______,反向电流相互_______。

2.磁感应强度 定义式:B=_______,B 的单位:________,是___(矢.标)量。注意:磁场中某位置的磁感应强度的大小及方向是存在的,与放入的电流I 的大小、导线的长短L 的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B 与F 成正比,或B 与IL 成反比。 例1:下列说法中正确的是( )

A.磁场中某一点的磁感应强度可以这样测定:把一小段通电导线放在该点时受到的磁场力F 与导线的长度L 、通过的电流I 乘积的比值即IL

F B =

B.通电导体在某点不受磁场力的作用,则该点的磁感应强度一定为零

C.磁感应强度IL

F

B =

只是定义式,它的大小取决于场源以及磁场中的位置,与F 、I 、L 以及通电导体在磁场中的方向无关

D.通电导体所受磁场力的方向就是磁场的方向

例2:垂直于磁场长为0.2米的导线,通以3A 的电流时,在与磁场方向垂直的情况下,它受到磁

场的作用力是6×10-2

N,则磁场的磁感应强度B 是_______T,当导线的长度在原位置的缩短为原来的一半时,磁感应强度为_______T.

例3:如图2-1所示,AB 是两根通有大小相等,方向相反电流的直导线,则它们中垂线上C 处的 磁场方向为______;D 处磁场方向为______。若B 也为方向向内的电流,则C 处的磁场方向 为_________;D 处磁场方向为_______。

例4:如图2-2所示,将一根长为l 的直导线,由中点折成直角形放在磁感应强度为B 的匀强磁场中,导线平面与磁感线垂直,当导线中通以电流I 后,磁场对导线的作用力大小为( ) A .BIl 2

1 B .BIl

C .

BIl 2

2

D .BIl 2 例5:如图2-3所示,导体杆ab 质量为m,电阻为R,静止在光滑倾角为θ斜 金属导轨上,导轨间距为d,电阻不计,匀强磁场的磁感强度大小为B,方向 竖直向上,电源内阻不计,则电源的电动势为____,欲使棒静止在斜面上且

对斜面无压力,则B 的方向为_______.

例6:如图2-4所示,两根相互平行放置的长直导线a 和b 通有大小相等、方 向相反的电流,a 受到磁场力的大小为F 1,当加入一与导线所在平面垂直的匀

强磁场后,a 受到的磁场力大小变为F 2.则此时b 受到的磁场力大小为( ) A .F 2 B .F 1-F 2 C .F 1+F 2 D .2F 1-F 2

例7:如图2-5所示,长1米的水平直杆重6牛,在匀强磁场中通以2安的电

流后, 悬线与竖直方向成370

的角,求该匀强磁场的最小值大小______。

三.带电粒子在磁场中的运动

1.

洛伦兹力的大小:当电荷运动的方向与磁场方向垂直时,F

洛=______。

图 1-2 图 2-5 图 2-2

a b

I

图 2-4

图 2-3

图 2-1

O

图1-3

2.洛伦兹力的方向:用_____手定则来判断:用四指指向_____电荷的运动方向或负电荷运动的反方向,则大姆指所指的方向即为_______________方向.

3.带电粒子在磁场中的运动规律: 当电荷运动的方向与磁场方向垂直时,电荷的运动轨迹为_________; 其运动的向心力由______提供, 即F 向=_______=________可得带电粒子做圆周运动的半径为R=______; 周期为T=_______;可见,运动周期T 与______和________无关.

4.注意点:(1)洛伦兹力______(做,不做)功,比较:安培力____ (做,不做)功. (2)带电粒子在磁场中作匀速圆周运动所受的洛伦兹力大小不变,但方向时刻改变: F__v, F__B.因而______(不是,是)恒力.

(3)带电粒子在磁场中作匀速圆周运动的周期与电荷的运动速度无关,与电荷的正负无关,只与电荷的荷质比有关. 5.圆心、半径及时间的确定方法:

(1)已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心。

(2) 已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,做其中垂线,这两条垂线的交点就是圆弧轨道的圆心。 (2)用几何知识求得半径大小;

(3)找出圆心角大小,用t=__________,求时间. 6.注意圆周运动中有关对称规律.

(1)从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角_________; (2)在圆形磁场区域内,沿径向射入的粒子,必沿________射出. 例1:下列说法中正确的是: ( )

A 运动电荷在磁场中一定受磁场力作用,在电场中一定受电场力作用

B 当运动电荷在某处不受磁场力作用时,该处的磁感应强度一定为零

C 电荷与磁场没有相对运动,则一定不会受到磁场的作用力

D 当电荷运动的方向与磁场的方向成θ时,洛伦兹力的方向仍与磁场方向垂直. 例2:每时每刻都有大量宇宙射线向地球射来,地磁场可以改变射线 中大多数带电粒子的运动方向,使它们不能到达地面,这对地球上的生命有十分重要

的意义。假设有一个带正电的宇宙射线粒子正垂直于地面向赤道射来,如图3-1所示, 在地磁场的作用下,它将 ( )

A .向东偏转

B .向南偏转

C .向西偏转

D .向北偏转

例3::如图3-2所示,正方形容器处在匀强磁场中,一束电子从a 孔沿a →b 方向垂直 射入容器内的匀强磁场中,结果一部分电子从小孔c 射出,一部分电子从小孔d 射出, 则从c 、d 两孔射出的电子( )

A .速度之比1:2:=d c v v

B .在容器中运动的时间之比2:1:=d c t t

C .在容器中运动的加速度大小之比1:2:=d c a a

D .在容器中运动的加速度大小之比1:2:=d c a a

例4:如图3-3所示,质量为m 电量为q 的带电粒子以速度V 垂直射入宽度范围为d 的匀

强磁场中,并偏转300

后射出,则该区域的磁感强度大小为

例5:如图3-4所示,一电量为2×10-6

库质量为4mg 的电荷以10m/s 的速度垂直一边进入长 为4米宽为2米的匀强磁场区域的一顶点,并刚好从另一顶点区域射出,则该区域的匀强磁

场大小为________.

例6:如图3-5所示,在y<0的区域里存在垂直于纸面向外大小为B 的匀强磁场,一带正 电的粒子以速度V O 从O 点射入磁场,入射方向在xoy 平面内,与x 轴正向的夹角为θ, 若粒子射出磁场的位置与O 点的距离为L,则该粒子的电量和质量之比为______.

例7: 如图3-6所示,把中心带有小孔的平行放置的两个圆形金属板M 和 N ,连接在电压恒为U 的直流电源上。一个质量为m ,电荷量为q 的微观正粒子,以近似于静止的状态,从M 板中心的小孔进入电场,然后又从N 板中心的小孔穿出,再进入磁感应强度为B 的足够宽广的匀强磁场中运动。

求:(1)该粒子从N 板中心的小孔穿出时的速度有多大?

图3- 1 图 3-2

图 3-4

图 3-5

图 3-3

Q M

N ???

?(2)该粒子在磁场中受到的洛仑兹力是多大?

(3)若圆形板N 的半径为R,如果该粒子返回后能够直接打在圆形板N 的右 侧表面上,那么该磁场的磁感应强度B 至少为多大?

例8:如图3-7所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量+q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( )

A .在荧光屏上将出现一个圆形亮斑,其半径为mv

qB

B .在荧光屏上将出现一个半圆形亮斑,其半径为mv

qB C .在荧光屏上将出现一个条形亮线,其长度为()21cos mv qB

θ- D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv

qB

θ-

例9:如图3-8所示,图中圆形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B ,现有一电荷量为q 、质量为m 的正离子从a 点沿圆形区域的直径射入,设正离子射出磁场区域的

方向与入射方向的夹角为600

,求此正离子在磁场区域内飞行的时间及射出磁场的位置。

例10:如图3-9所示,真空中有以(r ,0)为圆心,半径为r 的

圆形匀强磁场区域,磁场的磁感应强度大小为B ,方向垂直于纸面向里,在y = r 的 虚线上方足够大的范围内,有方向水平向左的匀强电场,电场强度的大小为E ,从 O 点向不同方向发射速率相同的质子,质子的运动轨迹均在纸面内,且质子在磁场 中的偏转半径也为r ,已知质子的电荷量为q ,质量为m ,不计重力、粒子间的相 互作用力及阻力的作用。求: (1)质子射入磁场时速度的大小;

(2)沿x 轴正方向射入磁场的质子,到达y 轴所需的时间;

(3)与x 轴正方向成30o

角(如图中所示)射入的质子,到达y 轴的位置坐标。

例11:如图3-10所示,一个理想边界为PQ 、MN 的匀强磁场区域,磁场宽度为d ,方向垂直纸面向里。一电子从O 点沿纸面垂直PQ 以速度v 0进入磁场。若电

子在磁场中运动的轨道半径为2d 。O ′在MN 上,且OO ′ 与MN 垂直。下列判断

正确的是( )

A .电子将向右偏转

B .电子打在MN 上的点与O ′点的距离为d

C .电子打在MN 上的点与O ′点的距离为d 3

D .电子在磁场中运动的时间为

3v d π

四.带电粒子在复合场中的运动

粒子在复合场中运动时注意受力分析,分析所受合力的大小和方向是否发生变化,从而判断出运动轨迹。关于速度大小和方向的变化,应注意各个力的特点。洛伦兹力始终和速度方向垂直,永不做功;重力对物体做的功与路径无关,只取决于初末位置的高度差;电场力对电荷做功与路径无关,只取决于初末位置的电势差。

例1:质量为0.1g 的小球带5×10-4

c 电量的负电荷,套在一根足够长的绝缘杆上,杆与

水平方向成370

角,球与杆间的摩擦系数μ

=0.40,置于B=0.5T 的匀强磁场中,磁场方

图 3-7 M P

左 右 图 3-9 图 3-8 图 3-10 图 3-6

向垂直纸面向里,如图4-1所示,

求:小球由静止开始下滑的最大加速度和最大速度.(磁场范围足够大,g 取10 m /s 2

)

例2:如图4-2所示,竖直绝缘杆处于方向彼此垂直,大小为E 、B 的匀强电、磁场中,一

个质量为m 、带正电为q 的小球,从静止开始沿杆下滑,且与杆的摩擦系数为μ,试求: (1)小球速度为多大时,加速度最大? 最大是多少? (2)小球下滑的最大速度是多少?

例3: 如图4-3所示,在虚线左右两侧均有磁感应强度相同的垂直纸面向外的匀强磁场和场强大小相等方向不同的匀强电场,虚线左侧电场方向水平向右,虚线右侧电场方向竖直向上。左侧电场中有一根足够长的固定绝缘细杆MN ,N 端位于两电场的交界线上。a 、b 是两个质量相同的小环(环的半径略大于杆的半径),a 环带电,b 环不带电,b 环套在杆上的N 端且处于静止,将a 环套在杆上的M 端由静止释放,a 环先加速后匀速运动到N 端,a 环与b 环在N 端碰撞并粘在一起,随即进入右侧场区做半径为 r = 0.10 m 的匀速圆周运动,然后两环由虚线上的P 点进入左侧

场区。已知a 环与细杆MN 的动摩擦因数μ=0.20,取g = 10 m/s 2

。求: (1)P 点的位置;

(2)a 环在杆上运动的最大速率。

例4:在图4-4中虚线所示的区域存在匀强电场和匀强磁场,取坐标如图,一带电粒

子沿x 轴正方向进入此区域,在穿过此区域的过程中运动方向始终不发生偏转, 不计重力的影响,电场强度E 和磁感应强度B 的方向可能是:( ) A .E 和B 都沿x 轴方向 B .E 沿y 轴正向,B 沿z 轴正向

C .E 沿z 轴正向,B 沿y 轴正向

D .

E 和B 都沿z 轴正向

例5:在如图4-5所示的空间中,存在场强为E 的匀强电场,同时存在 沿x 轴负方向,磁感应强度为B 的匀强磁场。一质子(电荷量为e )在该空间恰沿y 轴正方向以速度v 匀速运动。据此可以判断出( )

A.质子所受电场力大小等于eE ,运动中电势能减小;沿z 轴正方向电势升高

B.质子所受电场力大小等于eE ,运动中电势能增大;沿z 轴正方向电势降低

C.质子所受电场力大小等于evB ,运动中电势能不变;沿z 轴正方向电势升高

D.质子所受电场力大小等于evB ,运动中电势能不变;沿z 轴正方向电势降低

例6:如图4-6所示,在直角坐标系xoy 的第一象限中分布着沿y 轴负方向的匀强电场,在第四象限中分布着方向向里垂直纸面的匀强磁场. 一个质量为m 、带电+q 的微粒,在A 点(0,3)以初速度v 0=120m/s 平行x 轴射入电场区域,然后从电场进入磁场,又从磁场进入电场,并且先后只通过x 轴上的p 点(6,0)和Q 点(8,0)各一次. 已知该微粒的比荷为

210 m

q

C/kg ,微粒重力不计,求: (1)微粒从A 到P 所经历的时间和加速度的大小;

(2)求出微粒到达P 点时速度方向与x 轴正方向的夹角,并画

图 4-3 图 4-1

图 4-2 图 4-5

图 4-4

出带电微粒在电磁场中由A 至Q 的运动轨迹; (3)电场强度E 和磁感强度B 的大小.

例7:如图4-7所示的坐标系,x 轴沿水平方向,y 轴沿竖直方向。在x 轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y 轴正方向的匀强电场和垂直xy 平面(纸面)向里的匀强磁场,在第四象限,存在沿y 轴负方向、场强大小与第三象限电场场强相等的匀强电场。一质量为m 、电荷量为q 的带电质点,从y 轴上y = h 处的P 1点以一定的水平初速度沿x 轴负方向进入第二象限.然后经过x 轴上x = – 2h 处的P 2点进入第三象限,带电质点恰好能做匀速圆周运动。之后经过y 轴上y = – 2h 处的P 3点进入第四象限。已知重力加速度为g 。求: (1)粒子到达P 2点时速度的大小和方向;

(2)第三象限空间中电场强度和磁感应强度的大小;

(3)带电质点在第四象限空间运动过程中最小速度的大小和方向。

例8:如图4-8所示,从带有小孔的放射源A 中均匀地向外辐射出平行于y 轴的、速度一定的α粒子(质量为m ,电荷量为+q )。为测定其飞出的速度v 0的大小,现让其先经过一个磁感应强度为B 、区域为半圆形的匀强磁场,经该磁场偏转后,α粒子恰好能够沿x 轴进入右侧的平行板电容器M 板上的狭缝,并打到置于N 板上的荧光屏上,此时通过显微镜头Q 可以观察到屏上出现了一个亮点。闭合电键S 后,调节滑动变阻器的滑动触头P ,当触头位于滑动变阻器的中央位置时,通过显微镜头Q 看到屏上的亮点恰好消失。已知电源电动势为E ,内阻为r 0,滑动变阻器的总阻值R 0=2 r 0。求:

(1)α粒子的速度υ0的大小;

(2)满足题意的α粒子,在磁场中运动的总时间t ; (3)该半圆形磁场区域的半径R 。

例9:如图4-9所示,直角坐标系在一真空区域里,y 轴的左方有一匀强电场,场强方向跟y 轴负方向成θ=30o角,y 轴右方有一垂直于坐标系平面的匀强磁场,在x 轴上的A 点有一质子发射器,它向x 轴的正方向发射速度大小为v =2.0×106m/s 的质子,质子经磁场在y 轴的P 点射出磁场,射出方向恰垂直于电场的方向,质子在电场中经过一段时间,运动到x 轴的Q 点。已知A 点与原点O 的距离为10cm ,Q 点与原点O 的距离

为(203-10)cm ,质子的比荷为C/kg 100.18?=m

q ,不计质子的重力。求: (1)磁感应强度的大小和方向;

(2)质子在磁场中运动的时间; (3)电场强度的大小。 图

4-6 图 4-7 图 4-8

x

例10: 如图4-10所示,坐标系xOy 在竖直平面内,x <0的空间有沿水平方向垂直纸面向里的匀强磁场,磁感强度大小为B ,在x <0的空间内还有沿x 轴正方向的匀强电场,场强大小为E .一个带正电的质点经图中x 轴上的1P 点,沿着与水平方向成α=30°角的方向斜向上做匀速直线运动,到达y 轴上的2P 点,已知O 、1P 两间的距离为0x .进入到磁场方向垂直纸面向外、大小仍为B 的x >0区域,要使质点进入x >0的区域后能在竖直平面内做匀速圆周运动,需在x >0的区域内加一个匀强电场,若带电质点做圆周运动时通过y 轴上的3P 点,重力加速度为g ,求:从1P 到2P

的过程中,质点运动的速度大小;

(2)在x >0的区域内所加电场的场强大小和方向;

(3)该质点从x 轴上的1P 点开始到达y 轴上的3P

点所用的时间

例11:用一根长L =0.8m 的轻绳,吊一质量为m =1.0g 的带电小球,放在磁感应强度B =0.1T, 方向如图4-11所示的匀强磁场中,将小球拉到与悬点等高处由静止释放,小球便在垂直于磁 场的竖直面内摆动,当球第一次摆到低点时,悬线的张力恰好为零. (1)小球带何种电荷?电量为多少?

(2)小球第二次经过最低点时,悬线对小球的拉力多大?(重力加速度g =10m/s 2

例12:如图4-12所示,带电液滴从高h 处自由下落,进入一个匀强电场和匀强磁场互相垂直 的区域,磁场方向垂直纸面,电场强度为E ,磁感强度为B ,已知液滴在此区域中正好作

匀速圆周运动,则半径为________.

例13: 如图4-13所示,空间不但有重力场(重力加速度为g ),还有电场强为E 的匀强电场和感应场强为B 匀强磁场,三者的方向如图所示。有一个质量为m 的小球在竖直面内能够以速率v 做匀速圆周运动, 求:(1)小球的带电性质和电量分别是怎样的? (2)小球做匀速圆周运动的轨道半径是多大?

例14:如图4-14所示,一个质量为m 、带电量为+q 的小球,以初速度v 0自h 高度水平抛出。不计空气阻力。重力加速度为g 。 (1)求小球从抛出点至第一落地点P 的水平位移S 的大小;

(2)若在空间竖直方向加一个匀强电场,发现小球水平抛出后做匀速直线运动,求该匀强电场的场强E 的大小; (3)若在空间再加一个垂直纸面向外的匀强磁场,发现小球抛出后沿圆弧轨迹运动,第一落地点仍然是P 点,求该磁场磁感应强度B 的大小。

4-12

图 4-11 图 4-9

图 4-10

图 4-13

例15:如图4-15所示,半径R = 0.8m 的四分之一光滑圆弧轨道位于竖直平面内,与长CD = 2.0m 的绝缘水平面平滑连接。水平面右侧空间存在互相垂直的匀强电场和匀强磁场,电场强度E = 40N/C ,方向竖直向上,磁场的磁感应

强度B = 1.0T ,方向垂直纸面向外。两个质量均为m = 2.0×10-6

kg 的小球a 和b ,a 球不带电,b 球带q = 1.0×10-6

C 的正电,并静止于水平面右边缘处。将a 球从圆弧轨道顶端由静止释放,运动到

D 点与b 球发生正碰,碰撞时间极短,碰后两球粘合在一起飞入复合场中,最后落在地面上的P 点。已知小球a 在水平面上运动时所受的摩擦阻

力f = 0.1mg , PN =ND 3,取g =10m/s 2

。a 、b 均可作为质点。求: (1)小球a 与b 相碰后瞬间速度的大小v ; (2)水平面离地面的高度h ;

(3)从小球a 开始释放到落地前瞬间的整个运动过程中,ab 系统损失的机械能ΔE 。

例16: 如图4-16所示的竖直平面内有范围足够大、水平向左的匀强电场,在虚线的左侧有垂直纸面向里的匀强磁场,磁感强度大小为B ,一绝缘轨道由两段直杆和一半径为R 的半圆环组成,固定在纸面所在的竖直平面内,PQ 、MN 水平且足够长,半圆环MAP 在磁场边界左侧,P 、M 点在磁场边界线上,NMAP 段光滑,PQ 段粗糙。现在有一质量为m 、带电荷量为+q 的小环套在MN 杆上,它所受电场力为重力的

4

3

倍。现将小环从M 点右侧的D 点由静止释放,小环刚好能到达P 点。 (1)求DM 间距离x 0;

(2)求上述过程中小环第一次通过与O 等高的A 点时半圆环对小环作用力的大小;

(3)若小环与PQ 间动摩擦因数为μ(设最大静摩擦力与滑动摩擦力大小相等),现将小环移至M 点右侧4R 处由静止开始释放,求小环在整个运动过程中克服摩擦力所做的功。

五.常见的磁现象及应用 1.速度选择器:

如图5-1所示的相互垂直的匀强电场E 和磁场B 中,

从左边进入的运动电荷,正电荷受电场力方向向________,受磁场力 方向向_________,负电荷受电场力方向向_________,受磁场力方向 向_________,当f 洛=F 电 时,即_____________,有速度V=________的 带电粒子能飞出速度选择器.

当速度偏大时,正离子将向______极板偏,负离子将向______极板偏. 可见,出射速度的大小与__________有关,与_________无关. 2.质谱仪:测定带电粒子荷质比的仪器.

如图5-2所示,已知带电粒子从磁场为B 1,电场为E 的速度选择器中飞 出后,垂直进入磁感强度为B 2匀强磁场,作圆周运动的半径为R,则该粒

子的荷质比为___________。

图 5-1

图 5-2

N

a 图 4-14 图 4-15

图 4-16

3.回旋加速器:

由于带电粒子在匀强磁场中作圆周运动的周期T=___________与运动速率和轨道半径无关,故我们可在匀强磁场中用频率f=__________的交变电场对运动电荷进行反复加速.这样可将运动电荷加速到几十兆电子伏的能量,要进一步提高运动电荷的能量,可再用电子感应加速器,同步加速器,直线 加速器等进行加速. 4.磁流体发电机:可将气体的能量直接转化成电能的装置.

等离子体: 电离后的高温气体中,含正负电荷数____等,整体对外___ (显、不显) 电性. 如图5-4所示,带电粒子的速率为V,磁感强度为B,板间距离为d ,则该磁流体发电机的输出电压为U=__________。 5.电磁流量计(霍尔效应)

电磁流量计原理可解释为:如图5-5所示,一圆形导管直径为d ,用非 磁性材料制成,其中有可以导电的液体向左流动。导电液体中的自由电 荷(正负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差。当自 由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定。

由_______,,==

=v q d

U

Eq Bqv 可得 流量。_______________===Sv Q 。

例1:如图5-6所示为质谱仪的原理图,A 为粒子加速器,电压为U 1;B 为速度选择器,磁场与电场正交,磁感应强度为B 1,板间距离为d ;C 为偏转分离器,磁感应强度为B 2。今有一质量为m 、电量为q 的正离子经加速后,恰好通过速度选择器,进入分离器后做半径为R 的匀速圆周运动,求: ⑴粒子的速度v; ⑵速度选择器的电压U 2

⑶粒子在B 2磁场中做匀速圆周运动的半径R 。

例2:质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图5-7所示为质谱仪的原理示意图.现利用这种质谱议对氢元素进行测量.氢元素的各种同位素从容器A 下方的小孔S ,无初速度飘入电势差为U 的加速电场.加速后垂直进入磁感强度为B 的匀强磁场中.氢的三种同位素最后打在照相底片D 上,形成a 、b 、c 三条“质谱线”.关于三种

同位素进入磁场时速度的排列顺序,和a 、b 、c 三条“质谱线”的排列顺序,

A .进入磁场时速度从大到小排列的顺序是氚、氘、氕

B .进入磁场时速度从大到小排列的顺序是氘、氚、氕

C .a 、b 、c 三条质谱线依次排列的顺序是氘、氚、氕

D .a 、b 、c 三条质谱线依次排列的顺序是氚、氘、氕

例3:如图5-8所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直 向下的匀强电场。一带电粒子a (不计重力)以一定的初速度由左边界的O 点射入磁场、电场

区域,恰好沿直线由区域右边界的O ′点(图中未标出)穿出。若撤去该区域内的磁场而保留

电场不变,另一个同样的粒子b (不计重力)仍以相同初速度由O 点射入,从区域右边界穿出,则粒子b ( )

A .穿出位置一定在O ′点下方

B .穿出位置一定在O ′点上方

C .运动时,在电场中的电势能一定减小

D .在电场中运动时,动能一定减小

例4:回旋加速器D 形盒中央为质子流,D 形盒的交变电压为V U 410.2?=,静止质子

经电场加速后,进入D 形盒,其最大轨道半径R=1m ,磁场的磁感应强度B=0.5T ,求: ⑴质子最初进入D 形盒的动能多大?

⑵质子经回旋加速器最后得的动能多大?

⑶交变电源的频率是多少?(质子静止质量:1.673×10-27 kg ; 元电荷:1.602×10-19

C )

图 5-5

图 5-3 图 5-4

图 5-8 B

图 5-6 图 5-7

例5:如图5-9所示,厚度为h ,宽度为d 的铜板放在垂直于它的磁感应应强度为B 的匀强磁场中,当电流通过导体板时,在铜板的上侧面A 和下侧面A ’之间会产生电势差,这种现象称为霍尔效应,实验表明,当磁场不太强时,电势差U 、电流I 和B 的关系,d

IB

k

U =式中的比例系数k 为霍尔系数。 设电流I 是电子的定向移动形成的,电子的平均定向速度为v ,电荷量为e ,回答下列问题:

⑴达到稳定状态时,导体板上侧面A 的电势_________ (填“高于”、“低于”或“等于”)下侧面A ’的电势。 ⑵电子所受的洛伦兹力的大小为________。

⑶当导体板上下两侧之间的电势差为U 时,电子所受静电力大小为_____。 ⑷由静电力和洛伦兹力的平衡条件,证明霍尔系数ne

k 1

=,其中n 为导体单位体积中电子的个数。

例6:为了测量某化肥厂的污水排放量,技术人员在该厂的排污管末端安装 了如图5-10所示的流量计,该装置由绝缘材料制成,长、宽、高分别为a 、b 、c ,左右两端开口,在垂直于上下表面方向加磁感应强度为B 的匀强磁场,在前后两个内侧面固定有金属板作为电极,污水充满管口从左向右流经该装置时,电压表将显示两个电极间的电压U .若用Q 表示污水流量 (单位时间内排出的污水体积),下列说法正确的是 ( ) A .若污水中正离子较多,则前内侧面比后内侧面电势高

B .前内侧面的电势一定低于后内侧面的电势,与哪种离子多无关

C .污水中离子浓度越高,电压表的示数将越大

D .污水流量Q 与电压U 成正比,与a 、b 有关

图 5-9

图 5-10

高中物理平抛运动的典型例题

平抛运动典型题目 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动 2、飞机距离地面高H=500m,水平飞行速度为v1=100m/s,追击一辆速度为v2=20m/s 同向行驶的汽车,欲使投弹击中汽车,则飞机应在距汽车水平距离x=m远处投弹.(g=10m/s2) 3、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内() A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是(? ) A.同时抛出,且v1< v2? B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2? ? D.甲先抛出,且v1< v2

5、从高H 处以水平速度v 1平抛一个小球1,同时从地面以速度v 2竖直向上抛出一个小球2,两小球在空中相遇则:( ) A .从抛出到相遇所用时间为 H v 1 B .从抛出到相遇所用时间为H v 2 C .抛出时两球的水平距离是v H v 12 D .相遇时小球2上升高度是H gH v 1212 -?? ? ? ? 6.物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tan α随时间t 变化的图像是下( ) 7、子弹从枪口射出,在子弹的飞行途中,有两块相互平行的竖直挡板A 、B (如图所示),A 板距枪口的水平距离为s 1,两板相距s 2,子弹穿过两板先后留下弹孔C 和D ,C 、D 两点之间的高度差为h ,不计挡板和空气阻力,求子弹的初速度v 0. () 2h S S 2S g 2 221+ 8、从高为h 的平台上,分两次沿同一方向水平抛出一个小球。如右图第一次小球落地在a 点。第二次小球落地在b 点,ab 相距为d 。已知第一次抛球的初速度为,求第二次抛 球的初速度是多少—————2h 2gh d V 1+

2015高中物理磁场经典计算题 (一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a = L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? a b c d B P v L B v E S F D (a ) a O E S F D L v (b

高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐) 一、单项选择题 1.下列说法中正确的是( ) A .在静电场中电场强度为零的位置,电势也一定为零 B .放在静电场中某点的检验电荷所带的电荷量q 发生变化时,该检验电荷所受电场力F 与其电荷量q 的比值保持不变 C .在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零 D .磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定 2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。如关系式U=IR ,既反映了电压、电流和电阻之间的关系,也确定了V (伏)与A (安)和Ω(欧)的乘积等效。现有物理量单位:m (米)、s (秒)、N (牛)、J (焦)、W (瓦)、C (库)、F (法)、A (安)、Ω(欧)和T (特) ,由他们组合成的单位都与电压单位V (伏)等效的是( ) A .J/C 和N/C B .C/F 和/s m T 2? C .W/A 和m/s T C ?? D .ΩW ?和m A T ?? 3.如图所示,重力均为G 的两条形磁铁分别用细线A 和B 悬挂在水平的天 花板上,静止时,A 线的张力为F 1,B 线的张力为F 2,则( ) A .F 1 =2G ,F 2=G B .F 1 =2G ,F 2>G C .F 1<2G ,F 2 >G D .F 1 >2G ,F 2 >G 4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1s 时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为( ) A .1/2 B .1 C .2 D .4 5.如图所示,矩形MNPQ 区域内有方向垂直于纸面的匀强磁场,有5个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中a 、b 、c 处进入

高中物理磁场经典习题含答案

寒假磁场题组练习 题组一 1.如图所示,在xOy平面内,y ≥ 0的区域有垂直于xOy平面向里的匀强磁场,磁感应强度为B,一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以v0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 在着沿ad方向的匀强电场,场强大小为E,一粒子源不断地从a处的小孔沿 ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好 从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场, 磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。(带电粒子的重 力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E与磁感应强度B的比值为多大? 题组二 4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小B1 = T的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = m的匀强磁场B2。某时刻一质量m = ×10-8 kg、电量q = +×10-4 C的带电微粒(重力可忽略不计),从x轴上坐标为( m,0)的P点以速度v = ×103 m/s沿y轴正方 向运动。试求: (1)微粒在y轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y轴时速度方向与y轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B0,

方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。 (1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。 (2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为3a /4,求离子乙的质量。 (3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。 题组三 7.如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布 在以直径A 2A 4为边界的两个半圆形区域I 、II 中,A 2A 4与A 1A 3的夹角为60°。一质量为m 、带电荷量为+q 的粒子以某一速度从I 区的边缘点A 1处沿与A 1A 3成30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入II 区,最 后再从A 4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t ,求I 区和II 区中磁感应强度的大小(忽略粒子重力)。 8.如图所示,在以O 为圆心,内外半径分别为R 1和R 2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,R 1=R 0,R 2=3R 0,一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力。 (1)已知粒子从外圆上以速度射出,求粒子在A 点的初速度的大小; (2)若撤去电场,如图(b ),已知粒子从OA 延长线与外圆的交点C 以速度射出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间; (3)在图(b )中,若粒子从A 点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少? A 23

高一物理必修1典型例题

高一物理必修1典型例题 例l. 在下图甲中时间轴上标出第2s末,第5s末和第2s,第4s,并说明它们表示的是时间还是时刻。 甲乙 例2. 关于位移和路程,下列说法中正确的是 A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的 B. 在某一段时间内质点运动的路程为零,该质点一定是静止的 C. 在直线运动中,质点位移的大小一定等于其路程 D. 在曲线运动中,质点位移的大小一定小于其路程 例3. 从高为5m处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m处被接住,则在这段过程中 A. 小球的位移为3m,方向竖直向下,路程为7m B. 小球的位移为7m,方向竖直向上,路程为7m C. 小球的位移为3m,方向竖直向下,路程为3m D. 小球的位移为7m,方向竖直向上,路程为3m 例4. 判断下列关于速度的说法,正确的是 A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。 B. 平均速度就是速度的平均值,它只有大小没有方向。 C. 汽车以速度1v经过某一路标,子弹以速度2v从枪口射出,1v和2v均指平均速度。 D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。 例5. 一个物体做直线运动,前一半时间的平均速度为1v,后一半时间的平均速度为2v,则全程的平均速度为多少?如果前一半位移的平均速度为1v,后一半位移的平均速度为2v,全程的平均速度又为多少? 例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间 B. 物体在不同时刻的位置 C. 物体在不同时间内的位移 D. 物体在不同时刻的速度 例7.如图所示,打点计时器所用电源的频率为50Hz,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A、C间的平均速度为m/s,在A、D间的平均速度为m/s,B点的瞬时速度更接近于m/s。 例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零

1.2磁场典型例题.

磁场典型例题 类型题■ 分析求解磁感强度 磁感强度B 是磁场中的重要概念,求解磁感强度的方法一般有:定义式法、矢量叠加法等。 【例题1】如图中所示,电流从 A 点分两路通过对称的环形分路汇合于 B 点,在环形分路的中心 0处的 磁感强度( ) A. 垂直环形分路所在平面,且指向“纸内”。 B. 垂直环形分路所在平面,且指向“纸外”。 C. 在环形分路所在平面内指向 B 。 D. 磁感强度为零。 【例题2】电视机显象管的偏转线圈示意图如图所示,某时刻电流方向如图所示。则环心 向为( ) A .向下 B .向上 C.垂直纸面向里 D .垂直纸面向外 【例题3】安培秤如图所示,它的一臂下面挂有一个矩形线圈,线圈共有 N 匝,它的下部悬在均匀磁场 B 内,下边一段长为 L ,它与B 垂直。当线圈的导线中通有电流 I 时,调节砝码使两臂达到平衡;然后使电 流反向,这时需要在一臂上加质量为 m 的砝码,才能使两臂再达到平衡。求磁感强度 B 的大小。 专业、专心、成就学生梦想 个性化辅导学案 0处的磁场方

判别物体在安培力作用下的运动方向,常用方法有以下四种: 1、电流元受力分析法:即把整段电流等效为很多段直线电流元,先用左手定则判出每小段电流元受安 培力方向,从而判出整段电流所受合力方向,最后确定运动方向。 2、特殊值分析法:把电流或磁铁转到一个便于分析的特殊位置 从而确定运动方向。 3、等效分析法:环形电流可以等效成条形磁铁、条形磁铁也可等效成环形电流、通电螺线管可等效成 很多的环形电流来分析。 4、推论分析法: ⑴ 两电流相互平行时无转动趋势,方向相同相互吸引,方向相反相互排斥; (2)两 电 流不平行时有转动到相互平行且方向相同的趋势。 【例题1】如图所示,把一通电直导线放在蹄形磁铁磁极的正上方,导线可 以自由移动,当导线通过电流 I 时,导线的运动情况是( )(从上往下看) (如转过90° )后再判所受安培力方向 , A .顺时针方向转动,同时下降 B ?顺时针方向转动,同时上升 C.逆时针方向转动,同时下降 D .逆时针方向转动,同时上升 【例题2】如图所示,两平行光滑导轨相距为 L=20cm 金属棒MN 的质量为m=10g, 电阻R=8Q ,匀强磁场磁感应强度 B 方向竖直向下,大小为 B=0.8T ,电源电动势为 E=10V,内阻r=1 Q 。当电键S 闭合时,MN 处于平衡,求变阻器 R1的取值为多少?(设 0 =45°) 【例题3】长L=60cm 质量为m=6.0X 10-2 kg ,粗细均匀的金属棒,两端用完全相同的弹簧挂起,放在磁 感强度为B=0.4T ,方向垂直纸面向里的匀强磁场中, 如图8所示,若不计弹簧重力,问⑴ 要使弹簧不伸长, 金属棒中电流的大小和方向如何 ?(2)如在金属中通入自左向右、 大小为I=0.2A 的电流,金属棒下降X 1=1cm 若通入金属棒中的电流仍为 0.2A ,但方向相反,这时金属棒下降了多少 XS 分析导体在安培力作用下的运动 | N l S B

磁场典型例题

磁场典型例题 【内容和方法】 本单元内容包括磁感应强度、磁感线、磁通量、电流的磁场、安培力、洛仑兹力等基本概念,以及磁现象的电本质、安培定则、左手定则等规律。 本单元涉及到的基本方法有,运用空间想象力和磁感线将磁场的空间分布形象化是解决磁场问题的关键。运用安培定则、左手定则判断磁场方向和载流导线、运动的带电粒子受力情况是将力学知识与磁场问题相结合的切入点。 【例题分析】 在本单元知识应用的过程中,初学者常犯的错误主要表现在:不能准确地再现题目中所叙述的磁场的空间分布和带电粒子的运动轨迹:运用安培定则、左手定则判断磁场方向和载流导线、运动的带电粒子受力情况时出错;运用几何知识时出现错误;不善于分析多过程的物理问题。 例1 如图10-1,条形磁铁平放于水平桌面上,在它的正中央上方固定一根直导线,导线与磁场垂直,现给导线中通以垂直于纸面向外的电流,则下列说法正确的是:[ ] A.磁铁对桌面的压力减小 B.磁铁对桌面的压力增大 C.磁铁对桌面的压力不变 D.以上说法都不可能 【错解分析】错解:磁铁吸引导线而使磁铁导线对桌面有压力,选B。 错解在选择研究对象做受力分析上出现问题,也没有用牛顿第三定律来分析导线对磁铁的反作用力作用到哪里。 【正确解答】 通电导线置于条形磁铁上方使通电导线置于磁场中如图10-2所示,由左手定则判断通电导线受到向下的安培力作用,同时由牛顿第三定律可知,力的作用是相互的,磁铁对通电导线有向下作用的同时,通电导线对磁铁有反作用力,作用在磁铁上,方向向上,如图10-3。对磁铁做受力分析,由于磁铁始终静止,无通电导线时,N = mg,有通电导线后N+F′=mg,N=mg-F′,磁铁对桌面压力减小,选A。 例2 如图10-4所示,水平放置的扁平条形磁铁,在磁铁的左端正上方有一线框,线框平面与磁铁垂直,当线框从左端正上方沿水平方向平移到右端正上方的过程中,穿过它的磁通量的变化是:[ ] A.先减小后增大 B.始终减小 C.始终增大 D.先增大后减小

高中物理平抛运动经典例题

[例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。再根据平抛运动的 分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。则 所以 根据平抛运动竖直方向是自由落体运动可以写出

所以 所以答案为C。 3. 从分解位移的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”) [例3] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 则, 所以Q点的速度 [例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右 抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有

高中物理磁场专题讲解经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv q B B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。 两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速 穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

磁场典型题

磁场典型题 一、磁场的叠加 例1 已知长直通电导线在周围某点产生磁场的磁感应强度大小与电流大小成正比、与该点到导线的距离成反比。4根电流大小相同的长直通电导线a 、b 、c 、d 平行放置,它们的横截面的连线构成一个正方形,O 为正方形中心,a 、b 、c 中电流方向垂直纸面向里,d 中电流方向垂直纸面向外,则a 、b 、c 、d 长直通电导线在O 点产生的合磁场的磁感应强度 B ( ) A.大小为零 B.大小不为零,方向由O 指向d C.大小不为零,方向由O 指向c D.大小不为零,方向由O 指向a 例3[2017·湖南十三校联考] 如图所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒 定电流,方向如图所示,这时O 点的磁感应强度大小为B 1,若将N 处长直导线移至 P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( ) A.1∶1 B .1∶2 C.3∶1 D.3∶2 二、安培力的计算 例1 将长为l 的导线弯成16 圆弧,固定于垂直纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图所示。若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( ) A.IlB ,水平向左 B .IlB ,水平向右 C.3IlB π,水平向左 D.3IlB π ,水平向右 例2. 两条直导线相互垂直,如图所示,但相隔一小段距离,其中一条AB 是固定的,另一条CD 能自由转动,当电流按如图所示的方向通入两条导线时,CD 导线将( )

高中物理知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。

高一物理典型例题

高一物理必修1知识集锦及典型例题 一. 各部分知识网络 (一)运动的描述: 测匀变速直线运动的加速度:△x=aT 2 ,6543212 ()()(3) a a a a a a a T ++-++=

a与v同向,加速运动;a与v反向,减速运动。

(二)力: 实验:探究力的平行四边形定则。 研究弹簧弹力与形变量的关系:F=KX.

(三)牛顿运动定律: . 改变

(四)共点力作用下物体的平衡: 静止 平衡状态 匀速运动 F x 合=0 力的平衡条件:F 合=0 F y 合=0 合成法 正交分解法 常用方法 矢量三角形动态分析法 相似三角形法 正、余弦定理法 物 体 的平衡

二、典型例题 例题1..某同学利用打点计时器探究小车速度随时间变化的关系,所用交流电的频率为50 Hz,下图为某次实验中得到的一条纸带的一部分,0、1、2、3、4、5、6、7为计数点,相邻两计数点间还有3个打点未画出.从纸带上测出x1=3.20 cm,x2=4.74 cm,x3=6.40 cm,x4=8.02 cm,x5=9.64 cm,x6=11.28 cm,x7=12.84 cm. (1)请通过计算,在下表空格内填入合适的数据(计算结果保留三位有效数字); (2)根据表中数据,在所给的坐标系中作出v-t图 象(以0计数点作为计时起点);由图象可得,小车 运动的加速度大小为________m /s2 例2. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零 例3. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s末的速度是6m/s。求:(1)第4s末的速度;(2)头7s内的位移;(3)第3s内的位移。 例4. 公共汽车由停车站从静止出发以0.5m/s2的加速度作匀加速直线运动,同时一辆汽车以36km/h的不变速度从后面越过公共汽车。求: (1)经过多长时间公共汽车能追上汽车? (2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 例5.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是 A. 物体立即获得加速度和速度

高二物理 磁场 磁感线 典型例题解析

磁场磁感线典型例题解析 【例1】在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知 [ ] A.一定是小磁针正东方向有一条形磁铁的N极靠近小磁针 B.一定是小磁针正东方向有一条形磁铁的S极靠近小磁针 C.可能是小磁针正上方有电子流自南向北通过 D.可能是小磁针正上方有电子流自北向南水平通过 解答:正确的应选C. 点拨:掌握小磁针的N极受力方向与磁场方向相同,S极受力方向与磁场方向相反是解决此类问题的关键. 【例2】下列关于磁感线的说法正确的是 [ ] A.磁感线上各点的切线方向就是该点的磁场方向 B.磁场中任意两条磁感线均不可相交 C.铁屑在磁场中的分布所形成的曲线就是磁感线 D.磁感线总是从磁体的N极出发指向磁体的S极 解答:正确的应选AB. 点拨:对磁感线概念的理解和磁感线特点的掌握是关键. 【例3】如图16-2所示为通电螺线管的纵剖面图,试画出a、b、c、d四个位置上小磁针静止时N极的指向. 点拨:通电螺线管周围的磁感线分布是小磁针静止时N极指向的根据.【例4】如图16-3所示,当铁心AB上绕有一定阻值的线圈后,在AB间的小磁针静止时N极水平向左,试在图中铁心上的A、B两侧绕上线圈,并与电源连接成正确的电路.

点拨:根据小磁针静止时N极指向确定铁心的N极、S极,再定绕线方向. 跟踪反馈 1.下列说法正确的是 [ ] A.磁感线从磁体的N极出发,终止于磁体的S极 B.磁感线可以表示磁场的方向和强弱 C.磁铁能产生磁场,电流也能产生磁场 D.放入通电螺线管内的小磁针,根据异名磁极相吸的原则,小磁针的N 极一定指向通电螺线管的S极 2.首先发现电流磁效应的科学家是 [ ] A.安培 B.奥斯特 C.库仑 D.麦克斯韦 3.如图16-4所示,若一束电子沿y轴正方向运动,则在z轴上某点A 的磁场方向应是 [ ] A.沿x轴的正向 B.沿x轴的负向 C.沿z轴的正向

第五章 稳恒磁场典型例题

第五章 稳恒磁场 设0x <的半空间充满磁导率为μ的均匀介质,0x >的半空间为真空,今有线电流沿z 轴方向流动,求磁感应强度和磁化电流分布。 解:如图所示 令 110A I H e r = 220A I H e r = 由稳恒磁场的边界条件知, 12t t H H = 12n n B B = 又 B μ= 且 n H H = 所以 1122H H μμ= (1) 再根据安培环路定律 H dl I ?=? 得 12I H H r π+= (2) 联立(1),(2)两式便解得 ,

2112 0I I H r r μμμμπμμπ=? =?++ 01212 0I I H r r μμμμπμμπ= ? =?++ 故, 01110I B H e r θμμμμμπ==?+ 02220I B H e r θμμμμμπ== ?+ 212()M a n M M n M =?-=? 2 20 ( )B n H μ=?- 00()0I n e r θμμμμπ-= ???=+ 222()M M M J M H H χχ=??=??=?? 00 00(0,0,)z J Ie z μμμμδμμμμ--=?=?++ 半径为a 的无限长圆柱导体上有恒定电流J 均匀分布于截面上,试解矢势 A 的微分方程,设导体的磁导率为0μ,导体外的磁导率为μ。 ? 解: 由电流分布的对称性可知,导体内矢势1A 和导体外矢势2A 均只有z e 分 量,而与φ,z 无关。由2A ?的柱坐标系中的表达式可知,只有一个分量,即 210A J μ?=- 220A ?= 此即 1 01()A r J r r r μ??=-?? 2 1()0A r r r r ??=?? 通解为 21121 ln 4 A Jr b r b μ=-++

高中物理经典题库1000题

《物理学》题库 一、选择题 1、光线垂直于空气和介质的分界面,从空气射入介质中,介质的折射率为n,下列说法中正确的是() A、因入射角和折射角都为零,所以光速不变 B、光速为原来的n倍 C、光速为原来的1/n D、入射角和折射角均为90°,光速不变 2、甘油相对于空气的临界角为42.9°,下列说法中正确的是() A、光从甘油射入空气就一定能发生全反射现象 B、光从空气射入甘油就一定能发生全反射现象 C、光从甘油射入空气,入射角大于42.9°能发生全反射现象 D、光从空气射入甘油,入射角大于42.9°能发生全反射现象 3、一支蜡烛离凸透镜24cm,在离凸透镜12cm的另一侧的屏上看到了清晰的像,以下说法中正确的是() A、像倒立,放大率K=2 B、像正立,放大率K=0.5 C、像倒立,放大率K=0.5 D、像正立,放大率K=2 4、清水池内有一硬币,人站在岸边看到硬币() A、为硬币的实像,比硬币的实际深度浅 B、为硬币的实像,比硬币的实际深度深 C、为硬币的虚像,比硬币的实际深度浅 D、为硬币的虚像,比硬币的实际深度深 5、若甲媒质的折射率大于乙媒质的折射率。光由甲媒质进入乙媒质时,以下四种答案正确的是() A、折射角>入射角 B、折射角=入射角 C、折射角<入射角 D、以上三种情况都有可能发生 6、如图为直角等腰三棱镜的截面,垂直于CB面入射的光线在AC面上发生全反射,三棱镜的临界角() A、大于45o B、小于45o C、等于45o D、等于90o 7、光从甲媒质射入乙媒质,入射角为α,折射角为γ,光速分别为v甲和v乙,已知折射率为n甲>n乙,下列关系式正确的是() A、α>γ,v甲>v乙 B、α<γ,v甲>v乙 C、α>γ,v甲

【电路】高中物理电路经典例题

?在许多精密的仪器中,如果需要较精确地调节某一电阻两端的电压,常常采用如图所示的电路.通过两只滑动变阻器R1和R2对一阻值为500 Ω 左右的电阻R0两端电压进行粗调和微调.已知两个滑动变阻器的最大阻值分别为200 Ω和10 Ω.关于滑动变阻器R1、R2的连接关系和各自所起的作用,下列说法正确的是( B A.取R1=200 Ω,R2=10 Ω,调节R1起粗调作用 B.取R1=10 Ω,R2=200 Ω,调节R2起微调作用 C.取R1=200 Ω,R2=10 Ω,调节R2起粗调作用 D.取R1=10 Ω,R2=200 Ω,调节R1起微调作用 滑动变阻器的分压接法实际上是变阻器的一部分与另一部分在跟接在分压电路中的电阻并联之后的分压,如果并联的电阻较大,则并联后的总电阻接近变阻器“另一部分”的电阻值,基本上可以看成变阻器上两部分电阻的分压.由此可以确定R1应该是阻值较小的电阻,R2是阻值较大的电阻,且与R1的一部分并联后对改变电阻的影响较小,故起微调作用,因此选项B是正确的. 如图所示,把两相同的电灯分别拉成甲、乙两种电路,甲电路所加的电压为8V, 乙电路所加的电压为14V。调节变阻器R 1和R 2 使两灯都正常发光,此时变阻器 消耗的电功率分别为P 甲和P 乙 ,下列关系中正确的是( a ) A.P 甲> P 乙 B.P 甲<P 乙 C.P 甲 = P 乙 D.无法确 定 ?一盏电灯直接接在电压恒定的电源上,其功率是100 W.若将这盏灯先接一段很长的导线后,再接在同一电源上,此时导线上损失的电功率是9 W,那么此电灯的实际功率将( ) A.等于91 W B.小于91 W C.大于91 W D.条件不足,无法确定

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

高中物理磁场经典计算题训练(有答案)

高中物理磁场经典计算题训练(有答案) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? 3.在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q , 质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小. a b c d A C F D (a ) (b )

高中物理磁场经典例题.doc

1.【辽宁省丹东市四校协作体2011 届高三第二次联合考试】 如图所示,质量为 ,带电荷量 m 为+ q 的 P 环套在固定的水平长直绝缘杆上,整个装置处在垂直于杆的水平匀强磁场中, mg ,则 ( ) 磁感应强度大小 B .现给环一向右的初速度 v 0 v 0> qB A .环将向右减速,最后匀速 B .环将向右减速,最后停止运动 C .从环开始运动到最后达到稳定状态,损失的机械能是 1 2 2mv D .从环开始运动到最后达到稳定状态,损失的机械能是 1 2 - 1 mg 2 2mv 2 m qB 1.[ 答案 ] AD [ 解析] 环在向右运动过程中受重力 mg ,洛伦兹力 F ,杆对环的支持力、摩擦力作用, mg 由于 v 0>qB ,∴ qv 0B >mg ,在竖直方向有 qvB =mg + F N ,在水平方向存在向左的摩擦力作用, 所以环的速度越来越小,当 N =0 时, f = 0,环将作速度 v mg 1 =的匀速直线运动, A 对 B F F qB 错,从环开始运动到最后达到稳定状态,损失的机械能为动能的减少,即 1 2 1 mg 2 , 2mv - 2m qB 故 D 对 C 错,正确答案为 A D . 2. 【重庆市万州区 2011 届高三第一次诊断】 如图所示,半径为 R 的光滑圆弧轨道处在匀强 磁场中,磁场方向垂直纸面(纸面为竖直平面)向里。两个质量为 m 、带电量均为 q 的正电荷 小球,分别从距圆弧最低点 A 高度为 h 处,同时静止释放后沿轨道运动。下列说法正确的是 A :两球可能在轨道最低点 A 点左侧相遇 B :两球可能在轨道最低点 A 点相遇 C :两球可能在轨道最低点 A 点右侧相遇 D :两球一定在轨道最低点 A 点左侧相遇 2. [答案]B [解析] 先对左球进行受力分析 , 如图所示 , 取小球运动的任一位置,小球在沿着轨道运动 的过程中始终受到竖直向下的重力 mg 和指向圆心的洛伦磁力 F 作用 , 而 mg 又可分解为指向圆 心方向和切线方向的 F1,F2。可知, F 和 F1 始终垂直小球的运动方向,在小球运动过程中不 改变小球的速度大小,而小球的速度的大小只与 F2 有关,对右球同样进行受力分析,它沿着 切线方向的力的变化与 F2 是相同的,所以两个小球运动到 A 所需的时间相同。在左球运动到 A 的过程中, F 不断增大,如果 F 始终小于 F1,那么两球便会在最低点 A 相遇,如果 F 在某点 大于 F1,那么小球便会被拉离轨道不能与右球在 A 点相遇,故答案是 B 。 3.【武昌区 2010 届高三年级元月调研测试】 如图所示,有一垂直于纸面向外的磁感应强度为 B 的有界匀强磁场(边界上有磁场) ,其边界为一边长为 L 的三角形, A 、 B 、 C 为三角形 的 顶点。 今有一质量为 、电荷量为+ q 的粒子(不计重 C 力 ), m

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

相关主题